专利名称:信号发送/接收装置、测试装置、测试模块及半导体芯片的制作方法
技术领域:
本发明涉及通过光传递,收发多值数据信号的信号发送装置以及信号 接收装置、测试被测试器件的测试装置、测试模块、以及半导体芯片。本 发明尤其涉及进行近距离光传送的信号发送装置以及信号接收装置。本申 请与如下所示的日本申请有关。关于承认通过参照而编入文献的指定国家,本 申请通过参照将如下所示申请记载的内容,编入本申请,作为本申请的 一部 分。专利申请2005-216043申请曰2005年7月26曰 背景技术目前为止作为传送数据的方式公知的有光通信方式。在进行长距离传 送的干线系统的光通信时,以将用1根光纤传送的信息量增多为目的进行多 值移相键控(Phase Shift Keying,简称PSK)、正交振幅调制(Quadrature Amplitude Modulation,简称QAM)、波长划分多路传输(Wavelength Division Multiplexing,简称WDM)、高密度波长划分多路传输(Dense Wavelength Division Multiplexing,简称DWDM)等的多重化处理。实现这样的方式的数码调制解调电路或者多重波长电路时,存在着复杂、高耗电、 大面积、高成本等的问题。但是因为与并列敷设长距离纤维的情况相比, 成本降低,所以通常采用这样的多值传送、波长多重的传送方式。对此,在进行大约10米的近距离传送的时候,增加光纤的并列数时带 来的成本增加比进行以上所述的PSK, QAM, WDM,等增加传送容量的方法增加 的成本要小,所以进行并列传输。但是,因为光纤并列数量有物理上的界 限,所以要想进一步增加传输容量的时候,需要增加用1根光纤传送的信 息量。为了让每1根光纤的传送容量增加,可以考虑与上面叙述的长距离的传 送同样,采用以下方法(l)提高传送速度,(2)进行多值传送(3)进行多重 波长的传送。但是电子电路,光电/电光转换电路的应答速度已经接近临界 点,传送速度的高速化很困难,所以通常进行多值传送或者多重波长的传输。因为目前没有查到相关专利文件,所以省略其记载。 但是,在近距离并列光传输中,进行多重波长传输时,每一位数据都需 要多波长光源、合成器、分波器,因此,性价比(cost performance)恶PSK,QAM的多值传输,则更需要接近目前的界限的时 间方面的余量。另外,也可以考虑调制激光的振幅的移幅键控(Amplitude Shift Keying,简称ASK)方式,但是现有的ASK方式的激光源输出,使用间接调制 器,调制CW振荡激光的振幅。间接调制器,因为需要大面积,因此传输系统 的高密度实际封装有困难,并且,性能价格比恶化。因此在现有的装置中, 增加光通信中的传送容量是很困难的。因此本发明目的在于提供能够解决上述课题的信号传送装置、信号接收 器,测试装置,测试模块及半导体芯片。该目的由权利要求范围中的独立权项 记载的特征的组合来实现。另外,从属权项规定了本发明的更有利的具体例。发明内容为解决如上所述课题,在本发明的第1方案中,提供一种信号发送装 置,是将3种以上的多个逻辑值间跃迁的多值数据作为光信号传送的信号 发送装置,包括;发光单元,输出与所给与的电源电流的强度对应的强度的 激光、和能够将对应多值数据跃迁的多个值的多个电流值的电源电流提供 给发光元件的电流源、对应多值数据的跃迁,调制电流电源供给的电源电 流的电流值的调制部。多值数据光信号由多位数码数值的输入而生成,电流源具有与数码数 值的位数对应的个数的位电流源,每个位电流源生成与数码值对应位的 '位'单元对应的电流,调制部与位电流对应具有相应于数码值的位数的个 数的电流控制开关、每个电流控制开关,根据数码值对应的位逻辑值,对 是否将对应的位电流源生成的电流提供给发光元件进行转换。信号发送装置还可以具有测量部,用于测量发光元件的电源电流-输出 强度特性;电流控制部,根据电源电流-输出强度特性,控制每个位电流源 生成的电源电流的电流值。电流控制部,也可以控制每个电流源生成的电 源电流的电流值,以使激光的强度变化与多值数据的逻辑值的转化量大致 成正比。信号发送装置还可以进一步具有时滞调整部,用于降低将多值数 据光信号的各位的各数码值传送给调制部的各路径中的时滞。本发明的第2方案提供一种信号接收装置,是将在3种以上的多个逻 辑值间跃迁的多值数据作为光信号接收的信号接收装置,包括;接受光信 号,生成与光信号的强度对应的信号接收电流的受光单元、将受光单元生 成的受信电流转换成电压的转换电路、将与多值数据跃迁的多个值对应设 置,转换电路输出的电压和与对应的多值数据的逻辑值相对应的比较电压 进行比较的电压比较部、至少与一个电压比较部对应设置,且除去电压波 形的抖动的等化器、向对应的电压比较部供给的等化器、以及,根据每个电压比较部的比较结果,输出多值数据逻辑值的译码器电路。等化器优选从多个电压比较部中的被给与的比较电压最大的 一个开始依顺序与至少 一个电压比较部对应设立本发明的第3的形态提供一种测试装置,是测试被测试器件的测试装置,具有,载置被测试器件的测试头、通过测试头与被测器件进行信号收发,判断被测试器件好坏的主机部分、设置在测试头及主机部分上,将3种以上的多个逻辑值间跃迁的多值数据作为光信号传输的信号发送装置、设置在测试头及主机部分上,接收光信号的信号接收装置;信号接收装置具有,输 出与所给与的电源电流的强度对应的强度的激光的发光单元、和能够将对应多值数据跃迁的多个值的多个电流值的电源电流提供给发光元件的电流 源、对应多值数据的跃迁,调制电流电源供给的电源电流的电流值的调制部。信号接收装置,包括;接受光信号,生成与光信号的强度对应的信号接 收电流的受光单元、将受光单元生成的受信电流转换成电压的转换电路、与 多值数据跃迁的多个值对应设置,将转换电路输出的电压和与对应的多值 数据的逻辑值相对应的比较电压进行比较的多个电压比较部、与至少一个 电压比较部对应设置,除去电压波形的抖动的等化器、以及,根据每个电压 比较部的比较结果,判断多值数据逻辑值的判断部。信号发送装置还可以进一步具有时滞调整部,用于降低将多值数据光 信号的各位的各数码值传送给调制部的各路径中的时滞。时滞调整部,具 有调整各路径中的传输延迟时间的可变延迟电路,信号接收装置还具有测 试信号传输装置的各路径中的传输延迟时间差的时滞测量部。测试装置还 可以具有,基于时滞测量部测试的传输延迟时间差,控制可变延迟电路的 延迟量的控制部。本发明的第4形态提供一种测试模块,是设置在测试被测试器件的测 试装置上,将在3种以上的多个逻辑值间跃迁的多值数据作为光信号传输 的测试模块,具有,输出与所给与的电源电流对应的强度的激光的发光单 元、和能够将对应多值数据跃迁的多个值的多个电流值的电源电流提供给 发光元件的电流源、对应多值数据的跃迁,调制电流电源供给的电源电流 的电流值的调制部。本发明的第5形态提供一种测试模块,是设置在测试被测试器件的测 试装置上,将3种以上的多个逻辑值间跃迁的多值数据作为光信号传输的 测试模块,具有,接收光信号,生成对应于光信号的强度的接收信号电流 的受光单元、将受光单元生成的接收信号电流转换成电压的转换电路、与 多值数据跃迁的多个值对应设置,将转换电路输出的电压和与对应的多值比较部对应设置,且除去电压波形的抖动的等化器、以及,根据各个电压比 较部的比较结果,输出多值数据逻辑值的译码器电路。本发明的第6形态提供一种半导体芯片,是在半导体基板上形成将3 种以上的多个逻辑值间跃迁的多值数据作为光信号传输的信号发送装置的 半导体芯片,信号发送装置具有,输出与所给与的电源电流的强度对应的 强度的激光的发光单元、和能够将对应多值数据跃迁的多个值的多个电流 值的电源电流提供给发光元件的电流源、对应多值数据的跃迁,调制电流 电源供给的电源电流的电流值的调制部。本发明的第7形态提供一种半导体芯片,是在半导体基板上形成将3 种以上的多个逻辑值间跃迁的多值数据作为光信号传输的信号接收装置的 半导体芯片,信号接收装置包括;接受光信号,生成与光信号的强度对应 的信号接收电流的受光单元、将受光单元生成的受信电流转换成电压的转 换电路、将与多值数据跃迁的多个值对应设置,转换电路输出的电压和与对 应的多值数据的逻辑值相对应的比较电压进行比较的多个电压比较部、与 至少一个电压比较部对应设置,除去电压波形的抖动的等化器、以及,根据 每个电压比较,的比较:吉果,,l命出多值数据逻,值的译码器电路。、,征的子(sub)组合也可以构成发明。发明效果根据本发明,可以不是采用间接调制器的间接调制,而是通过直接调 制的小规模装置,能够容易的将多值数据进行光传输。另外,像测试装置 的主机部分和测试头那样,近距离光传输中,由于光纤的损失非常小。因 此,在振幅方向,沿有余量的近距离光传输中,使用本发明尤其有效。另 外,通过调制振幅,进行光传递,所以,在原状等同保持接近临界的时间 容限(margin)的状态下,可以使每一根光纤的传输容量增大。还可以根据 发光元件32的特性,通过控制电源电流等,更高精度地传输数据。
图1是本发明的实施形态涉及的测试装置100的构成的一例示意图。图2是信号发送装置30的构成的一例示意图。图3是信号发送装置30的构成的其他例子示意图。图4是信号接收器40的构成的一例示意图。图5是DAC70输出的阈值电压的一例示意图。图6是发光单元32的电源电流-输出强度特性的一例示意图。图7是表示信号发送装置30的构成的其他例子的示意图。图8是电流控制部58控制了位电流源44时候的,相对于多值数据的各逻辑值的激光的强度的关系的一例示意图。图9是表示信号发送装置30的构成的其他例子的示意图。图10是表示信号发送装置30以及信号接收装置40的构成的其他例子 的示意图。图10(a)表示信号发送装置30的构成,图10(b)表示信号接收器 40的构成。10:主机部分30:信号发送装置34:调制部38、 39:晶体管42:电流源46:偏置电流源52, 54:晶体管58:电流控制部62:转换电路66:电压比4交4p72:设定部76:多路调制器80:逻辑积电3各84:可变延迟电路102:可变延迟电3各具体实施方式
以下,通过实施例对本发明进行说明,但本发明的权利范围并不限定于 以下实施例,而且实施例中说明的特征的组合并不一定都是本发明的必要 特征。图1是本发明的实施形态涉及的测试装置100的构成的一例示意图。测 试装置100是测试半导体电路等的被测试器件200的装置,具有主机部10 以及测试头20。测试头20载置被测试器件200,并且进行与被测试装置200 之间的信号收发。另外,主机部10通过测试头20进行与被测试器件200之间的信号收 发,从而判断被测试器件200的好坏。例如,主机部IO将应该输入被测试 器件2QQ的测试信号,通过测试头20提供给被测试器件200,通过测试头20 接受被测试器件200输出的输出信号。另外,主机部IO基于该输出信号,判 断被测试器件200的好坏。另外,主机部10以及测验头20,分别具有用于传输信号的信号传送装置 30以及信号接收装置40。信号发送装置30以及信号接收装置4Q通过连接20:测试头32:发光单元36:电流控制开关40:信号接收装置44:^立电;;荒源50:^立电;;克源56:测量部60:受光单元64:等化器68:-泽码器电路74:触发器78:逻辑和电3各82:触发器100:测试装置200:被测试器件。主机部10和测验头20的多根光纤,传送光信号。因为主机部10和测验头 20的间隔,例如是10米以下的近距离,所以能用低成本并列设置多个光纤。另夕卜,在本例中,为了在主机部1Q和测验头20之间进行传送信号,分别 具有信号发送装置30以及信号接收装置40,但是,测试装置100也可以在 所希望的部位具有测试模块,所述测试模块包括信号发送装置30或者信号 接收装置40的至少一方。比方说,在能够利用光纤,传送信号的所希望的 部位,具有该测试模块。图2是表示信号发送装置30的构成的一例示意图。分别为设置在主机 部10以及测验头20上的信号发送装置30是同一构成。信号发送装置30 具有发光单元32、电流源42以及调制部34。在本例中的信号发送装置30 通过根据应该被传送的数据来调制供给至发光单元32的电源电流,以调制 该发光单元32输出的激光的振幅,并且将在3种以上的多个逻辑值间跃迁 的多值数据作为光信号传送。发光单元32输出对应被给与的电源电流的强度的激光。发光单元32 比方说是激光二极管。电流源42是能将对应多值数据跃迁的复数的值的多 个电流值电源电流提供给发光单元32的电流源。比方说,当多值数据取得 4种值的时候,电流源42是可对发光单元32供给4种电流值的电流源。在本例中,电流源42具有偏置电流源"以及多个位电流源 (44-1, 44-2,以下总称为44)。偏置电流源46在发光单元32事先施加偏置 电流,并且减少在发光单元32中的发光延迟时间。另外,作为应该发信的数 据输入到信号发送装置30的多值数据的每个逻辑值分别用多位的数码值表 达。电流源42具有的位电流源44的个数,根据被输入的多值数据的位数 决定。比方说,在多值数据的位数是2位的时候,电流源"具有2个位电 流源44。在本例中,围绕位数是2的情况进行了说明,但是也可以用更多的 位数来表达多值数据。位电流源44分别在多值lt据的数码值中,生成对应所对应的位的位单 元的电流。在本例中,位电流源44-1对应多值数据的第1位而设置,形成被 事先规定了的电流Il。另外,位电流源2对应多值数据的第2位而设 置,形成电流II的大约2倍的电流值的电流12。这里,多值数据的第2位是 表示高于第l位的上一位位数的位。调制部34根据多值数据的逻辑值的跃迁,调制电流源42供给至发光 单元32的电源电流的电流值。在本例中,根据多值数据的逻辑值的跃迁,对 是否将多位电流源44形成的电流提供给发光单元32进行转换,以此调制电 源电流。比方说,在调制部34中,由输入部102输入表示多值数据的多位的 数码输入,当位电流源44分别对应的数码输入的位的值是1的时候,将该位 电流源44生成的电流重叠成电源电流,当对应的多值数据的位的值是0的时候,不将该位电流源44形成的电流重叠成电源电流。通过这样的控制,能 够接受多值数据的逻辑值的跃迁,调制电流源42向发光单元32供给的电源电;;克的电流j直。控制调制部34具有对应了多值数据的数码值的位数的个数的电流控制 开关(36-1, 36-2,以下总称36)。在本例中,因为多值数据的位数是2,所以 调制部34有两个电流控制开关36。电流控制开关36分别对应多值数据的 各位设置,根据对应的位的逻辑值,对是否将对应的位电流源44形成了的电 流重叠在发光单元32电源电流上而供给来进行转换。在本例中,当对应位 的值是1的时候,所对应的位电流源44形成的电流提供给发光单元32,对应 位的值是Q的时候,不向发光单元32提供所对应的位电流源44形成的电、、六/"bo每个电流控制开关36也可以分别用设置在发光单元32和位电流源44 之间的一个晶体管来控制电流,还可以用差动对晶体管控制电流。在本例 中,电流控制开关36具有被设置在发光单元32和位电流源44之间的差动 对晶体管(38、 39)。各个电流控制开关36分别对在多值数据中与相应的位 逻辑值对应的电压输入到差动对晶体管(38, 39)的基础端子,控制是否将对 应的位电流源44形成的电流施加给发光单元32。通过这样的构成,能够将激光的振幅控制成多值,进行传送容量大的光 传送。另夕卜,因为激光的振幅不是进行光调制,而是调制电流源的直接调制,所 以不需要光调制电路,从而减少装置面积。图3是表示信号发送装置30的构成的其他例子示意图。在本例中,信 号发送装置30有位电流源(50-1, 50-2,以下总称50),偏置电流源46以及发 光单元32。另外,发光单元32和在图2中说明了的发光单元32相同。位电流源50分别与在图2说明了的电流控制开关36同样有差动对晶 体管(52、 54)。另外,偏置电流源46有被^没置在发光单元32和接地电位之 间的晶体管,将对应于在栅极端子给与的偏置电压的电源电流提供给发光 单元32。位电流源50以及偏置电流源46具有的晶体管是MOSFET。这样,通 过由M0SFET构成的各晶体管,能够形成发光单元32的驱动电路单片化的 IC芯片。可以将信号发送装置30以及信号接》]錄置40做成半导体芯片。例如,在 半导体基板上,该半导体芯片至少可以具有信号发送装置30或者信号接收 装置40中的一方。另外,在该半导体芯片上,也可以形成信号发送装置30 或者信号接收装置40的结构的一部分。晶体管52分别设置在被施加了规定的漏极电压V。。的总线和接地电位 之间,给与对应于多值数据中相对应的位的逻辑值的栅极电压。另外,晶体 管54分别被设置在发光单元32和接地接地电位之间,给与将晶体管52给与的4册极电压反转后的电压。就是说,晶体管54,在发光单元32的电源电流 上重叠了对应于在多值数据中相对应的位的逻辑值的电流,晶体管52控制 差动对晶体管的消费电流为固定。根据本例中的信号发送装置30,因为位电流源50具有在图2中已经说 明过了的位电流源44以及电流控制开关36的功能,所以能够减少电路规 模。另外,各位电流源50形成的电流是和在图2说明了的位电流源44形成 的电流相同的。比方i兌,位电流源50-2形成相对于位电流源50-1为2倍 的电流。为此,位电流源50- 2,也可以具有相对位电流源50-1,栅极宽度 2倍的晶体管,并且晶体管52以及54也可以分别地两个两个并列设置。图4是表示信号接收装置40的构成的一例示意图。分别设置在主机部 10以及测试头20上的信号接收器40的构成相同。信号接收器40具有受光 单元60、转换电路62、等化器(64-1~64-3,以下总称64)、多个电压比较 部(66-1 ~ 66-3,以下总称66) 、 i奪码器68、 DAC70以及设定部72。本例中 的信号接收器40,接收信号发送装置30传送了的光信号,输出由光信号传 送的多值数据。在本例中,具体说明了信号发送装置30在传送4值的光信 号时的情况。受光单元60收到信号发送装置30传送的多值的光信号,并且根据光信 号的强度生成信号接收电流。受光单元60比方说是光电二极管。转换电路 62把受光单元60形成了的接收信号电流转换成电压。转换电路62也可以 是输出与给与的电流对应的电压的阻抗转换电路(T I A)。DAC70根据设定部72所给与的多个电压数据输出多个的阈值电压 (Vthl,Vth2,Vth3)。设定部72根据多值数据跃迁的复数的值,输出辨别多 值数据跃迁的各值的多个电压数据。比方说,设定部72输出表示与多值数 据跃迁的各值对应的电压电平的中间值的电压数据。例如,若设与多值数据 跃迁的各值对应的电压电平为0.1、 2、 3V,则设定部72输出表示0.5、 1.5、 2. 5V的电压数据。电压比较部66分别与多值数据跃迁的多个值对应设置。就是说,为了能辨别多值数据跃迁的多个值而设置电压比较部66。比方说,在多值数据 4值跃迁时,为了辨别各值,可以设置3个电压比较部66。每个电压比较 部66分别对转换电路62输出的电压的大小与根据对应的逻辑多值数据的 逻辑值的比较电压的大小进行比较。译码器电路68根据每个电压比较部66的比较结果,输出多值数据的逻 辑值。在本例中,译码器电路68根据该比较结果,向多值数据的每一位输出 多值数据的逻辑值。等化器64至少和电压比较部66中的一个对应设置,去除转换电路62 输出的电压波形的抖动,并且提供给对应的电压比较部66。比方说,等化器64也可使转换电路62输出的电压波形的下降边缘陡哨后输出。等化器64 还可以是对被预设的波形和转换电路62输出的电压波形进行折积 (convolution)运算的电路。该被预设的波形是,通过折积运算,降低了 电压波形的下降陡度幅宽的波形。通过这样的构成,能够接收被作为光信号传送的多值数据。另外,激光 二极管的发光单元32由于输出波形的下降边缘不陡,,因此光信号产生与 发光单元32的特性对应的抖动。在本例中的信号接收装置40能减少转换 电路62输出的电压波形的抖动,所以可以进行高精度的光信号解调。另外,光信号的振动和光信号的振幅成比例增大,是因为激光二极管的 发光单元32的电流-光输出特殊性不是理想的线形的特性。因此,可以在 多个电压比较部66中,从所给与的比较电压的最大一个起依次降幂排列,至 少在一个电压比较部66中设置等化器64。另外,也可以对所有电压比较部 66设置等化器64。图5是表示DAC70输出的阈值电压的一例示意图。在图5中纵轴表示 电压电平。在多值数据的逻辑值在4种值中跃迁时,转换电路62输出的电 压波形的电压电平,如在图5所示,越迁成四个的电压电平。DAC70分别输出 大致为电压电平中间值的阈值电压(Vthl,Vth2,Vth3)。以及电压比4交部66 将转换电路62输出的电压与这些阈值电压进行比较。通过这样的控制,能够辨别多值的逻辑值。图6是表示发光单元32的电源电流-输出强度特性的一例示意图。在 图6中,横轴表示供给发光单元32的电源电流,纵轴表示发光单元32输出 的激光的强度。激光二极管等发光单元32的特性有图6所示的非直线区 域。因此,根据多值数据的各逻辑值(OO, Ol,lO,ll)输出的激光的强度有非 等间隔的情况存在。比方说,在解调将电信号进行振幅调制后传输的多值数据时,等间隔 设定阈值电压的电平。但是,当如本例所示,通过调制供给至发光单元32 的电源电流,有时在振幅调制激光后,传送多值数据的时候,在等间隔设定 的阈值电压中无法进行高精度调制。因此,DAC70优选输出与该发光单元32的电源电流-输出强度对应的特 性的阈值电压。例如,设定部72可以事先存储根据发光单元32的电源电 流-输出强度特性的电压数据。信号发送装置30的电流源42还可以形成根 据该特性的电源电流。另外,还可以由测量该特性的使用者事先设定该电压数据,并且,信号 接收装置40测量该特性,设定部72计算该电压数据。在信号接收器40测 量该特性的时候,使信号发送装置30中的电流源42形成的电源电流顺次变 化。以及信号接收器40分别针对每个电源电流使在电压比较部66给与的电压数据变化,并且通过对该电源电流,测量转换电路62输出的电压波形 的电压电平,从而得以测量该特性。在控制DAC70输出的阈值电压的时候,设定部72根据该特性,计算出对 应多值数据跃迁的各逻辑值的输入到电压比较部66的电压的电压电平,并 且将各电压电平的中间值分别设定为阈值电压。图7是表示信号发送装置30的构成的其他例示意图。本例中,信号发 送装置30不仅包括在图2说明了的信号发送装置30的构成,而且还具有 测量部56以及电流控制部58。测量部56测量在图6说明过的电源电流-输出强度特性。比方说测量部56如图6说明过的那样,顺次使电流源42 形成的电源电流变化,并且分别针对电源电流来测量发光单元32输出的光 信号的强度。另外,如在图6说明的那样,信号接收器40也可以具有作为 测量部56的功能。电流控制部58根据测量部56测量出的电源电流-输出强度特性,控制 位电流源44分别形成的电流的电流值。比方il,电流控制部58,为了与多值 数据的逻辑值的跃迁量大致成比例地变化激光的强度,也可以分别控制各 个位电流源44。图8是在电流控制部58控制了位电流源44时候的,相对于多值数据的 各逻辑值的激光强度的关系的一例示意图。在本例中,说明了当多值数据是 3位时的情况。电流控制部58如图7所示,为了与多值数据的逻辑值的跃迁 量大致成比例地变化激光的强度,控制各个位电流源44形成的电流。比方 说如图8所示,可以分别控制位电流源44形成的电流,以使将位电流源44 分别形成的电流,分别单独重叠成电源电流时(就是说,多值数据的逻辑 值,001, 010, 100)的激光的强度近似于直线。通过这样的控制,能够生成与 多值数据的每个逻辑值的跃迁量成正比的强度的激光。另外,电流控制部58也可以在发光单元32的电源电流-输出强度特性 能近似直线的领域,分别设定位电流源44形成的电流。在这种情况下,电 流控制部58,分别控制位电流源44,以使每个位电流源44中的电流值变为 l倍,2倍,4倍……。在这种情况下,信号接收器40的DAC70根据与各逻辑 值对应的输出强度,形成大约等间隔的阈值电压。图9是表示信号发送装置30的构成的其他例子示意图。本例中,信号 发送装置30除包括图2,图3或者在图7说明过的信号发送装置30的构成 以外,还具有多个的触发器74。多个的触发器74设置在调制部34的附近,设 置在每个来自原发送电路的102数码输入的位上。分别给与触发器"相同 的时钟,并且,根据该时钟,接受对应的位信号,输入给调制部34。根据这样 的构成,触发器74具有作为将除去多值数据的各位传送给调制部34的各路 径间的时滞的时滞调整部的作用。这里,所谓的路径间的时滞是信号发送装置30接受多值数据的各位的数据后,到传送给调制部34为止的路径的 传送延迟时间的差。因为在传送各位的路径上发生时滞的时候,控制各个位电流源44的时 序发生偏差,因而在供给发光单元32的电源电流波形发生失真,发生假信 号(glitch )。其结果,发光单元32输出的光信号的波形失真,发生假信 号。根据本例中的信号发送装置30,因为能通过触发器74使各位信号的输 入时机变成相同,所以能够减少光信号的波形的失真及假信号。图10是表示信号发送装置30以及信号接收器40的构成的其他例子的 示意图。图10(a)表示信号发送装置30的构成,并且图10(b)表示信号接收 装置40的构成。本例中,信号发送装置30除包括图2,图3或者在图7说明过的信号发 送装置30的构成以外,还具有复数个可变延迟电路104。复数个可变延迟 电路104,设置在来自原发送电路的输入部102的数码输入的每个位上。每 个可变延迟电路104接受对应的位信号,并且将让该位信号延迟以减少传 送路径的时滞,通过这样的构成,能除去途径中传送各位的路径的时滞另外,如图9所示的信号发送装置30,当路径的时滞量比触发器74所 给予的时钟1个周期还大时,除去该时滞有困难,但是,在本例中信号发送 装置30由于使用了可变延迟电路104,减少时滞,所以能在可变延迟电路 104的延迟量的可变范围内,降低时滞。另外,在本例中,对传送位信号的各 路径设置了可变延迟电路104,但是在其他的例子中,也可以针对标准路径 设置可变延迟电路104。各可变延迟电路104的延迟量可根据预先测量的时 滞来设定。另外,信号接收装置40除了在图4说明过的信号接收器40的构成外,而 且还可以具有多路调制器76、触发器82以及可变延迟电路84。多路调制 器76、触发器82以及可变延迟电路具有作为测量各信号发送装置30的上 述各路径中的传输延迟时间差的时滞测量部的功能。多路调制器76具有逻辑和电路78以及逻辑积电路80,并且选择译码器 电路68的数码的输出的各位信号的任意一方输出。逻辑积电路8Q输出译 码器电路68输出的第2位的信号和控制信号的逻辑积。另外,逻辑和电路 78输出译码器电路68输出的第1位的信号和逻辑积电路80输出的信号的 逻辑和。在测量时滞的时候,首先原发送电路输出"0101.,."的波形作为多值数 据的第l位,并且第2位输出"0000..."的波形。另外,在多路调制器76中,输 入被固定成低电平的控制信号。通过这样的控制,多路调制器76选择多值 数据的第1位输出。以及触发器82根据可变延迟电路84延迟了的时钟,提 取多路调制器76的输出信号。通过使可变延迟电路84的延迟量顺次变化,能够检测出多值数据的第1位的逻辑值跃迁的位相。以下,发送源电路作为多值数据的第1位输出"OOOO..."的波形,作为第2位输出"0101..."的波形。另外,在多路调制器76中,输入固定成高电 平的控制信号。通过这样的控制,多路调制器76选择多值数据的第2位输 出。以及触发器82根据可变延迟电路84延迟了的时钟,提取多路调制器 76的输出信号。通过使可变延迟电路84的延迟量顺次变化,能够检测出多 值数据的第1位的逻辑逻辑值跃迁的位相。以及根据第1位的逻辑值跃迁 的相位和第2位的逻辑值跃迁的相位的差,设定可变延迟电路104的延迟 量。测试装置IOO还可以具有根据这样测量出的传送延迟时间的差,控制可 变延迟电路84的延迟量的控制部。通过这样的控制,能减少时滞。另外,在 设定了可变延迟电路104的延迟量之后,进行常规的数据传送的时候,对 多路调制器76输入被固定成低电平的控制信号以上使用实施方式说明了本发明,但是本发明的技术范围没有限定在 上述实施方式所述范围。可对上述实施方式进行多种变更或者改良,这点 对于本技术的领域人员而言是不言而喻的。从权利要求范围记栽可知,进产业上的可利用性
如上所述,根据本发明,不采用间接调制器进行间接调制,而是通过 直接调制的小规模装置,能够容易的将多值数据进行光传输。另外,像测 试装置的主机部分和测试头那样,在近距离光传输中,光纤造成的损失非 常小。因此,在沿振幅方向,有余量的近距离光传输中,采用本发明尤其 有效。另外,通过调制振幅,进行光传递,所以,在原状等同保持接近临 界的时间容限的状态下,可以使每一根光纤的传输容量增大。还可以根据 发光单元32的特性,通过控制电源电流等,进行更高精度的数据传输。
权利要求
1、一种信号发送装置,是将在3种以上的多个逻辑值间跃迁的多值数据作为光信号传送的信号发送装置,其特征在于包括;发光单元,其输出与所给与的电源电流对应的强度的激光、电流源,其能够向所述发光元件提供与所述多值数据跃迁的所述多个值对应的多个电流值的所述电源电流、以及调制部,其根据所述多值数据的跃迁,调制所述电流电源供给的所述电源电流的电流值。
2、 根据权利要求l所述的信号发送装置,其特征在于, 所述多值数据光信号由多位数码数值的输入而生成,所述电流源具有与所述数码数值的位数对应的个数的位电流源、 每个所述位电流源生成与所述数码值对应的位的位单元对应的电流, 所述调制部与所迷位电流对应具有相应于所述数码值的位数的个数的 电流控制开关、每个所述电流控制开关,根据所述数码值对应的位的逻辑值,对是否将 对应的所述位电流源生成的电流提供给所述发光元件进行转换。
3、 根据权利要求2所述的信号发送装置,其特征在于还具有测量部,用 于测量所述发光元件的电源电流-输出强度特性;以及电流控制部,根据所述电源电流-输出强度特性,控制每个所述位电流源 生成的所述电源电流的电流值。
4、 根据权利要求3所述的信号发送装置,其特征在于,所述电流控制 部为使所述激光的强度变化成与所述多值数据的逻辑值的跃迁量大致成正 比,控制每个所述电流源生成的所述电源电流的电流值。
5、 根据权利要求2所述的信号发送装置,其特征在于还具有时滞调整 部,用于降低将所述多值数据光信号的各位的各数码值传送给所述调制部 的各路径中的时滞。
6、 一种信号接收装置,是将在3种以上的多个逻辑值间跃迁的多值数 据作为光信号接收的信号接收装置,其特征在于包括;受光单元,接受所述光信号,生成与所述光信号的强度对应的信号接转换电路,将所述受光单元生成的所述受信电流转换成电压、 电压比较部,与所述多值数据跃迁的所述多个值对应设置,将所述转换电路输出的所述电压和与对应的所述多值数据的逻辑值相对应的比较电压进行比较、等化器,与至少一个所述电压比较部对应设置,用于除去电压波形的4牛动、以及译码器电路,其根据每个所述电压比较部的比较结果,输出所述多值数 据的逻辑值。
7、 根据权利要求6所述的信号接收装置,其特征在于,所述等化器从 所述多个电压比较部中,被给与的所述比较电压最大的一个开始依顺序与 至少一个所述电压比较部对应设置。
8、 一种测试装置,是测试装置测试被测试器件的测试装置,其特征在 于具有载置所述被测试器件的测试头、通过所述测试头与所述被测试器件进行信号收发,判断所述被测试器 件好坏的主机部、设置在所述测试头及所述主机部分上,将在3种以上的多 个逻辑值间跃迁的多值数据作为光信号传输的信号发送装置、设置在所述测试头及所述主机部分上,接收所述光信号的信号接收装 置;其中,所述信号《^收装置具有输出与所给与的电源电流的强度对应的激光的发光单元、能够将对应所述多值数据跃迁的所述多个值的多个电流值的所述电源 电流提供给所述发光单元的电流源、以及根据所述多值数据的跃迁,调制所述电流源供给的所述电源电流的电 流值的调制部。
9、 根据权利要求8所述的测试装置,其特征在于,所述信号接收装置,包括;接受所述光信号,生成与所述光信号的强度对应的信号接收电流的受 光单元、将所述受光单元生成的所述受信电流转换成电压的转换电路、与所述多值数据跃迁的所述多个值对应设置,将所述转换电路输出的所述电压和与对应的所述多值数据的逻辑值相对应的比较电压进行比较的多个电压比4交部、与至少一个所述电压比较部对应设置,用于除去电压波形的抖动的等 化器、以及,根据每个所述电压比较部中的比较结果,判断所述多值数据的 逻辑值的判断部。
10、 根据权利要求9所述的测试装置,其特征在于,所述信号发送装置还具有时滞调整部,用于降低在将所述多值数据光信号的各位的各数码 值传送给所述调制部的各路径中的时滞。
11、 根据权利要求10所述的测试装置,其特征在于,所述时滞调整部,具 有调整所述各路径中的传输延迟时间的可变延迟电路;所述信号接收装置还具有测试所述信号传送装置的所述各路径中的所述传输延迟时间差的时滞测量部;所述测试装置还具有基于所述时滞测量部测得的所述传输延迟时间 差,控制所述可变延迟电路的延迟量的控制部。
12、 一种测试模块,是设置在测试被测试器件的测试装置上,将在3种 以上的多个逻辑值间跃迁的多值数据作为光信号传输的测试模块,其特征 在于具有输出与所给与的电源电流对应的强度的激光的发光单元、能够将对应所述多值数据跃迁的所述多个值的多个电流值的所述电源电流提供给所述发光单元的电流源、以及根据所述多值数据的跃迁,调制所述电流电源供给的所述电源电流的电流值的调制部。
13、 一种测试模块,是设置在测试被测试器件的测试装置上,将在3种 以上的多个逻辑值间跃迁的多值数据作为光信号传输的测试模块,其特征 在于具有接收所述光信号,生成与所迷光信号的强度对应的接收信号电流的受 光单元、将所述受光单元生成的所述接收信号电流转换成电压的转换电路、 与所述多值数据跃迁的所述多个值对应设置,将所述转换电路输出的所述电压和与对应的所述多值数据的逻辑值相对应的比较电压进行比较的多个电压比较部、与至少一个所述电压比较部对应设置,用于除去电压波形的抖动的等 化器、以及,根据各个所述电压比较部的比较结果,输出所述多值数据的逻辑值的 译码器电路。
14、 一种半导体芯片,是在半导体基板上形成将在3种以上的多个逻辑值间跃迁的多值数据作为光信号传输的信号发送装置的半导体芯片,其特征在于所述信号发送装置具有输出与所给与的电源电流对应的强度的激光的发光单元、能够将与所述多值数据跃迁的所述多个值对应的多个电流值的所述电源电流提供给所述发光元件的电流源、以及对应所述多值数据的跃迁,调制所述电流电源供给的所述电源电流的电流值的调制部。
15、 一种半导体芯片,是在半导体基板上形成将在3种以上的多个逻辑值间跃迁的多值数据作为光信号传输的信号接收装置的半导体芯片,其 特征在于所述信号接收装置具有接受所述光信号,生成与所述光信号的强度对应的信号接收电流的受光单元、将所述受光单元生成的所述受信电流转换成电压的转换电路、与所述多值数据跃迁的所述多个值对应设置,将所述转换电路输出的所述电压和与对应的所述多值数据的逻辑值相对应的比较电压进行比较的多个电压比较部、与至少一个所述电压比较部对应设置,用于除去电压波形的抖动的等 化器、以及,根据每个所述电压比较部的比较结果,输出所述多值数据的逻辑值的 译码器电路。
全文摘要
本发明公开了一种信号发送装置,包括输出与所给与的电源电流对应的强度的激光的发光单元、能够将对应多值数据跃迁的多个值的多个电流值的电源电流提供给发光元件的电流源、对应多值数据的跃迁,调制电流电源供给的电源电流的电流值的调制部;多值数据光信号由多位数码数值的输入而生成,电流源具有对应了数码数值位的个数的位电流源,每个位电流源生成与数码值的对应位的位单元对应的电流。调制部与位电流对应具有相应于数码值的位数的个数的电流控制开关,每个电流控制开关,根据数码值对应的位逻辑值,对是否将对应的电流源生成的电流提供给发光元件进行转换。
文档编号H04B10/50GK101228718SQ200680027160
公开日2008年7月23日 申请日期2006年7月20日 优先权日2005年7月26日
发明者冈安俊幸, 渡边大辅 申请人:爱德万测试株式会社