专利名称:替代切换在空间上分开的交换系统的配置的制作方法
现代的交换系统(交换机(Switch))通过冗余地提供重要的内部部件具有高度的内部运行安全性。因此,在正常运行时(即无干扰地运行,也就是没有外部影响、没有长久持续的停电等等)达到了交换技术功能的很高的可支配性。可是,如果出现了巨大的外部影响(例如火灾、自然灾害、恐怖袭击、战争影响等等),则为了提高运行安全性所采取的预防措施通常很少有用,因为交换系统的原始部件和替代部件位于相同的地点,并且因此在这种灾害情况下以高的概率毁坏了这两种部件或使这两种部件不能工作。
后果是长时间持续的全部失效,如在2001年9月11日在纽约也曾是这种情况那样。然后,还添加可观的后勤供应和技术上的用途以及相当大量地添加专家知识,以便在这种情况下再度提供所失效的通信功能。在实践中这意味着,事实上的失效可能比这在技术上可能必需的情况显著更长地持续。作为后果,可能产生巨大数量级的经济损失,直至经济活动的瘫痪,或恰恰在较小国家的情况下直至基础设施的近乎崩溃。
组织/社会与正常运行的通信的依赖性/易受伤害性可能使交换系统成为恐怖袭击或者也成为战争攻击的有吸引力的目标。
作为解决方案,在现有技术中建议了一种地理上的冗余,据此在网络中对于多个交换系统应设置一种冗余的交换系统(1∶n冗余)。因此从硬件的角度,存在着完整的、冗余的交换系统,该交换系统在正常情况下处于“离线”状态并且包含空的数据库。如此来设计该交换系统,使得该交换系统利用其硬件配置可以代替失效的交换系统。如果因此n个交换系统之一呈现了全部失效,则动用其数据库的最新的保护措施(Sicherung),并且利用该数据库将冗余交换系统投入运行。在成功的启动之后,该冗余交换系统可以承担失效的交换系统的功能。
虽然利用该建议对于其它的n个交换系统仅仅需要唯一的冗余交换系统,因此对于提供地理上的冗余则要求网络运营商的较少的花费。但是,该优点是与一系列重大的缺点相联系的
因此强制性地要求,完好地保留或完好地向冗余交换系统的所在地传输失效交换系统的数据库的最新的保护措施。为了实现这一点,在正常运行时必须以短的时间间隔(例如每星期)将所有理论上要替代的交换系统的数据库的信息转储(Abzug)传输到冗余交换系统,或者可以迅速向那里传输。正如这也总是在技术上被解决的那样,这意味着可观的工作量和因此可观的、有规律地产生的费用。
但是即使完好地馈入了数据库的最新的保护措施,这通常也从来不是失效交换系统的数据库的百分之百的映射。因此,在从最近的保护措施开始的间隔时间中,可能已将现在缺少的、行政管理的/配置的变化或用户自己输入信息(Teilnehmerselbsteingaben)输入到了数据库中。同样的情况适用于对于网络运营商重要的计费信息。在这方面特别成问题的是,失效时当前的数据库和最新保护措施的数据库之间的增量(Delta)一般是未知的,并且因此完全的恢复是不可能的。因此存在以下危险,即所保护的(旧的)数据库可能与伙伴交换系统的数据库是不一致的,必要时这导致用户和中继线(Trunk)的交换技术上的不可操作性。冗余交换系统的成功的启动因此还远没有确保其包括用户/线路层在内的无干扰的运行。
附加地还补充说明,在其它的交换系统的所有扩展措施和改建措施中,必须一起考虑冗余交换系统。必须如此来扩建和建造,以致在那里没有限制或操纵也可以访问其余交换系统的数据库。也必须由冗余交换系统以相同的方式或更好地覆盖性能要求。所有这些意味着,网络运营商在网络规划中和在网络的交换机的工程设计中被迫面对附加的复杂性,其中,除此之外,该网络运营商还受冗余单元领域中的相同制造商的约束。
本发明所基于的任务因而在于,说明一种应如何扩展交换系统的地理上的冗余的网络结构,以便在故障情况下可以确保有效地将失效的交换系统转换到冗余伙伴。
从在权利要求1的前序部分中所给出的特征出发,通过在特征部分中所要求的特征来解决该任务。
本发明的主要的优点可见于,迅速、安全和自动地进行转换,其中,要替代切换(ersatzschalten)的交换系统是否具有基于分组的和/或基于TDM的接口是不重要的。这由此来实现,其方式是给每个要保护的交换系统分配等同的克隆物(Klon)作为具有等同的硬件、软件和数据库的冗余伙伴。该克隆物处于已启动的状态,但是该克隆物在交换技术上仍然是未激活的。因此定义了交换系统的高度可支配的、分布在多个位置上的1∶1冗余。通过分组网由远程的(abgesetzte)、上级的有实时能力的(即在秒范围中的)监视器来控制激活的交换系统及其冗余伙伴。该监视器可以由硬件和/或软件组成。在这种情况下,尽可能可靠的解决方案的前提在于,明显地在空间上分开激活的交换系统及其冗余伙伴、管理系统和监视器。
此外,在替代切换的范围内,还按需要避免了通信伙伴可看见的地址变化。由此从用户和连接线路的角度产生了仅短暂的不可支配性,因此在替代切换的范围内创造了挽救稳定的连接的前提。最终按照可能性,不丢失计费数据和用户自己输入信息,或不产生错误的计费。
本发明的其它的优点在于引入交换系统的新的“热备用(hotstandby)”状态。该“热备用”状态通过当前数据库的存在、激活的应用程序、尤其是交换技术的过程以及通过向外部阻断了克隆物的所有交换技术的接口来产生影响。这意味着,除了基于分组的接口(和可能除了交换技术的激发的处理)之外的所有部件的全部激活。
原则上利用这样的解决方案,本发明也可被用于单纯的软交换机(Softswitch)、单纯的TDM交换机以及混合配置(混合交换机(HybridSwitche))的整个范围。
在从属权利要求中说明了本发明的有利的扩展方案。
以下借助形象描绘的实施例来详细阐述本发明。
其中
图1示出了在本地冗余的监视器的情况下的根据本发明的网络配置。
图2示出了在地理上和本地冗余的监视器的情况下的根据本发明的网络配置。
在图1中指明了一种根据本发明的配置。依此规定了,给每个要保护的交换系统(例如S1)分配等同的克隆物作为具有等同的硬件、软件和数据库的冗余伙伴(例如S1b)。克隆物处于已启动的状态,但是该克隆物在交换技术上仍然是未激活的(“热备用”运行状态)。因此定义了交换系统的高度可支配的、分布在多个位置上的1∶1冗余。
如果交换系统S1、S1b具有TDM部分,则另外还需要至少一个交叉连接(Crossconnect)装置CC,该交叉连接装置CC可以在交换系统S1和冗余交换系统S1b之间转换整个TDM通信。交换系统S1的TDM线路段在正常运行时在交叉连接装置CC的点CC1上进或出,而在点CCa上再次出或进。交换系统S1b的TDM线路段在点CC1b上进入交叉连接装置CC或在那里在返回方向上具有其源点。可是不实现接合。
根据图1由同一个网络管理系统NM来控制这两个交换系统(交换系统S1和克隆物或者冗余伙伴S1b)。这样来实现控制,使得两个交换系统S1、S1b的数据库和软件的当前状态保持等同。这通过在这两个伙伴上等同地取出每个运行技术的指令、每个配置指令和每个包括临时电路(Patch)在内的软件更新来实现。因此定义了在空间上远程的克隆物,该克隆物与处于运行中的、具有等同数据库和等同软件状态的交换机是等同的。
该数据库原则上包括所有半永久性和永久性的数据。在这种情况下,将永久性的数据理解为以下数据,即这些数据作为代码被存放在表格中并且只有通过临时电路或软件更新才能被改变。将半永久性的数据理解为以下数据,即这些数据例如通过操作者接口到达系统中并且以输入的形式被存储在那里较长的时间。除了系统的配置状态之外,一般不由系统本身来改变这些数据。伴随呼叫的瞬时数据或者状态信息不被包括在数据库中,交换系统仅短时地存储这些瞬时数据,并且这些瞬时数据超出一个呼叫的持续时间一般没有意义,这些状态信息是配置上预定的基本状态的瞬时的叠加/补充(因此一端口虽然在基本状态下是激活的,但是由于瞬时的(暂时的)干扰而瞬间不能被访问)。
此外,交换系统S1、S1b两者还具有至少一个通向共同的网络管理系统NM的、激活的、面向分组的接口。根据图1,这应是两个接口IF1。在此,这两个接口IF1占有激活的运行状态(“激活的(act)”)。但是当在交换系统S1中也激活了所有剩余的面向分组的接口IF2...IFn期间,相反地在交换系统S1b中,剩余的接口是在“空闲的”运行状态下。“空闲的”状态意味着,接口不允许交换技术上的消息交换,但是可以从外部、即通过位于交换系统S1和交换系统S1b之外的、上级的有实时能力的监视器来激活。监视器可以硬件和/或软件来实现,并且在故障情况下实时转换到克隆物。实时在这里意味着几秒的时间间隔。与网络质量有关地,也可以定义更高的转换识别时间间隔。根据图1,监视器是作为控制设备SC,并且出于安全原因被加倍(本地冗余)。
接口In是基于分组的,并且因此表示通信接口,这些通信接口通向基于分组的外围设备(诸如IAD、SIP代理设备)、远距离的基于分组的交换机(Sx)、基于分组的媒体服务器(MG)。如从图1中可以获悉的那样,这些通信接口直接由控制设备SC(交换机控制器,SC(SwitchController))来控制。这意味着,控制设备SC将接口IFn激活和去激活,并且因此可以任意地在“激活的”和“空闲的”运行状态之间来回切换。
根据图1的配置应表示缺省(Default)配置。这意味着,交换系统S1在交换技术上是激活的,而交换系统S1b处于“热备用”运行状态。该状态通过当前的数据库和除了基于分组的接口(和可能除了交换技术的激发的处理)之外的所有部件的全部激活来产生影响。(地理上冗余的)交换系统S1b可以因此由控制设备SC通过激活接口IF2...n来迅速转移到交换技术上激活的状态。
如果由交换系统S1来发送/接收TDM信息流,则必需交叉连接装置CC。该交叉连接装置CC同样具有(至少)一个基于分组的(随时激活的)接口IFcc,并且既与网络管理NM又可选地与控制设备SC相连接。控制设备SC和网络管理NM随时具有转换交叉连接装置CC(对于正常情况为控制设备SC,对于紧急情况为网络管理系统NM)的可能性。可以看作为主要方面的是,这两个地理上冗余的交换系统S1、S1b以及网络管理NM和双重的控制设备SC必须是分别在空间上明显分开的。
控制设备SC给网络管理NM有规律地或需要时按照请求来传送交换系统S1和S1b的当前的运行状态(接口的激活/备用状态)以及自己的运行状态。控制设备SC的功能可选地部分或也完整地由网络管理NM来执行。网络管理NM出于安全原因应具有也可以手动引致上述转换的功能。可选地可以阻断自动转换,以致只可以手动执行上述转换。
交换系统S1和S1b也可以有规律地自己来检查,是否激活了其基于分组的接口。如果这对于接口IF2...n不是这种情况,则可以间接地推断出“热备用”状态,并且有针对性地阻断从接口IF2...n的不可支配性中得出的某些警报。此外,以该方式也可以识别交换机从“热备用”到“激活的”过渡。这实现了,必要时在起动交换通信时采取有针对性的措施。
为了尽可能可靠和准确地执行将交换系统S1转换到交换系统S1b,如果存在着交换系统S1的严重的失效,则推荐,当交换机的基于分组的接口已丢失了与其中央单元(如果存在的话)的接触时,该接口自行进入“空闲的”状态。
交换系统S1的接口I2...n的和交换系统S1b的其各自伙伴接口的分组地址(IP地址)可以是等同的,但这不是必须的。如果所述分组地址是等同的,则仅由连接在前面的路由器来察觉该转换。与此相反地,这对于网络中的伙伴应用程序完全是透明的。在这一点上,也称之为IP故障转移(Failover)功能。如果操作接口的协议允许将通信伙伴转换到另一个分组地址,如这例如在H.248协议中是这种情况的那样(媒体网关可以独立地建立通向具有其它IP地址的另一个媒体网关控制器的新的连接),则IP地址也可以是不同的。
如果由网络问题已引起了交换系统S1到交换系统S1b的转换,并且交换系统S1在硬件方面是正常的,则该转换同样是正确的措施,因为交换系统S1已不再是可以充分地联系上的,并且因此在交换技术上有可能曾存在重要的失效。控制设备SC在此尽可能如此与网络相连接,以致实际上可以排除交换系统S1通向控制设备SC的连接的隔离的失效,而在交换技术上还可以联系上交换系统S1。交换系统S1和交换系统S1b的运行状态的转换(激活的(act)→备用的(stb)/备用的(stb)→激活的(act))也可以由交换机的中央部分(CP)来协调。
在本发明的改进方案中规定了,将其它交换系统的中央计算机用作控制设备SC。于是,因此存在具有最高可支配性的控制设备。此外,控制设备SC的功能性还可被减少到单纯识别替代切换情况的必要性。因此,通过网络管理NM的转换的启动、也就是转移到操作者上,于是因此也必须不再由控制设备SC来控制位于之前的复用器和交叉连接装置。
在本发明的扩展方案中,考虑到在交换系统S1和交换系统S1b之间建立直接的通信接口。该通信接口可被用于更新例如鉴于SCI(用户控制的输入(Subscriber Controlled Input))的数据库和计费数据,以及也可被用于单个连接的瞬时数据的交换或重要的其它瞬时数据(例如H.248关联处理(Association Handle))的交换。因此从用户和运营商角度,可以最小化运行的干扰。
于是可以由各自激活的交换系统将半永久性的和瞬时的数据以循环的时间间隔(更新)或在失效之后来完整地传输到冗余的备用交换系统中。SCI数据的更新具有以下优点,在备用系统上避免了循环的重建,和在备用系统中随时控制有关SCI数据的现实性。
通过更新堆栈相关的数据(如H.248关联处理),对于外围设备可以隐匿外围设备由等量参数系统的承接,并且还可以更强地降低失效时间。
控制设备SC和交叉连接装置CC之间的检查协议可以是标准的OAM协议(例如SNMP)并且可以对应于网络管理NM的协议。
以下现在假定从交换系统S1的严重的失效出发。由于地理上的冗余,同样像控制设备SC那样,以高的概率未涉及克隆物(交换系统S1b)。控制设备SC确定了交换系统S1的失效,因为交换系统S1的足够多的接口不再应答。
控制设备SC现在按照交换系统S1失效的察觉将地理上冗余的交换系统S1b切换到激活的运行状态,并且将失效的交换系统S1的剩余系统去激活。该交换系统S1在修理/恢复之后进入到“热备用”运行状态。必要时必需手动的介入,以便在启动交换系统S1时,由交换系统S1b装载当前的数据库。如果毁坏了这两个控制设备SC,则也可以从网络管理NM出发手动地执行该转换。
同一种方法也在“单纯的软交换机”和“单纯的TDM交换机”的两种特定情况下起作用。在第一种情况下,只须略去交叉连接装置CC和所属的处理。在后一种情况下只有基于分组的接口、即通向网络管理NM的接口。相应地只有该接口由控制设备SC来监控,并且用来作为转换标准。出于安全原因对于该用途应在物理上将该接口加倍。如果具有完全不拥有基于分组的接口的单纯的TDM交换机,则必须扩展这种在物理上被加倍的接口,该接口仅仅用于通过控制设备SC来进行监控。
本发明的解决方案也可被用于交换系统S1和控制设备SC之间的受干扰的通信,只要交换系统S1还作为平台是有工作能力的。控制设备SC通过像交换通信那样的同一个路由器来联系上交换系统S1。仅仅IP核心网位于其间。在这种情况下,控制设备SC没有与交换系统S1的接触,但是具有与交换系统S1b的接触。但是,交换系统S1在交换技术上还是激活的并且具有与其交换技术的网络伙伴的接触。现在,控制设备SC在察觉到交换系统S1的(假定的)失效之后激活了冗余交换系统S1b,但是不能将交换系统S1去激活。
交换系统S1具有激活的接口IF,并且应答了位于之前的路由器的ARP请求。但是,交换系统S1b也具有激活的接口IF,并且应答了其位于之前的路由器的ARP请求。因此必要时可能双重地发放了相同的IP地址(裂脑(Split Brain))。
在图2中指明了根据按照图1的配置的扩展方案。依此设置了两个控制设备SC1、SC2。与图1中所指明的配置的差别在于,设置了两个被安放在不同地点上的控制设备SC1和SC2。控制设备SC因此由两半SC1和SC2组成。控制设备SC1与交换系统S1、S1b和冗余的控制设备SC2相连接。控制设备SC2同样与交换系统S1、S1b和对于其冗余的控制设备SC1相连接。这两个(在空间上分开的)控制设备SC1和SC2互相监控。
权利要求
1.用于替代切换交换系统的装置,其特征在于,给每个交换系统(S1)分配冗余交换系统(S1b)作为冗余伙伴,所述两个交换系统具有对一传输网的访问,设置了网络管理系统(NM)和至少一个有实时能力的监视器(SC),所述网络管理系统(NM)和监视器(SC)互相处于有效连接中,以及与所述交换系统(S1)中的每个、分别冗余的交换系统(S1b)和所述传输网处于有效连接中。
2.按权利要求1所述的装置,其特征在于,所述交换系统(S1)以及所述冗余交换系统(S1b)在硬件和软件方面具有等同的结构。
3.按权利要求1、2所述的装置,其特征在于,所述交换系统(S1)以及所述冗余交换系统(S1b)的数据库在永久性/半永久性数据方面在任何时刻基本上是等同的。
4.按权利要求1至3所述的装置,其特征在于,由交换系统(S1)、冗余交换系统(S1b)、网络管理系统(NM)和至少一个监视器(SC)所构成的配置分布在多个位置上。
5.按权利要求1至4所述的装置,其特征在于,所述交换系统(S1)和分别冗余的交换系统(S1b)具有基于分组的接口。
6.按以上权利要求之一所述的装置,其特征在于,所述冗余交换系统(S1b)占有(热备用)运行状态,该(热备用)运行状态通过基本上当前的数据库的存在、激活的应用程序以及通过向外部阻断所有在交换技术上所使用的基于分组的接口来产生影响。
7.按以上权利要求之一所述的装置,其特征在于,所述交换系统(S1)的基于分组的接口的分组地址(IP地址)和所述冗余交换系统(S1b)的各自基于分组的伙伴接口的分组地址(IP地址)是等同的。
8.按以上权利要求之一所述的装置,其特征在于,所述传输网具有至少一个可由NM或SC控制的、用于接合TDM连接的交叉连接装置(CC)。
9.按以上权利要求之一所述的装置,其特征在于,所述传输网在交换系统(S1)和交换系统(S1b)之间具有直接的通信接口。
10.用于监控和切换交换系统的监视器,该监视器在交换系统失效时实时地被转换到冗余分配的交换系统。
11.按权利要求10所述的多个地理上冗余的监视器,所述监视器互相监控,并且协调地进行实时地将交换系统替代切换到冗余分配的交换系统。
12.按权利要求11所述的多个监视器,所述监视器在内部通信受干扰时不进行成对地替代切换冗余交换系统。
全文摘要
在现有技术中存在以下问题,即现代的交换系统通过冗余地提供重要的内部部件进而具有高度的内部运行安全性。可是如果出现了巨大的外部影响(诸如自然灾害、恐怖袭击、战争影响等等),则所采取的预防措施通常很少有用,因为交换系统的原始部件和替代部件位于相同的地点,并且因此在这种灾害情况下以高概率毁坏了这两种部件。现在根据本发明设置了一种1∶1冗余。这意味着,给每个要保护的交换系统分配等同的克隆物作为具有等同的硬件、软件和数据库的冗余伙伴。通过在网络中位于上级的监视器迅速、可靠和自动地实时实现该转换。
文档编号H04B1/74GK1894977SQ200480037057
公开日2007年1月10日 申请日期2004年8月26日 优先权日2003年12月12日
发明者N·勒比希, J·泰格勒 申请人:西门子公司