显示设备和方法

文档序号:7633280阅读:112来源:国知局
专利名称:显示设备和方法
技术领域
该本发明涉及一种显示设备和方法,特别涉及一种适于显示运动图像的显示设备和方法。
背景技术
存在通过改进用于图像显示装置的信号处理技术和驱动技术来提高显示图像质量的需要。
一般而言,可以通过增加图像的分辨率并平滑其纹理来提高图像的图像质量。以表示构成图像的点(点)的像素为单位来表达图像的信息量。图像的像素数以图像的水平和垂直点的数目表达,例如800×600或1024×768。更具体地说,像素(点)数越多,图像纹理就越平滑并且构成图像的信息量就越大。
为了以高分辨率显示图像,存在一种技术(例如,参考专利文献1),其通过例如使用两个显示器1和2以便在正常的单模式中使显示器1显示图像,并且在多模式中使各个显示器1和2分别显示图像的左半部和右半部,从而在多模式中以与仅仅使用一个显示器的系统相比两倍高的分辨率来显示图像。
日本专利申请公布号平-10-124024如果以增加的分辨率显示图像,则构成图像的信息量增加,从而要被传输到显示器1或2的数据量增加,并且需要提高数据传输速率。因此,将该系统构造成通过减少显示器1和2的每个点的数据量并且通过信号处理执行所减少数据的转换,执行图像数据的传输而不提高数据传输速率。
另外,特别地,可以通过提高帧速率来提高运动图像的图像质量,其中帧速率是每秒更新屏幕的次数。
例如,当通过使用投影仪将运动图像投影并显示在屏幕上时,投影仪通过在逐行基础上执行水平扫描而逐行地显示帧图像,并且在扫描了一个图像帧的所有行之后,开始扫描后继帧的图像数据,从而显示运动图像。

发明内容
如上所述,特别地,可以通过提高帧速率来提高运动图像的图像质量。然而,为了根据高帧速率执行显示处理,需要提高用于驱动显示装置的驱动电路的处理速度,此外,需要提高确定图像强度的光量调制元件的反应速度。该方法在技术上是困难的,并且导致成本提高。
虽然可以通过提高帧速率来提高运动图像的图像质量是公知的,但是实际上不可能研究在提高帧速率的情况下帧速率和运动图像的图像质量之间的关系。因此,还不清楚,是否有可能通过无限程度地提高帧速率来无限程度地提高运动图像的图像质量。
当然,不可能定量地了解在提高帧速率的情况下帧速率和运动图像之间的关系。
因此,本发明人注意到下一代数字影院格式的帧速率,并且根据视觉特性研究了其必要限制。
此前认为,被称作平滑追踪的追踪眼球运动的速度与视觉目标的运动速度一致。Westheimer已经陈述,眼睛以与不高于30度/秒的视觉目标速度相同的速度运动(Westheimer,G.,A.M.A.Arch.Ophthal.52,pp.932-941,1954)。
然而,后面的研究证明,追踪眼球运动的速度在几乎所有情况下都小于视觉目标的速度。Meyer等人已经陈述,眼睛的追踪速度大约是关于视觉目标速度的0.87倍。(Meyer,C.H.等人,Vision Res.Vol.25,No.4,pp.561-563,1985)。
虽然Meyer已经报告,获得了最大追踪速度限制100度/秒,但是Meyer陈述了,这样的追踪速度是从熟练的测试对象获得的结果,并且一般的测试对象不能进行这样的跟踪。该实验的条件是80厘米的视觉距离,这大大不同于电影院的视觉环境。视觉目标是通过电流计移动的光斑,并且Meyer没有讨论视觉目标的空间频率。
在日本,存在讨论帧速率的NHK报告例子(Yasushi Tadokoro等人,NHKTechnical Report,September(1968),pp422-426,1968),但是该报告的条件是视觉距离7H(H屏幕高度)、最大亮度30fl(102.78cd/m2)的14英寸监视器,并且仍然没有考虑电影院的条件。另外,该报告做出结论,由于在一般内容中不出现较大运动,因此60Hz或更高的场频是不必要的。Miyahara对关于振动视觉目标的动态视觉灵敏度的实验条件是14英寸监视器、视觉距离4H和最大亮度400cd/m2。有关视觉特性的实验主要是在诸如相对短的距离和相对高的亮度的视觉环境条件下实施的。
因此,本发明人在电影院的视觉环境中,即,最大亮度40cd/m2和视觉距离5到15m,对眼睛的动态空间频率特性进行了试验性研究。对依赖于这样的动态空间频率特性的运动图像质量进行研究是重要的,因为这样的研究导致极大地考虑用于帧速率的传统格式。
在该研究过程中,本发明人实际上研究了在较高帧速率中帧速率和运动图像质量之间的关系,并且证实了人类的视觉特性。
本发明是鉴于上述情形而提出的,并且旨在使得有可能基于人类视觉特性,在不必提高帧速率的情况下将较小劣化的运动图像呈现给观察者,其是观看所显示的运动图像的人。
本发明的第一显示设备的特征在于包括显示控制部件,用于控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像;以及显示部件,用于基于显示控制部件的控制而显示由不小于105帧/秒构成的运动图像,其中在每个帧周期期间保持屏幕上的每个像素的显示。
显示控制部件控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由不小于230帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由不大于480帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由120帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由120帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由240帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由240帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由250帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由250帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由360帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由360帧/秒构成的运动图像。
本发明的第一显示方法是一种用于装备有显示部件的显示设备的显示方法,其中在显示部件中,在每个帧周期期间保持屏幕上的每个像素的显示,并且该方法的特征在于包括显示控制步骤控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由120帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由240帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由250帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由360帧/秒构成的运动图像。
本发明的第二显示设备的特征在于包括显示控制部件,用于控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像;以及显示部件,用于基于显示控制部件的控制而显示由不小于105帧/秒构成的运动图像,该显示部件是矩阵驱动的。
显示控制部件控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由不小于230帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由不大于480帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由120帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由120帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由240帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由240帧/秒构成的运动图像。
显示控制部件控制显示,以便使显示部件显示由250帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由250帧/秒构成的运动图像。
显示控制部件控制显示,以便使得显示部件显示由360帧/秒构成的运动图像,并且显示部件能够基于显示控制部件的控制而显示由360帧/秒构成的运动图像。
本发明的第二显示方法是用于装备有矩阵驱动的显示部件的显示设备的显示方法,并且其特征在于包括显示控制步骤控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由120帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由240帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由250帧/秒构成的运动图像。
在显示控制步骤中,控制显示,以便使显示部件显示由360帧/秒构成的运动图像。
在根据本发明的第一显示设备和第一显示方法中,控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像,在该显示部件中,在每个帧周期期间保持屏幕上的每个像素的显示。
在根据本发明的第二显示设备和第二显示方法中,控制显示,以便使矩阵驱动的显示部件显示由不小于105帧/秒构成的运动图像。
如上所述,根据本发明,有可能基于人类视觉特性,在不必提高帧速率的情况下将较小劣化的运动图像呈现给观察者,其是观看所显示的运动图像的人。


用于说明应用了本发明的图像显示系统的第一构造示例的方框图。
用于说明输入视频信号和输出视频信号的定时的图。
用于说明图1所示的图像显示装置的构造示例的视图。
用于说明显示在图3所示的图像显示装置上的运动图像的边缘部分的更新速率的图。
用于说明要由图1所示的图像显示系统执行的显示控制处理1的流程图。
用于说明应用了本发明的图像显示系统的第二构造示例的方框图。
用于说明要由图6所示的图像显示系统执行的显示控制处理2的流程图。
用于说明输入视频信号和输出视频信号的定时的图。
示出了运动对象和静止对象一起共存的实际场景的示例的视图。
用于说明凝视(fixation)条件的视图。
用于说明跟踪条件的视图。
用于说明在跟踪和凝视期间观察者的识别的视图。
用于说明在图像捕获条件下、在显示条件下和在观察条件下观察者的识别的视图。
用于说明频闪赝像(strobe artifact)的视图。
用于说明在图像捕获条件下、在显示条件下和在观察条件下以高帧速率的观察者识别的视图。
用于说明按照抖动(jerkiness)评测运动图像质量的结果的视图。
用于说明按照运动模糊评测运动图像质量的结果的视图。
用于说明投影仪和屏幕的构造示例的视图,其中n是除2之外的数。
用于说明输入视频信号和输出视频信号的定时的视图,其中m=240且n=4。
用于说明输入视频信号和输出视频信号的定时的视图,其中m=250且n=5。
用于说明使用LCD的图像显示系统101的构造的图。
1...图像显示系统,11...图像信号转换装置,12...图像显示装置,21...A/D转换部分,22...同步信号检测部分,23...帧存储器,24...控制器,25...D/A转换部分,27...显示控制部分,41...扫描控制部分,43...显示部分,71...图像显示系统,81...图像信号转换部分,91...数据分离部分,92...数据保存部分,94...控制器,93...帧存储器,101...图像显示系统,111...信号处理部分,112...时钟/采样脉冲生成部分,113...图像显示装置,121...Y/C分离/色度解码部分,122...A/D转换部分,124...同步信号检测部分,125...控制信号生成部分,131...LCD,133-1到133-4...数据线驱动电路,134...选通线驱动部分,141...液晶元件,142...TFT,143...电容器。
具体实施例方式
下面将参考附图对本发明的实施例进行描述。
图1是示出应用了本发明的图像显示系统1的构造的方框图。图像显示系统1包括图像信号转换装置11和图像显示装置12。图像显示系统1被构造成,向其提供与运动图像相对应的模拟图像信号,在图像信号转换装置11中处理图像信号,并且将处理后的图像信号提供给图像显示装置12,以便显示该运动图像。
将提供给图像信号转换装置11的模拟图像信号提供给A/D转换部分21和同步信号检测部分22。
A/D转换部分21将具有帧速率m的模拟图像信号转换成数字图像信号,并且将数字图像信号提供给帧存储器23。同步信号检测部分22从图像信号检测图像信号的帧速率和点时钟,并且生成垂直同步信号和点时钟信号,并且将垂直同步信号和点时钟信号提供给控制器24。点时钟是在显示器上显示一个点所需的时间的倒数。
控制器24被提供来自同步信号检测部分22的垂直同步信号和点时钟信号,并且控制从帧存储器23的视频信号输出,并且将与从帧存储器23的视频信号输出相关联的信息提供给显示控制部分27。帧存储器23基于控制器24的控制,将所提供的数字图像信号输出到D/A转换部分25-1或D/A转换部分25-2。
下面将参考图2描述在控制器24的控制下帧存储器23的视频信号输入和输出。
假定m表示输入到帧存储器23的输入视频信号S1的帧速率。还假定顺序输入到帧存储器23的帧是α帧、α+1帧、α+2帧、...。当将α帧和α+1帧顺序输入到帧存储器23时,控制器24控制帧存储器23,以便以等于输入视频信号S1的帧速率的1/2的帧速率,将α帧作为输出视频信号S2输出到D/A转换部分25,并且以便在从α帧的提供开始时间a延迟1/m的提供开始时间b,将α+1帧作为输出视频信号S3输出到D/A转换部分25-2。
将α帧提供到D/A转换部分25-1所采用的时间周期是2/m,并且提供结束时间c比α+1帧向D/A转换部分25-2的提供开始时间b晚1/m。α+1帧之后,将α+2帧和α+3帧顺序输入到帧存储器23,并且控制器24控制帧存储器23,以便与α帧的提供相连续地(即,在提供时间c),以等于输入视频信号S1的帧速率的1/2的帧速率,将α+2帧作为输出视频信号S2提供给D/A转换部分25。类似地,控制器24在从α+2帧的提供开始时间c延迟1/m并且等于α+1帧的提供结束时间的提供开始时间d,将α+3帧作为输出视频信号S3提供给D/A转换部分25-2。
输出视频信号S2和输出视频信号S3之间的提供定时偏差由输入视频信号S1的垂直同步信号确定。更具体地说,如图2所示,输出视频信号S2的提供开始时间a和输出视频信号S3的提供开始时间f之间的时间段等于输入视频信号S1的一个帧周期。基于从同步信号检测部分22提供的垂直同步信号,控制器24控制输出视频信号S2向D/A转换部分25的提供定时,以及输出视频信号S3向D/A转换部分25-2的提供定时。
因此,控制器24控制帧存储器23,以便以等于输入视频信号S1的帧速率m的1/2的帧速率m/2,在逐帧的基础上交替地,分别将输出视频信号S2和输出视频信号S3提供给D/A转换部分25和D/A转换部分25-2,其中采取这样的方式,即输出视频信号S2和S3之一的每个帧的提供开始时间相对于另一个的每个帧的提供开始时间偏移所输出的一帧提供时间(2/m)的一半(1/m)。
回到图1所示的图像显示系统1的说明。
D/A转换部分25-1将所提供的数字图像信号转换成模拟图像信号,并且将模拟图像信号提供给图像显示装置12的扫描控制部分41-1。D/A转换部分25-2将所提供的数字图像信号转换成模拟图像信号,并且将模拟图像信号提供给图像显示装置12的扫描控制部分41-2。
基于从控制器24提供的信息,显示控制部分27控制图像显示装置12的运动图像显示,以便以与上面参考图2所述相类似的定时,显示与输出视频信号S2和S3相对应的帧图像。
如上参考图2所述,输出视频信号S2和输出视频信号S3中的每个的帧速率等于输入视频信号S1的帧速率的1/2。更具体地说,输出视频信号S2和输出视频信号S3中的每个的点时钟等于输入视频信号S1的点时钟的1/2。基于与从帧存储器23的视频信号输出相关联并且从控制器24提供的信息,显示控制部分27执行控制,以便使显示在图像显示装置12上的输出视频信号S2和输出视频信号S3中的每个的点时钟变成等于输入视频信号S1的点时钟的1/2。
需要时,驱动器28可以连接到控制器24。将磁盘31、光盘32、磁光盘33或半导体存储器34安装在驱动器28中,以便传送和接收信息。
图像显示装置12被提供由图像信号转换装置11转换的两行模拟视频信号,并且通过使用扫描控制部分41-1和扫描控制部分41-2,基于显示控制部分27的控制而将运动图像显示在显示部分43上。
扫描控制部分41-1被提供与输出视频信号S2相对应的模拟视频信号,其中,在如上参考图2所述的定时从帧存储器23读取该模拟视频信号,并且由D/A转换部分25-1将其转换成模拟信号。类似地,扫描控制部分41-2被提供与输出视频信号S3相对应的模拟视频信号,其中,在如上参考图2所述的定时从帧存储器23读取该模拟视频信号,并且由D/A转换部分25-2将其转换成模拟信号。
扫描控制部分41-1和扫描控制部分41-2通过点顺序或行顺序扫描方法,将各自的所提供的模拟视频信号显示在显示部分43上。此时,扫描控制部分41-1和扫描控制部分41-2可以通过交替地扫描连续帧,同时使每个连续帧的扫描开始时间相对于后继帧的扫描开始时间偏移1/2帧,从而以扫描控制部分41-1或扫描控制部分41-2单独执行图像绘画的帧速率的两倍的帧速率,在显示部分43上执行图像显示。
图像显示装置12不仅可以被构造成单个装置,而且可以被构造成由多个装置构成的图像显示系统。如果图像显示装置12被构造成图像显示系统,则举例来说,如图3所示,该图像显示系统可以由投影仪51-1、投影仪51-2和屏幕52构成。
下面将参考图3所示的、使用投影仪51-1、投影仪51-2和屏幕52的示例,描述图像显示装置12的具体操作。投影仪51-1对应于图1中的扫描控制部分41-1,投影仪51-2对应于图1中的扫描控制部分41-2,并且屏幕52对应于图1中的显示部分43。
例如,投影仪51-1被提供与输出视频信号S2相对应的模拟视频信号,其中,在如上参考图2所述的定时从帧存储器23读取该视频信号,并且由D/A转换部分25-1将其转换成模拟信号。类似地,投影仪51-2被提供与输出视频信号S3相对应的模拟视频信号,其中,在如上参考图2所述的定时从帧存储器23读取该视频信号,并且由D/A转换部分25-2将其转换成模拟信号。
在基于显示控制部分27的控制的定时,投影仪51-1和投影仪51-2中的每个通过从像素(X,Y)=(0,0)到像素(X,Y)=(p,q)在水平方向上扫描屏幕52,显示与所提供的视频信号相对应的帧图像,其中从像素(X,Y)=(0,0)到像素(X,Y)=(p,q)的范围形成要被显示的图像。由投影仪51-1和投影仪51-2中的每个显示的帧图像的帧速率是m/2。如同上面参考图2所述的输出视频信号SS和输出视频信号S3的情况一样,由投影仪51-1和51-2中的一个显示的每个帧的扫描开始时间相对于由另一个提供的一个显示帧偏移1/2,并且其扫描之间的相位差是1/m。
例如,当投影仪51-2扫描屏幕52上与由扫描B表示的行上的α+1帧相对应的行,投影仪51-1扫描屏幕52上与由扫描A表示的行上的α+2帧相对应的行。由扫描B表示的行是相对于由扫描A表示的行偏移一个帧的行数的1/2的行。更具体地说,以1/m的时间间隔,通过扫描A和扫描B来交替地重写显示在屏幕52上的运动图像。
例如,如果从投影仪51-1和投影仪51-2中的每个输出的显示图像的帧速率是150Hz,则显示在屏幕上的运动图像的帧速率实质上变成300Hz。
另外,为了防止通过扫描A和扫描B中相应的一个在相同位置形成的扫描行之间发生偏差,有可能通过使用与用于传统的所谓成双堆叠(twin stack)技术的图像光学位置校正类似的技术,校正像素的扫描位置。成双堆叠技术是一种能够通过使用两个投影仪在相同时间且在相同位置显示相同图像来显示明亮图像的技术。当通过使用成双堆叠技术来显示图像时,所显示图像的亮度变成两倍高,从而即使在明亮环境或长投影距离的情况下,也可以实现清晰的投影。
成双堆叠技术的使用引起这样的问题,即由于两个投影图像的像素位置之间的偏差而发生图像模糊,但是能够微调光学投影图像的像素位置的所谓画面偏移功能广泛地用来解决这样的问题。根据画面偏移功能,可以使从两个投影仪投影的图像位置精确地相互一致。
例如,在日本专利申请No.平10-058291中公开了一种校正两个投影图像的像素位置之间的偏差的技术。
通过调整图像显示装置12,以便由扫描A和扫描B形成的扫描行之间的偏差变成不大于一个像素(一个点或一个像素),图像显示装置12变得能够显示运动图像,而不会由于相互偏移一帧的图像的重叠而导致图像模糊。
如上所述,在投影仪51-1和投影仪51-2在逐帧的基础上交替地绘画帧图像,同时使每个帧图像相对于后继帧图像偏移1/2帧的情况下,由投影仪中的一个开始用于绘画一个帧的图像的扫描早于由另一个投影仪完成扫描和绘画的在前一个帧。此时,当显示在图3的屏幕52上的对象C被显示成例如在显示屏幕上从左到右运动时,边缘部分β的运动的平滑被观察运动图像的用户感觉为所显示图像的平滑。
下面将参考图4描述屏幕52上的对象C的边缘部分β的显示。
由投影仪51-1显示α帧的对象C,并且在1/m秒的周期之后,由投影仪51-2显示α+1帧的对象C。在从α帧显示的1/m周期之后,重写此时的对象C的边缘部分β的位置。然后,在1/m周期之后,由投影仪51-1显示α+2帧的对象C。在从α+1帧显示的1/m周期之后,重写对象C的边缘部分β。
例如,当从投影仪51-1和投影仪51-2中的每个输出的显示图像的帧速率是150Hz时,以1/150(秒)的间隔,重写由投影仪51-1和投影仪51-2中的每个单独投影仪显示的运动图像的帧。然而,以1/300(秒)的间隔刷新对象C的边缘部分β,其通过借助于投影仪51-1和投影仪51-2在逐帧的基础上交替地显示帧图像,而被显示在屏幕52上。因此,由用户观察的对象C的边缘部分β的运动变得非常平滑。
图像显示装置12已被描述为,其被构造成在显示控制装置27的控制下控制图像的显示。然而,为了控制如上参考图3作为示例所述的投影仪51-1和投影仪51-2的操作,图像显示装置12可以在内部具有显示控制部分27,以便被提供来自控制器24的、对于图像显示所需的控制信号,或者可以在内部具有不同于显示控制部分27的控制部分,以便被提供来自显示控制部分27的垂直同步信号和点时钟信号。
上面说明性地参考由投影仪51-1、投影仪51-2和屏幕52构成的投影显示系统,叙述了图像显示装置12的操作。然而,图像显示装置12可以使用任何其它能够通过点顺序或行顺序方法来绘画图像的显示系统,只要该显示系统可以使两个显示装置以1/2帧的偏移而交替地扫描连续帧,并且以两个显示装置中的每个单独显示装置的帧速率的两倍高的帧速率来执行运动图像的显示,即可。
图像显示装置12可以使用通过点顺序或行顺序方法执行图像绘画的装置,例如使用CRT(阴极射线管)、LCD(液晶显示器)、GLV(光栅光阀)、LED(发光二极管)或FED(场发射显示器)的直视型显示器或投影仪。
例如,GLV是使用微带状阵列(micro ribbon array)的图像显示技术,其中微带状阵列是用于通过使用光衍射作用来控制光的方向、颜色等的投影装置。微带状阵列包括按行排列的微型光衍射装置,并且GLV通过将激光照射到微带状阵列上来执行图像的投影。可以通过电信号独立地驱动条带(ribbon),并且可以调节每个条带的驱动量,以便改变光衍射量,并且借助于每个条带之间的差异而产生图像中的明和暗。因此,GLV可以实现平滑的灰度表示和高对比度。
LED是由两种半导体的节形成的装置,并且在施加电流时能够发光。
FED是能够通过类似于CRT的发射原理来获得图像的装置,其通过从阴极取出电子并且使电子碰撞覆盖在阳极上的荧光材料来发光。然而,CRT的阴极具有使用点电子源的结构,而FED的阴极具有使用平面电子源的结构。
下面将参考图5所示的流程图描述要由图1所示的图像显示系统1执行的显示控制处理1。
在步骤S1,同步信号检测部分22从所提供的模拟视频信号检测同步信号和点时钟,并且将垂直同步信号和点时钟信号提供给控制器24。
在步骤S2,A/D转换部分21执行所提供的模拟视频信号的A/D转换,并且将数字视频信号提供给帧存储器23。
在步骤S3,帧存储器23顺序地存储所提供的数字视频信号。
在步骤S4,如上参考图2所述,根据控制器24的控制,帧存储器23以与其速率是输入视频信号S1的速率的一半的输出点时钟相对应的帧速率,在逐帧的基础上交替地将视频信号输出到两个D/A转换部分25-1和25-2,同时将每个帧相对于后继帧偏移显示一个帧所需的扫描周期的一半。输出到D/A转换部分25-1的视频信号是输出视频信号S2,而输出到D/A转换部分25-2的视频信号是输出视频信号S3。
换句话说,控制器24控制帧存储器23,以便将存储在帧存储器23中的帧分离成奇数帧和偶数帧,并且使奇数和偶数帧中的每个相对于后继帧偏移显示一个帧所需的扫描周期的一半的周期,以便交替地将这些帧输出到D/A转换部分25-1和D/A转换部分25-2。
在步骤S5,D/A转换部分25-1和D/A转换部分25-2执行所提供视频信号的D/A转换,并且将模拟视频信号提供给图像显示装置12。
在步骤S6,显示控制部分27在与上面参考图2所述的输出视频信号S2和输出视频信号S3的情况下使用的定时相类似的定时,控制图像显示装置12的扫描控制部分41-1和扫描控制部分41-2(在图3中,投影仪51-1和投影仪51-2),并且使每一帧的扫描开始时间相对于后继帧的扫描开始时间偏移显示一个帧所需的扫描周期的一半的周期,从而在逐帧的基础上,交替地扫描视频信号的各个帧,以便以扫描控制部分41-1和扫描控制部分41-2中的每个的帧速率的基本上两倍高的显示帧速率,将视频图像显示在显示部分43(在图3中,屏幕52)上。显示控制部分27以这种方式控制图像显示装置12,并且完成处理。
通过上述处理,将要被显示的运动图像分离成奇数和偶数帧,并且将奇数和偶数帧分别提供给两个显示装置。然后,各个显示装置以要被显示的运动图像的帧速率的一半的帧速率、以1/2帧的偏移扫描奇数和偶数帧,以便可以以显示装置能力的两倍高的帧速率显示运动图像。
另外,通过调整两个扫描行的扫瞄位置准确度,以便位置偏差不大于一个点(一个像素),有可能清楚地显示运动图像,而没有由于相互偏移一个帧的图像的重叠而导致的图像模糊。
另外,如果投影仪51-1和投影仪51-2中的每个是所谓的液晶投影仪,则可以在投影仪51-1的投影透镜的前面提供快门(shutter),例如,在图2中,在提供开始时间提供开始时间a和提供开始时间b之间、在提供开始时间c和提供开始时间d之间、以及在提供开始时间e和提供开始时间f之间,该快门通过用于显示由投影仪51-1投影的图像的光,并且在图2中,在提供开始时间b和提供开始时间c之间、以及提供开始时间d和提供开始时间e之间,该快门阻挡用于显示由投影仪51-1投影的图像的光。另外,可以在投影仪51-2的投影透镜的前面提供快门,例如,在图2中,在提供开始时间b和提供开始时间c之间、以及在提供开始时间d和提供开始时间e之间,该快门通过用于显示由投影仪51-2投影的图像的光,并且在图2中,在提供开始时间a和提供开始时间b之间、在提供开始时间c和提供开始时间d之间、以及在提供开始时间e和提供开始时间f之间,阻挡用于显示由投影仪51-2投影的图像的光。
更具体地说,在投影仪51-1的投影透镜的前面提供的快门传递或阻挡用于显示由投影仪51-1投影的图像的光,以便显示全都与图2所示的输入视频信号S 1同步的α帧、α+2帧、α+4帧、...,即,仅仅与输入视频信号S1同步的(α+2×n)帧(n是整数)。在投影仪51-2的投影透镜的前面提供的快门传递或阻挡用于显示由投影仪51-2投影的图像的光,以便全都与图2所示的输入视频信号S1同步的显示α+1帧、α+3帧、...,即,仅仅与输入视频信号S1同步的(α+2×n+1)帧(n是整数)。
另外,快门中的每个可以是液晶快门或机械快门,并且仅仅需要能够以预定周期的时间间隔传递或阻挡光。
另外,可以在投影仪51-1或投影仪51-2中,例如,在光源和液晶装置之间或者在液晶装置的后面,提供快门中的每个。
图6是示出应用了本发明并且具有与图1所示的图像显示系统1不同的构造的图像显示系统71的构造的方框图。
相同标号用来表示与图1所示相对应的部分,并且省略相同部分的描述。
图6所示的图像显示系统71使类似于在图1所示的图像显示系统1中使用的图像显示装置12显示运动图像,但是通过使用与图1所示的图像信号转换装置11不同的图像信号转换装置81来转换图像信号。
将提供给图像信号转换装置81的模拟图像信号提供给A/D转换部分21和同步信号检测部分22。
A/D转换部分21将具有帧速率m的模拟图像信号转换成数字图像信号,并且将数字图像信号提供给数据分离部分91。同步信号检测部分22从图像信号检测图像信号的帧速率和点时钟,并且生成垂直同步信号和点时钟信号,并且将垂直同步信号和点时钟信号提供给数据分离部分91、数据保存部分92-1、数据保存部分92-2和控制器94。
基于从同步信号检测部分22提供的垂直同步信号,数据分离部分91将所提供的数字图像信号分离成单独帧,并且在逐帧的基础上,将帧交替地提供给数据保存部分92-1或数据保存部分92-2。例如,数据分离部分91将奇数帧提供给数据保存部分92-1,并且将偶数帧提供给数据保存部分92-2。
数据保存部分92-1用作数据分离部分91和帧存储器93-1之间的接口,并且数据保存部分92-2用作数据分离部分91和帧存储器93-2之间的接口。数据保存部分92-1和92-1中的每个基于从同步信号检测部分22提供的垂直同步信号,在逐帧的基础上将所提供的图像信号提供给帧存储器93-1或帧存储器93-2。
控制器94被提供来自同步信号检测部分22的垂直同步信号和点时钟信号,并且控制帧存储器93-1和帧存储器93-2的视频信号的输出定时。
帧存储器93-1基于控制器94的控制,将视频信号提供给D/A转换部分25-1。帧存储器93-2基于控制器94的控制,将视频信号提供给D/A转换部分25-2。
如果在此假定,提供给数据分离部分91的信号是输入视频信号S1,从帧存储器93-1输出的信号是输出视频信号S2,并且从帧存储器93-2输出的信号是输出视频信号S3,则这些信号之间的输入-输出关系类似于上面参考图2所述。
图2没有考虑由数据分离部分91中的数据分离处理等引起的信号延迟,但是控制器94可以被适配成例如借助于数据保存部分92-1和数据保存部分92-2的信号输出定时,调整信号的延迟、以及两行视频信号之间的定时偏差。
D/A转换部分25-1将所提供的数字图像信号转换成模拟图像信号,并且将模拟图像信号提供给图像显示装置12。D/A转换部分25-2将所提供的数字图像信号转换成模拟图像信号,并且将模拟图像信号提供给图像显示装置12。
显示控制部分27基于从控制器94提供的信息,控制图像显示装置12上的运动图像显示,并且在与上面参考图2所述相类似的定时,显示与输出视频信号S2和输出视频信号S3相对应的帧图像。
需要时,驱动器28可以连接到控制器24。将磁盘31、光盘32、磁光盘33或半导体存储器34安装在驱动器28上,以便传送和接收信息。
下面将参考图7所示的流程图,描述要由图6所示的图像显示系统66执行的显示控制处理1。
在步骤S21,同步信号检测部分22从所提供的模拟图像信号检测同步信号和点时钟,并且将垂直同步信号和点时钟信号提供给数据分离部分91、数据保存部分92-1、数据保存部分92-2和控制器94。
在步骤S22,A/D转换部分21执行所提供的模拟视频信号的A/D转换,并且将数字视频信号提供给数据分离部分91。
在步骤S23,基于从同步信号检测部分22提供的垂直同步信号,数据分离部分91将所提供的模拟视频信号分离成单独帧,并且在逐帧的基础上,将帧交替地提供给数据保存部分92-1或数据保存部分92-2。例如,数据分离部分91将奇数帧提供给数据保存部分92-1,并且将偶数帧提供给数据保存部分92-2。
在步骤S24,数据保存部分92-1和数据保存部分92-2中的每个将所提供的视频信号提供给帧存储器93-1或帧存储器93-2,并且使帧存储器93-1或帧存储器93-2存储所提供的视频信号。
在步骤S25,控制器94控制帧存储器93-1和帧存储器93-2,以便以与等于输入视频信号S1的点时钟的一半的输出点时钟相对应的帧速率,在逐帧的基础上,交替地将视频信号的一个帧从帧存储器93-1输出到D/A转换部分25-1以及从帧存储器93-2输出到D/A转换部分25-2,同时使每个帧相对于后继帧偏移显示一个帧所需的扫描周期的一半的周期。更具体地说,如果在此假定,提供给数据分离部分91的信号是输入视频信号S1,从帧存储器93-1输出的信号是输出视频信号S2,并且从帧存储器93-2输出的信号是输出视频信号S3,则这些信号之间的输入-输出关系类似于上面参考图2所述。
在步骤S26,D/A转换部分25-1和D/A转换部分25-2中的每个执行所提供视频信号的D/A转换,并且将模拟视频信号提供给图像显示装置12。
在步骤S27,显示控制部分27在与上面参考图2所述的输出视频信号S2和输出视频信号S3的情况下使用的定时相类似的定时,控制图像显示装置12的扫描控制部分41-1和扫描控制部分41-2(在图3中,投影仪51-1和投影仪51-2),并且使每一帧的扫描开始时间相对于后继帧的扫描开始时间偏移显示一个帧所需的扫描周期的一半的周期,从而在逐帧的基础上交替地扫描视频信号的各个帧,以便以扫描控制部分41-1和扫描控制部分41-2中的每个的帧速率的基本上两倍高的显示帧速率,将视频图像显示在显示部分43(在图3中,屏幕52)上。显示控制部分27以这种方式控制图像显示装置12,并且完成处理。
甚至在图6所示的图像显示系统71中,如同图1所示的图像显示系统的情况一样,通过上述处理,将要被显示的运动图像分离成奇数和偶数帧,并且将奇数和偶数帧分别提供给两个显示装置,即,扫描控制部分41-1和扫描控制部分41-2。然后,各个显示装置以要被显示的运动图像的帧速率的一半的帧速率、以1/2帧的偏移扫描帧图像,以便可以以显示装置能力的基本上两倍高的帧速率显示运动图像。
在上面对本发明实施例的描述中,参考了这样的情况,其中将所提供的图像信号分离成两行图像信号,并且由两个扫描控制部分绘画图像,但是图像信号的分离数可以是任何不小于二的数。
如果图像信号的分离数例如是三,则将从帧存储器输出的图像信号顺序地提供给三个D/A转换部分,或者将由数据分离部分分离成三个的帧分别顺序地提供给三个帧存储器并且存储在其中。这样,如图8所示,输入视频信号S1被分离成三个输出视频信号S2、S3和S4,并且将这三个输出视频信号S2、S3和S4分别提供给三个扫描控制部分。
第一扫描控制部分控制α帧、α+3帧、α+6帧、...的显示,所有这些帧对应于输出视频信号S2。第二扫描控制部分控制α+1帧、α+4帧、α+7帧、...的显示,所有这些帧对应于输出视频信号S3。第三扫描控制部分控制α+2帧、α+5帧、α+8帧、...的显示,所有这些帧对应于输出视频信号S4。分别由第一扫描控制部分、第二扫描控制部分和第三扫描控制部分显示的输出视频信号的帧的帧速率是输入视频信号的帧速率的1/3,并且分别由第一扫描控制部分、第二扫描控制部分和第三扫描控制部分扫描的帧的扫描开始时间互相偏移显示输出视频信号S2到S4中的每个的一个帧所需的扫描周期的1/3。
如果输入视频信号S1例如是180Hz,则将输入视频信号S1分离成三个输出视频信号S2、S3和S4,并且将这三个输出视频信号S2、S3和S4分别提供给三个扫描控制部分,并且由各个扫描控制部分以60Hz的帧速率作为输出视频信号扫描并显示它。如果输入视频信号S1例如是150Hz,则将输入视频信号S1分离成三个输出视频信号S2、S3和S4,并且将这三个输出视频信号S2、S3和S4分别提供给三个扫描控制部分,并且由各个扫描控制部分以50Hz的帧速率作为输出视频信号扫描并且显示它。以这种方式,可以采用目前最广泛使用类型的扫描控制部分,其能够以50Hz(PAL逐行倒相制)或60Hz(NTSC国家电视系统委员会或HD(高清晰度)视频信号),以便以高得多的帧速率显示运动图像。
虽然NTSC帧速率更正确地是59.94帧/秒,但是根据本领域的技术人员的惯例,将在此所提及的NTSC帧速率定义为60帧/秒。类似地,将59.94的倍数称作60的倍数。更具体地说,在此将59.94、119.88、179.82、239.76、299.70、359.64、418.58和479.52分别称作60、120、180、240、300、360、420和480。
因此,如果输入视频信号的分离数例如是n,则提供n个扫描控制部分,并且分别由第一个到第n个扫描控制部分显示的输出视频信号的帧的帧速率是输入视频信号的帧速率的1/n。分别由第一个到第n个扫描控制部分扫描的帧的绘画开始时间相互偏移各自的输出视频信号的一个帧的显示周期的1/n,从而与扫描控制部分中的每个单独地显示运动图像的情况相比,可以以基本上n倍高的帧速率显示运动图像。
另外,可以将扫描控制部分的数目设置成s,并且可以将视频信号的分离数设置成小于s的n,以便通过使用s个扫描控制部分当中的n个扫描控制部分来显示运动图像。
在上面结合图1和图6进行的描述中,参考了图像显示系统,其中每个由图像信号转换装置和图像显示装置构成,但是,当然,可以将组成元件中的每个实现成单个装置。
基于控制器24控制帧存储器23并且显示控制部分27控制图像显示装置12的假定,描述了图1所示的图像信号转换装置11,同时基于控制器94控制帧存储器93-1和帧存储器93-2并且显示控制部分27控制图像显示装置12的假定,描述了图6所示的图像信号转换装置81。然而,可以由相同的控制器控制用于存储视频信号的帧存储器以及用于显示图像的图像显示装置。可以不在图像信号转换装置11或81中而在图像显示装置12中提供显示控制部分27。
运动图像伴有不出现在静止图像中的特有图像质量劣化。在目前最广泛使用类型的、50Hz(PAL)和60Hz(NTSC和HD视频信号)的显示器中,在时间方向上的再现是有缺陷的,并且在特定条件下,时间方向上的这一缺陷被转换为空间方向上的缺陷。因此,例如由于用来获取运动图像数据的快门周期、在显示运动图像期间的显示装置的发射周期、以及个人的视线条件,发生运动图像的图像质量劣化。
图9示出了静止对象和运动对象一起共存的实际场景的示例。该场景假定汽车向右运动,并且树固定在地面上。图10和11示出了观察图9所示的场景的观察者的识别。
图10是示出注视(gaze)树的观察者的视频图像识别的视图。在这种情况下,向右运动的汽车对于观察者是朦胧可见的。图11是示出注视汽车的观察者的视频图像识别的视图。在这种情况下,静止的树对于观察者是朦胧可见的。
在下面的描述中,观察者将他/她的视线固定在观察平面坐标的固定对象上的情况被称作凝视条件,而观察者使视线跟踪观察平面坐标的运动对象的情况被称作跟踪条件。更具体地说,结合图10所述的情况对应于凝视条件,而结合图11所述的情况对应于跟踪条件。在凝视条件和跟踪条件两者下,由观察者注视的对象是清楚可见的,而关于被注视对象的相对位置改变的对象是朦胧可见的。
这样的原因是人的视觉特性具有综合(integrate)在特定周期内入射到视网膜上的光的功能。在眼睛的视网膜坐标上运动的物体显示了在时间方向上综合的位置改变,从而感觉出运动对象是模糊的图像。该模糊与视网膜坐标上的运动速度成比例。视网膜坐标上的运动速度不对应于对象的实际速度而对应于其角速度(度/秒)。
如上所述,在视网膜坐标上静止的对象是清楚可见的,并且在视网膜坐标上运动的对象是朦胧可见的。为了显示具有逼真性的运动图像,即,看起来是平滑运动的高质量运动图像,与这样的实际识别相一致的视频图像是重要的。
下面将参考图12描述上面参考图10所述的观察者识别和上面参考图11所述的观察识别之间的差异。图12的上部示出了外部世界中的实际运动。纵轴表示时间轴,并且横轴表示水平方向,并且图12的上部示出了在固定点(对应于图9到11中的树,并且在图12中以x表示)和匀速运动的点(对应于图9到11中的汽车,并且在图12中以y表示)存在于外部世界中的场景中,点在每个时间的位置。图12的下部示出了在凝视和跟踪期间观察者对外部世界中的运动的识别。以虚线示出的箭头表示观察者的视点的运动,即,在视网膜上综合视频图像的方向。在垂直方向上延伸的箭头表示在凝视期间综合的方向,并且在倾斜方向上延伸的箭头表示在跟踪期间综合的方向。更具体地说,当观察者跟踪时,固定点(树)是朦胧可见的,但是运动点(汽车)是清楚可见的。另一方面,当观察者凝视时,固定点(树)是清楚可见的,但是运动点(汽车)是朦胧可见的。
下面将按照图像捕获条件、显示条件和观察条件,参考图13来描述当作为运动图像再现通过固定图像捕获方法捕获的运动时,观察者对图9所示的外部世界中的运动的识别。图13的上部示出了运动图像显示的时间变化。图13的下部作为观察者的识别示出了在凝视和跟踪期间的视线运动方向即综合轴的方向上通过综合作为运动图像而显示的光而获得的结果。
图13A示出了在通过打开快门(open shutter)技术捕获并且由脉冲型显示器显示的图像的情况下观察者的识别。图13B示出了在通过打开快门技术捕获并且由保持型(hold-type)显示器显示的图像的情况下观察者的识别。图13C示出了在通过高速快门技术捕获并且由脉冲型显示器显示的图像的情况下观察者的识别。图13D示出了在通过高速快门技术捕获并且由保持型显示器显示的图像的情况下观察者的识别。
在此使用的保持型是指在每个帧周期期间保持屏幕上的每个像素的显示的显示类型,并且保持型显示器例如是LCD。使用LED的显示装置或使用EL(电致发光)的显示装置可以用作保持型显示器。
脉冲型显示器例如是CRT或FED。
另外,显示器不仅被分类成保持型(保持型)和脉冲型,而且还被分类成像素型显示器(例如,使用LCD或LED的显示器和使用EL的显示器)和所谓的矩阵驱动显示器,其中在像素型显示器中,元件分别排列在各个像素中,并且所谓的矩阵驱动显示器由被单独施加到以预定长度为单位排列在屏幕上的垂直位置以及以预定长度为单位排列在屏幕上的水平位置的电压、电流等驱动。
从图13A到13D可以看出,运动图像质量劣化在不同的条件下不同。例如,与在图13或13C中通过跟踪而观察到的运动对象识别相比,在图13B和13D中通过跟踪而观察到的运动对象是朦胧可见的。该现象被称作″运动模糊″,其是在保持型发射条件下操作的显示器所特有的。″运动模糊″是在观察者正在注视的对象中出现的模糊,并且是观察者容易感觉到的劣化。
另外,出现诸如这样的劣化,即在图3D中由于凝视而导致的频闪赝像(抖动)和在图13A和13C中由于跟踪而导致的频闪赝像。频闪赝像是指这样的运动图像劣化,其使观察者同时看到运动对象(诸如汽车)的多个副本,或者如图14所示,当观察者凝视显示器上的固定对象(例如,树)时,看到运动对象似乎正在进行不平滑的离散运动一样。因此,在很多情况下,在被凝视的运动对象以及被跟踪的固定对象中出现的频闪赝像是在与正被注视的对象不同的部分中出现的劣化,并且与″运动模糊″相比不是非常显著。然而,当视线不是完全跟踪时,被注视对象和视线之间的关系变得相同于凝视期间的运动对象和视线之间的关系,或者跟踪期间的固定对象和视线之间的关系。在这种情况下,频闪赝像出现在正被注视的对象中,从而发生非常显著的劣化。在运动快得不能容易地预测下一运动的视频源例如体育运动转播和动作片中,该现象是显著的。在捕获电影等的运动图像期间,采用各种技术,以便防止这样的运动图像质量劣化例如运动对象在由摄像机跟踪时,由摄像机捕获,并且在显示屏幕上以固定对象的状态显示所捕获的运动对象,或者引入被称作运动模糊的模糊来抑制频闪赝像。然而,通过这些技术施加的限制导致了对表示方式的限制。另外,这些方式不能用于体育运动等,因为感兴趣的对象的运动是不可预测的。
根据运动对象的角速度,上述运动图像质量劣化增加。因此,如果将相同视频场景的运动图像显示在具有更大视角的显示器上,则运动图像的质量更显著地劣化。另外,增加分辨率的企图几乎不改善上述的运动图像质量劣化。相反地,分辨率越高导致静止图像质量的改善越大,从而运动图像质量劣化变得更显著。随着开发出更大屏幕尺寸和更高分辨率的显示器,可以预计到上述运动图像质量将在将来变成更大的问题。
运动图像质量劣化的原因是时间再现性的缺乏。因此,基本解决方案是改善时间再现性。更具体地说,有用的解决方案是提高用于图像捕获和显示两者的帧速率。
将更详细地描述运动图像质量劣化和显示类型之间的关系。
例如,从图13A和13B之间的比较可以看出,在图13B中通过跟踪而在视觉上识别的运动对象图像的长度长于在图13A中通过跟踪而在视觉上识别的运动对象图像的长度,从而与脉冲型显示器的情况比较,由跟踪显示在保持型显示器上的运动对象的观察者感觉到的运动模糊变大。另一方面,从这样的事实,即在图13A中通过跟踪而在视觉上将固定对象识别为分离的图像,而在图13B中通过跟踪而在视觉上将固定对象识别为在空间方向上连续的图像,可以看出,与脉冲型显示器的情况相比,显示在保持型显示器上的固定对象在跟踪期间是自然可见的。
类似地,从图13C和13D之间的比较可以看出,在图13D中通过跟踪而在视觉上识别的运动对象图像的长度长于在图13C中通过跟踪而在视觉上识别的运动对象图像的长度,从而与脉冲型显示器的情况比较,由跟踪显示在保持型显示器上的运动对象的观察者感觉到的运动模糊变大。另一方面,从这样的事实,即在图13C中通过跟踪而在视觉上将固定对象识别为分离的图像,而在图13D中通过跟踪而在视觉上将固定对象识别为在空间方向上连续的图像,可以看出,与脉冲型显示器的情况相比,显示在保持型显示器上的固定对象在跟踪期间是自然可见的。
在跟踪期间,图13A所示的运动对象和固定对象的识别相同于图13B所示的运动对象和固定对象的识别,并且图13C所示的运动对象和固定对象的识别相同于图13D所示的运动对象和固定对象的识别,但是图13A和13B所示的运动对象和固定对象的识别不同于图13C和13D所示的运动对象和固定对象的识别。从这个事实可以看出,在凝视期间运动对象和固定对象的识别(出现运动模糊和频闪赝像(抖动)的方式)是相同的,而与显示器类型是脉冲型还是保持型无关。另外,可以看出,即使通过凝视观察通过打开快门技术而捕获其图像的运动对象,也感觉不到频闪赝像(抖动),但是如果通过凝视观察通过高速快门技术而捕获其图像的运动对象,则感觉到频闪赝像(抖动)。
图15示出了当以两倍高的帧速率捕获上面参考图13所述的运动图像数据并且以两倍高的帧速率显示它时所实现的运动图像劣化的改善程度。
图15A示出了观察者对运动图像的识别,其以两倍于上面参考图13所述的情况下的帧速率,通过打开快门技术捕获并且由脉冲型显示器显示。图15B示出了观察者对运动图像的识别,其以两倍于上面参考图13所述的情况下的帧速率,通过打开快门技术捕获并且由保持型显示器显示。图15C示出了观察者对运动图像的识别,其以两倍于上面参考图13所述的情况下的帧速率,通过高速快门技术捕获并且由脉冲型显示器显示。图15D示出了观察者对运动图像的识别,其以两倍于上面参考图13所述的情况下的帧速率,通过高速快门技术捕获并且由保持型显示器显示。
如图15A到15D中的每一个所示,在每一种捕获和显示方法中,将在显示图像的识别中由于模糊赝像而导致的模糊量减至一半。另外,改善了由于频闪赝像而导致的图像劣化,因为频闪的离散数目变成两倍大。更具体地说,模糊赝像和频闪赝像相对于帧速率的提高而线性地改善。另外,随着提高帧速率,依赖于快门周期和发射周期的运动图像质量劣化的质量之间的差异减小。更具体地说,可以认为,提高的帧速率是用于提高运动图像质量的非常有用方式。
根据图13A和15A的比较以及图13B和15B的比较,显然地,在图15B中通过跟踪而在视觉上感觉到的运动对象的长度与在图13B中通过跟踪而在视觉上感觉到的运动对象的长度的比率小于在图15A中通过跟踪而在视觉上感觉到的运动对象的长度与在图13A中通过跟踪而在视觉上感觉到的运动对象的长度的比率。类似地,根据图13C和15C的比较以及图13D和15D的比较,显然地,在图15D中通过跟踪而在视觉上感觉到的运动对象的长度与在图13D中通过跟踪而在视觉上感觉到的运动对象的长度的比率小于在图15C中通过跟踪而在视觉上感觉到的运动对象的长度与在图13C中通过跟踪而在视觉上感觉到的运动对象的长度的比率。
更具体地说,可以认为,如果类似地提高脉冲和保持型显示器两者的帧速率,则在保持型显示器中减少运动模糊的效果高于脉冲型显示器。更具体地说,在保持型显示器中,帧速率提高对减少在跟踪期间发生的运动模糊的效果是显著的。
另一方面,对于频闪赝像(抖动),由于分离显示的固定对象图像之间的间隔一般变得更短,因此频闪赝像(抖动)一般变得更不可感觉。
对于通过打开快门捕获的运动图像的显示,通过视觉心理物理实验,按照抖动和运动模糊,在跟踪条件下对其运动图像质量执行评测。
图16示出了按照抖动评测的结果,并且图17示出了按照运动模糊评测的结果。对于该评测,准备了各种运动图像,例如通过打开快门视频而捕获的自然运动图像、CG运动和视频图像。按照下面劣化尺度给出评测分评测值5=″劣化是感觉不到的″,评测值4=″劣化是可感觉的但是并不讨厌″,评测值3=″劣化是可感觉的但是并非妨碍的″,评测值2=″劣化是妨碍的″,并且评测值1=″劣化是非常妨碍的″。另外,按照下面评测尺度给出评测分评测值5=″非常好″,评测值4=″好″,评测值3=″中等″,评测值2=″差″,并且评测值1=″非常差″。在该实验中,对足够数目的测试对象执行了评测,以便实现关于一般运动图像质量的评测的研究。在图16和17中,绘制了关于所有场景的、由所有测试对象给出的评测值的平均值和标准差。
与图16所示的抖动相比,图17所示的运动模糊的评测值变化较大,并且对于抖动和运动模糊两者,共同地观察到这样的趋势,即,随着帧速率变高,运动图像质量的评测值变高。特别地,运动模糊的评测值示出了这样的折线状趋势,即在250fps的附近到达作为感觉限值的评测值4.5的附近,并且在高得多的帧速率示出不低于评测值4.5的平坦值。抖动的评测值也示出了这样的折线状趋势,即在250fps的附近到达作为感觉限值的评测值4.5的附近,并且在高得多的帧速率示出不低于评测值4.5的大致平坦值。
因此,可以通过接近250fps的帧速率来令人满意地改善在跟踪期间、导致特别显著的运动图像质量劣化的运动模糊。更具体地说,该事实暗示了250fps附近是理想的频率,其考虑目前广泛使用的视频资源的有效性。具体地说,如前所述,大量目前广泛使用的视频资源具有50Hz或60Hz的帧速率,并且这个事实暗示了作为该频率的整数倍的240Hz或250Hz是考虑视频资源的有效性的理想频率。
下面将更详细地描述该评测。在EBU(欧洲广播联盟)方法中,评测值4.5是感觉限值,在其上,在与高于4.5的评测值相对应的任何区域中,无差异基本上是感觉不到的,而评测值3.5是容许限值,在其下,在与低于3.5的评测值相对应的任何区域中,改善基本上是感觉不到的。
在集中于运动模糊的评测的结果中,与评测值3.5的容许限值相对应的帧速率是105。在105的帧速率,一般用户开始感觉到运动模糊的改善。更具体地说,在105或更高的帧速率,一般用户可以感觉到运动模糊的改善。
在集中于运动模糊的评测的结果中,与评测值4.5的感觉限值相对应的帧速率是230。在230或更高的帧速率,一般用户感觉到令人满意的运动模糊改善。换句话说,在230或更高的帧速率,一般用户可以感觉到达到顶峰的运动模糊改善。更具体地说,在230或更高的帧速率,一般用户可以满意地感觉到运动模糊的改善。
在集中于抖动的评测的结果中,帧速率480的评测值是5.0,该值是其标准差非常小的值。因此,在帧速率480,一般用户不能识别出抖动。更具体地说,在帧速率480,可以将由于抖动而导致的图像劣化抑制到用户不能识别的程度。
因此,在帧速率150、200、250、300、350、400、450或500,其是不低于105并且等于PAL中的帧速率50的整数倍的帧速率,可以改善运动图像质量劣化。在不低于150并且等于PAL中的帧速率50的整数倍的帧速率,一般用户可以感觉到运动模糊的改善。在不低于250并且等于PAL中的帧速率50的整数倍的帧速率,一般用户可以满意地感觉到运动模糊的改善。
类似地,在帧速率120、180、240、300、360、420或480,其是不低于105并且等于NTSC中的帧速率60的整数倍的帧速率,可以改善运动图像质量劣化。在不低于120并且等于NTSC中的帧速率60的整数倍的帧速率,一般用户可以感觉到运动模糊的改善。在不低于240并且等于NTSC中的帧速率60的整数倍的帧速率,一般用户可以满意地感觉到运动模糊的改善。
在等于例如NTSC或PAL的一般广播格式的频率的整数倍的帧速率,可以容易地执行图像处理。另外,在捕获视频图像期间使用三面板型棱镜(three-panel type prism)已经是普遍的。因此,可以容易地对具有帧速率180的视频信号执行图像处理,其中,帧速率180是不低于评测值3.5的帧速率,在EBU方法中,在评测值3.5之上,一般用户可以感觉到运动模糊的改进,并且通过捕获每个都具有60的帧速率的视频图像,同时借助于三面板型棱镜将视频图像相互偏移1/180秒,可以容易地获得这样的视频信号。
另外,从一系列实验已经发现,当要显示计算机图形图像时,360或350的帧速率是特别优选的。这是因为计算机图形图像例如在其边缘一般包含高频分量。因此,可以容易地感觉到由于抖动而导致的图像质量劣化,并且当将250或240的帧速率改变成360或350的帧速率时,甚至一般用户也能感觉到图像质量的改善。
上面参考图1或图6所示的、根据本发明的图像显示系统可以用来以240Hz或250Hz显示运动图像,其中240Hz或250Hz是等于50Hz或60Hz整数倍的频率。例如,如图18所示,可以采用两个或更多个投影仪51-1到51-n和根据本发明的图像显示系统来实现以240Hz或250Hz的运动图像显示,其中240Hz或250Hz是等于50Hz或60Hz的整数倍的频率。
投影仪51-1到51-n中的每个在基于显示控制部分27的控制的定时,通过在水平方向上扫描形成要被显示的显示图像的像素(X,Y)=(0,0)到像素(X,Y)=(p,q),在屏幕52上显示与所提供的视频信号相对应的帧图像。当被提供给图像显示系统的运动图像的帧速率是m Hz时,由投影仪51-1到51-n中的每个显示在屏幕52上的帧图像的帧速率是m/n Hz,但是由投影仪51-1到51-n显示的运动图像的帧速率是m Hz。由投影仪51-1到51-n中的每个显示的每个帧的扫描开始定时相对于由投影仪51-1到51-n中的每个提供的一个显示帧偏移1/n相位,即1/m秒。
例如,当投影仪91-2扫瞄屏幕92上与以扫描B表示的行上的α+1帧相对应的行时,投影仪91-3扫描屏幕92上与以扫描A表示的行上的α+2帧相对应的行。以扫描B表示的行是相对于以扫描A表示的行偏移一个帧的行数的1/n。更具体地说,以1/m的时间间隔,通过包括扫描A和扫描B的多个扫描来交替地重写显示在屏幕92上的运动图像。
如果输入图像信号的帧速率是240Hz,并且图像信号的分离数例如是四,则将从帧存储器输出的图像信号顺序地提供给四个D/A转换部分,或者将由数据分离部分分离成四个的帧分别顺序地提供给四个帧存储器并且存储在其中。这样,如图19所示,将输入视频信号S1分离成四个输出视频信号S2、S3、S4和S5,并且将这四个输出视频信号S2、S3、S4和S5分别提供给四个扫描控制部分。
第一扫描控制部分控制α帧、α+4帧、...的显示,所有这些帧对应于输出视频信号S2。第二扫描控制部分控制α+1帧、α+5帧、...的显示,所有这些帧对应于输出视频信号S3。第三扫描控制部分控制α+2帧、α+6帧、...的显示,所有这些帧对应于输出视频信号S4。第四扫描控制部分控制α+3帧、α+7帧、...的显示,所有这些帧对应于输出视频信号S5。分别由第一到第四扫描控制部分显示的输出视频信号的帧的帧速率是输入视频信号的帧速率的1/4,并且分别由第一到第四扫描控制部分扫描的帧的扫描开始时间相互偏移显示输出视频信号S2到S5中的每个的一个帧所需的扫描周期的1/4。
如果输入图像信号的帧速率是240Hz,并且图像信号的分离数例如是五,则将从帧存储器输出的图像信号顺序地提供给五个D/A转换部分,或者将由数据分离部分分离成五个的帧分别顺序地提供给五个帧存储器并且存储在其中。这样,如图20所示,将输入视频信号S1分离成五个输出视频信号S2、S3、S4、S5和S6,并且将这五个输出视频信号S2、S3、S4、S5和S6分别提供给五个扫描控制部分。
第一扫描控制部分控制α帧、α+5帧、...的显示,所有这些帧对应于输出视频信号S2。第二扫描控制部分控制α+1帧、α+6帧、...的显示,所有这些帧对应于输出视频信号S3。第三扫描控制部分控制α+2帧、α+7帧、...的显示,所有这些帧对应于输出视频信号S4。第四扫描控制部分控制α+3帧、α+8帧、...的显示,所有这些帧对应于输出视频信号S5。第五扫描控制部分控制α+4帧、α+9帧、...的显示,所有这些帧对应于输出视频信号S6。分别由第一到第五扫描控制部分显示的输出视频信号的帧的帧速率是输入视频信号的帧速率的1/5,并且分别由第一到第五扫描控制部分扫描的帧的扫描开始时间相互偏移显示输出视频信号S2到S6中的每个的一个帧所需的扫描周期的1/5。
在以目前最广泛使用的50Hz或60Hz的运动图像显示中,诸如模糊或抖动的运动图像质量劣化是显著的。另一方面,例如,当4或5用作根据本发明的视频信号的分离数n时,可以通过使用广泛使用的传统类型的、以50Hz或60Hz的帧速率操作的显示装置(例如,投影仪),显示具有高帧速率的运动图像。例如,当输入视频信号的分离数是n=4,并且从投影仪51-1到51-4中的每个输出的显示图像的帧速率是60Hz时,显示在屏幕52上的运动图像的帧速率变成基本上240Hz。此外,例如,当输入视频信号的分离数是n=5,并且从投影仪51-1到51-4中的每个输出的显示图像的帧速率是50Hz时,显示在屏幕52上的运动图像的帧速率变成基本上250Hz。
如前所述,大量目前广泛使用的视频资源具有50Hz或60Hz的帧速率,从而作为该频率的整数倍的240Hz或250Hz成为考虑视频资源的有效性的理想频率。
同样在这种情况下,当然,可以将扫描控制部分的数目设置成s,并且可以将输入视频信号的分离数设置成小于s的n,以便可以通过使用s个扫描控制部分当中的n个扫描控制部分来显示运动图像。
下面将描述根据本发明实施例的具有另一构造的图像显示系统101。图21是示出使用LCD的图像显示系统101的构造的方框图。
图21所示的图像显示系统101包括信号处理部分111、时钟/采样脉冲生成部分112和图像显示装置113。信号处理部分111获取作为输入信号的图像信号,并且对所获取的图像信号应用信号处理,并且将数字RGB(红、绿、蓝)信号提供给图像显示装置113。时钟/采样脉冲生成部分112获取作为输入信号的图像信号,并且从所获取的图像信号检测水平同步信号和垂直同步信号,并且基于所检测的水平和垂直同步信号而生成控制信号。时钟/采样脉冲生成部分112将所生成的控制信号提供给信号处理部分111和图像显示装置113。
图像显示装置113装备有LCD,并且基于从信号处理部分111和时钟/采样脉冲生成部分112提供的信号而显示图像。
信号处理部分111由Y/C分离/色度解码部分121、A/D转换部分122和帧存储器123构成。Y/C分离/色度解码部分121将所获取的图像信号分离成亮度信号(Y)和颜色信号(C),并且对颜色信号进行解码,并生成模拟RGB信号。Y/C分离/色度解码部分121将所生成的模拟RGB信号提供给A/D转换部分122。
A/D转换部分122基于从时钟/采样脉冲生成部分112提供的控制信号,对从Y/C分离/色度解码部分121提供的模拟RGB信号执行模拟/数字转换,并且将所生成的数字RGB信号提供给帧存储器123。帧存储器123临时地存储从A/D转换部分122顺序提供的数字RGB信号,并且将所存储的数字RGB信号提供给图像显示装置113。
时钟/采样脉冲生成部分112包括同步信号检测部分124和控制信号生成部分125。同步信号检测部分124从所获取的图像信号检测水平同步信号和垂直同步信号,并且将所检测的水平和垂直同步信号提供给控制信号生成部分125。控制信号生成部分125基于从同步信号检测部分124提供的水平和垂直同步信号,生成用于控制A/D转换部分122中的模拟/数字转换的控制信号,以及用于控制图像显示装置113上的显示的控制信号,并且将所生成的控制信号提供给A/D转换部分122和图像显示装置113。
图像显示装置113包括LCD 131、背光132、数据线驱动电路133-1到133-4、选通线驱动部分134和背光驱动电路135。LCD 131是具有矩阵驱动像素的保持型显示器,并且通过控制像素内部液晶的定向来改变透射光量而显示图像,其中像素分别由排列在屏幕中的的液晶元件形成。
背光132是发射光以从LCD 131的背部进入LCD 131的光源。基于从控制信号生成部分125提供的控制信号,数据线驱动电路133-1到133-4和选通线驱动部分134根据从信号处理部分111提供的数字RGB信号,执行LCD 131的每个像素的矩阵驱动。背光驱动电路135驱动背光132,以便发射光。
更具体地说,在LCD 131中,一组液晶元件141-1-1、TFT(薄膜晶体管)142-1-1和电容器143-1-1到一组液晶元件141-n-m(未示出)、TFT 142-n-m(未示出)和电容器143-n-m(未示出)分别排列在第一行的第一列到第n行的第n列中。
除非需要单独地标识液晶元件141-1-1到141-n-m,否则以下将液晶元件141-1-1到141-n-m简称作液晶元件141。除非需要单独地标识TFT 142-1-1到TFT 142-n-m,否则以下将TFT 142-1-1到TFT 142-n-m简称作TFT142。除非需要单独地标识电容器143-1-1到143-n-m,否则以下将电容器143-1-1到TFT 143-n-m简称作电容器143。
将一个液晶元件141、一个TFT 142和一个电容器143安排成一组,从而构造子像素。液晶元件141包含液晶,并且根据由TFT 142施加的电压,改变从背光132照射的光的透射光量。TFT 142通过将电压施加到液晶元件141来驱动液晶元件141。与液晶元件141并联地提供电容器143,并且在每个帧的周期期间,它保持施加到液晶元件141的电压。
在LCD 131中,将全都构成一个子像素的液晶元件141-1-1、TFT 142-1-1和电容器143-1-1安排在第一顶行的第一左列中。在LCD 131中,将全都构成一个子像素的液晶元件141-1-2、TFT 142-1-2和电容器143-1-2安排在液晶元件141-1-1、TFT 142-1-1和电容器143-1-1的右边。此外,在LCD 131中,将全都构成一个子像素的液晶元件141-1-3、TFT 142-1-3和电容器143-1-3、以及全都构成一个子像素的液晶元件141-1-4、TFT 142-1-4和电容器143-1-4以指定次序安排在右边。
在LCD 131中,并排排列在水平行中的四个子像素构成一个像素(像素)。更具体地说,液晶元件141-1-1到电容器143-1-4构成一个像素。
类似地,在LCD 131中,将全都构成一个子像素的液晶元件141-2-1、TFT 142-2-1和电容器143-2-1安排在第二顶行的第一左列中。在LCD 131中,将全都构成一个子像素的液晶元件141-2-2、TFT 142-2-2和电容器143-2-2安排在液晶元件141-2-1、TFT 142-2-1和电容器143-2-1的右边。此外,在LCD131中,将全都构成一个子像素的液晶元件141-2-3、TFT 142-2-3和电容器143-2-3、以及全都构成一个子像素的液晶元件141-2-4、TFT 142-2-4和电容器143-2-4以指定次序安排在右边。
液晶元件141-2-1到电容器143-2-4构成一个像素。
例如,如果提供240帧/秒的图像信号,则控制信号生成部分125将控制信号提供给数据线驱动电路133-1,以便将作为第一帧的帧1显示在位于一个像素的最左边的子像素上。
数据线驱动电路133-1从帧存储器123读取帧1的数字RGB信号,并且基于所读取的帧1的数字RGB信号而将驱动信号提供给LCD 131,以便将帧1显示在并排排列在一个像素(像素)的水平行上的四个子像素当中位于最左边的子像素上,例如由液晶元件141-1-1、TFT 142-1-1和电容器143-1-1形成的子像素,或由液晶元件141-2-1、TFT 142-2-1和电容器143-2-1形成的子像素。
然后,控制信号生成部分225将控制信号提供给数据线驱动电路133-2,以便将作为240帧/秒的运动图像的第二帧的帧2显示在位于这个像素的第二左边的子像素上。
数据线驱动电路133-2从帧存储器123读取帧2的数字RGB信号,并且基于所读取的帧2的数字RGB信号而将驱动信号提供给LCD 131,以便将帧2显示在并排排列在这个像素(像素)的水平行上的四个子像素当中位于第二左边的子像素上,例如由液晶元件141-1-2、TFT 142-1-2和电容器143-1-2形成的子像素,或由液晶元件141-2-2、TFT 142-2-2和电容器143-2-2形成的子像素。
此外,控制信号生成部分125将控制信号提供给数据线驱动电路133-3,以便将作为240帧/秒的运动图像的第三帧的帧3显示在位于这个像素的第三左边的子像素上。
数据线驱动电路133-3从帧存储器123读取帧3的数字RGB信号,并且基于所读取的帧3的数字RGB信号而将驱动信号提供给LCD 131,以便将帧3显示在并排排列在这个像素(像素)的水平行上的四个子像素当中位于第三左边的子像素上,例如由液晶元件141-1-3、TFT 142-1-3和电容器143-1-3形成的子像素,或由液晶元件141-2-3、TFT 142-2-3和电容器143-2-3形成的子像素。
此外,控制信号生成部分125将控制信号提供给数据线驱动电路133-4,以便将作为240帧/秒的运动图像的第四帧的帧4显示在位于该像素的最右边的子像素上。
数据线驱动电路133-4从帧存储器123读取帧4的数字RGB信号,并且基于所读取的帧4的数字RGB信号而将驱动信号提供给LCD 131,以便将帧4显示在并排排列在这个像素(像素)的水平行上的四个子像素当中位于最右边的子像素上,例如由液晶元件141-1-4、TFT 142-1-4和电容器143-1-4形成的子像素,或由液晶元件141-2-4、TFT 142-2-4和电容器143-2-4形成的子像素。
然后,控制信号生成部分125将控制信号提供给数据线驱动电路133-1,以便将作为240帧/秒的运动图像的第五帧的帧5显示在位于一个像素的最左边的子像素上。
数据线驱动电路133-1从帧存储器123读取帧5的数字RGB信号,并且基于所读取的帧5的数字RGB信号而将驱动信号提供给LCD 131,以便将帧5显示在并排排列在这个像素(像素)的水平行上的四个子像素当中位于最左边的子像素上,例如由液晶元件141-1-1、TFT 142-1-1和电容器143-1-1形成的子像素,或由液晶元件141-2-1、TFT 142-2-1和电容器143-2-1形成的子像素。
以这种方式,并排排列在一个像素(像素)的水平行上的四个子像素顺序显示一个帧的图像。
在这种情况下,优选地,在1/240秒的周期期间显示每个帧,但是也是优选地,在例如1/60秒的更长周期期间显示每个帧。
根据该构造,即使液晶的响应时间长,也有可能显示由较大的每秒帧数构成的运动图像。例如,有可能显示240帧/秒的运动图像。
虽然在上述构造中使用LCD,但是可以使用任何类型的矩阵驱动显示器而非LCD。例如,可以使用采用LED的显示器或有机EL显示器。
如上所述,在每个帧周期期间保持屏幕上的每个像素的显示的保持型显示器中,控制显示,以便显示由105或更多帧/秒构成的运动图像,并且当基于这样的控制而显示由105或更多帧/秒构成的运动图像时,基于人类视觉特性而不必提高帧速率,可以将较小劣化的运动图像呈现给观察者,其是观看所显示的运动图像的人。
另外,在矩阵驱动型显示器中,控制显示,以便显示由105或更多帧/秒构成的运动图像,并且当基于这样的控制而显示由105或更多帧/秒构成的运动图像时,基于人类视觉特性而不必提高帧速率,可以将较小劣化的运动图像呈现给观察者,其是观看所显示的运动图像的人。
还可以借助于软件执行上述所有处理。可以将该软件从记录介质安装到具有并入了构成该软件的程序的专用硬件的计算机,或者能够通过安装在其上的各种程序执行各种功能的通用计算机上。
记录介质由记录了程序以便与计算机相分开地分发给用户的封装介质等形成,并且如图1或6所示,包括磁盘31(例如,软盘)、光盘32(例如,CD-ROM(致密盘-只读存储器)和DVD(数字多用途盘))、磁光盘33(例如,MD(小型盘(商标))、半导体存储器34等。
在本说明书中,当然,描述记录在记录介质上的程序的步骤可以不仅包括按照所述次序、以时间序列的方式执行的处理,还包括不一定执行而是并行或单独执行的处理。
在本说明书中,术语“系统”表示由多个装置构成的整个设备。
权利要求
1.一种显示设备,其特征在于包括显示控制部件,用于控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像;以及显示部件,用于基于显示控制部件的控制而显示由不小于105帧/秒构成的运动图像,其中在每个帧周期期间,保持屏幕上的每个像素的显示。
2.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由不小于230帧/秒构成的运动图像。
3.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由不大于480帧/秒构成的运动图像。
4.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由120帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由120帧/秒构成的运动图像。
5.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由180帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由180帧/秒构成的运动图像。
6.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由240帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由240帧/秒构成的运动图像。
7.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由250帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由250帧/秒构成的运动图像。
8.根据权利要求1所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由360帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由360帧/秒构成的运动图像。
9.一种用于具有显示部件的显示设备的显示方法,其中在该显示部件中,在每个帧周期期间保持屏幕上的每个像素的显示,其特征在于包括显示控制步骤,控制显示器,以便使显示部件显示由不小于105帧/秒构成的运动图像。
10.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由不小于230帧/41秒构成的运动图像。
11.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像。
12.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由120帧/秒构成的运动图像。
13.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由180帧/秒构成的运动图像。
14.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由240帧/秒构成的运动图像。
15.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由250帧/秒构成的运动图像。
16.根据权利要求9所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由360帧/秒构成的运动图像。
17.一种显示设备,其特征在于包括显示控制部件,用于控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像;以及显示部件,用于基于显示控制部件的控制而显示由不小于105帧/秒构成的运动图像,该显示部件是矩阵驱动的。
18.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由不小于230帧/秒构成的运动图像。
19.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像;以及显示部件基于显示控制部件的控制而显示由不大于480帧/秒构成的运动图像。
20.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由120帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由120帧/秒构成的运动图像。
21.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由180帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由180帧/秒构成的运动图像。
22.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由240帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由240帧/秒构成的运动图像。
23.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由250帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由250帧/秒构成的运动图像。
24.根据权利要求17所述的显示设备,其特征在于显示控制部件控制显示,以便使显示部件显示由360帧/秒构成的运动图像,以及显示部件基于显示控制部件的控制而显示由360帧/秒构成的运动图像。
25.一种用于具有矩阵驱动显示部件的显示设备的显示方法,其特征在于包括显示控制步骤,控制显示,以便使显示部件显示由不小于105帧/秒构成的运动图像。
26.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由不小于230帧/秒构成的运动图像。
27.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由不大于480帧/秒构成的运动图像。
28.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由120帧/秒构成的运动图像。
29.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由180帧/秒构成的运动图像。
30.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由240帧/秒构成的运动图像。
31.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由250帧/秒构成的运动图像。
32.根据权利要求25所述的显示方法,其特征在于在显示控制步骤中,控制显示,以便使显示部件显示由360帧/秒构成的运动图像。
全文摘要
一种显示设备和方法,用于基于人类视觉特性,在不必提高帧速率的情况下将具有较小劣化的运动图像呈现给观看者。控制信号生成部分(125)和数据线驱动电路(133-1到133-4)通过使LCD(131)显示每秒包括105或更多帧的运动图像来控制显示。LCD(131)在每个帧间隔内保持屏幕的每个像素的显示。本发明可应用于图像显示系统。
文档编号H04N5/66GK1860521SQ20058000109
公开日2006年11月8日 申请日期2005年6月9日 优先权日2004年8月10日
发明者黑木义彦 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1