专利名称:三阶自治混沌系统的制作方法
技术领域:
本发明属于一种混沌系统,尤其涉及一种三阶自治混沌系统。
背景技术:
混沌是一种貌似无规则的运动,是指在确定性非线性系统中,不需附加任 何随机因素亦可出现类似随机的行为。它由于具有内在随机性、初值敏感性、 非规则的有序性等特征,在数据加密、信息处理和保密通信等领域中有着极具
竞争力的应用前景。衡量系统对初值敏感性的一个重要指标是Lyapunov指数, 它表征系统运动的特征,混沌系统至少有一个正的Lyapunov指数。
在混沌保密通信中, 一个混沌信号被用于掩盖需要传送的有用信息。众所 周知,混沌现象不可能在一阶、二阶自治连续时间系统中产生,也不可能在一 阶非自治的连续时间系统中产生。人们在三阶自治连续时间系统中发现了混沌 现象,如Lorenz系统簇。
但是,目前已有的三阶混沌系统大多已经被人们深入研究,随着攻击技术 的提高,基于常见三阶混沌系统的信息掩盖己经不能满足目前日益增长的安全 性要求,在实际保密通信系统中很难继续发挥作用。因此,设计新的混沌系统 是亟待解决的问题。
发明内容
本发明的目的是提出一种三阶自治混沌系统,能够产生丰富的动力学行 为,掩盖安全信息,并且实现电路简单,便于集成。
本发明的具体方案是 一种三阶自治混沌系统,包括有数学模型和实现电 路,其关键在于所述数学模型为-
<formula>formula see original document page 6</formula>式中,所述Z)(;c(f))-max(雄),O)是一个最大值函数,x, y, z是状态变量,a, b, c是正的常数。
所述实现电路由第一、第二、第三通道电路和函数单元电路组成,所述第 一、第二、第三通道电路分别实现所述数学模型的第一、第二、第三函数,所 述函数单元电路实现所述最大值函数=max(x(O,O)。
所述第一通道电路的输出信号反馈到输入端作为一路输入信号,该输出信 号分别作为所述第二通道电路的一路输入信号和所述函数单元电路的输入信 号,所述第二通道电路的输出信号作为所述第一通道电路的另一路输入信号, 所述函数单元电路的输出信号作为所述第三通道电路的输入信号,该第三通道 电路的输出信号作为所述第二通道电路的另一路输入信号。
所述第一、第二函数是线性函数,所述第三函数是非线性函数,其中的 D(;c(/))-max(;^),0)是最简单的非线性方程之一,在电路上易于实现,也是所述 数学模型能产生混沌行为的关键,三个函数构成一个简单的三阶自治混沌系 统。
为了促进所述数学模型在工程中的应用,设计了所述实现电路。在该实现 电路中,第一通道电路的输入为x和-y,输出为x;所述第二通道电路的输入 为x和-z,输出为-y;所述函数单元电路输入为x,输出为D(x),所述第三通 道电路输入为D(x),输出为-z。四组电路实现所述数学模型构建的三阶自治混 沌系统。所述实现电路结构简单,便于集成。
所述第一通道电路由第一反相积分器、第一积分电容和第一、第二电阻组 成,所述第一、第二电阻的一端分别接收两路输入信号,该第一、第二电阻的 另一端并接在所述第一反相积分器的负向输入端,该第一反相积分器的正向输 入端接地,在所述第一反相积分器的输出端和负向输入端之间并接有所述第一 积分电容,所述第一反相积分器的输出端还与所述第一电阻的一端连接,将输 出信号反馈到输入端,该输出端还输出信号给所述第二通道电路、函数单元电 路。
所述第二通道电路由第二反相积分器、第二积分电容、第三、第四电阻、 第一反相器、第五电阻、第六电阻、第七电阻组成,所述第三、第四电阻的一 端分别接收来自所述第一通道电路、第三通道电路的输出信号,所述第三、四 电阻的另一端并接在所述第二反相积分器的负向输入端,该第二反相积分器的 正向输入端接地,在所述第二反相积分器的输出端和负向输入端间并接有所述 第二积分电容,所述第二反相积分器的输出端还串接所述第五电阻后与所述第 一反相器的负向输入端连接,该第一反相器的正向输入端经所述第七电阻接 地,在所述第一反相器的输出端和负向输入端间并接有所述第六电阻,所述第 一反相器的输出端输出信号给所述第一通道电路。
所述函数单元电路由第八、第九、第十、第十一电阻、第一比较器和第二 比较器组成,所述第八电阻的一端接收来自所述第一通道电路的输出信号,该 第八电阻的另一端与所述第一比较器的负向输入端连接,所述第一比较器的正
向输入端与电源正极连接,该电源负极接地;在所述第一比较器的输出端和负 向输入端之间并接有所述第九电阻,所述第一 比较器的输出端还经所述第十电 阻与所述第二比较器的负向输入端连接,该第二比较器的正向输入端与电源的 正极连接,该电源负极接地,在所述第二比较器的输出端和负向输入端间还并 接有第十一电阻,所述第二比较器的输出端输出信号给所述第三通道电路。 所述第三通道电路由第三反相积分器、第二反相器、第三积分电容、第十 二电阻、第十三电阻、第十四电阻、第十五电阻组成,所述第十二电阻的一端 接收所述函数单元电路输出的信号,该第十二电阻的另一端与所述第三反相积 分器的负向输入端连接,该第三反相积分器的正向输入端连接电源正极,该电 源负极接地;在所述第三反相积分器的输出端和负向输入端之间并接有第三积 分电容,该第三反相积分器的输出端还串接所述第十三电阻后与所述第二反相 器的负向输入端连接,该第二反相器的正向输入端经所述第十五电阻接地,在 所述第二反相器的输出端和负向输入端之间并接有第十四电阻,所述第二反相 器的输出端输出信号给所述第二通道电路。
所述数学模型中3=0.3, b=0.3, c二1.0时,系统表现出混沌行为。 所述数学模型有一个正的Lyapimov指数,为0.1955。所述的指数均通过 计算得出,表明该数学模型构建的系统是一个混沌系统,能够产生复杂的混沌 行为。
本发明的显著效果是与现有技术相比,本发明结构简单、易于实现,该 系统具有一个正的Lyapimov指数,是一个混沌系统,能够产生丰富的动力学 行为,掩盖安全信息,并且实现电路简单,便于集成,对于推动混沌系统在信 息处理和保密通信的产业化中有很大的促进作用。
图l是本发明的结构示意图; 图2是本发明的实现电路的结构示意图; 图3是本发明的x的时间响应曲线; 图4是本发明的y的时间响应曲线; 图5是本发明的Z的时间响应曲线;
图6是本发明的x-y相图7是本发明的Z-X相图8是本发明的y-z相图。
具体实施例方式
下面结合附图和具体实施例对本发明作进一步详细说明。
如图l所示 一种三阶自治混沌系统,包括有数学模型1和实现电路2, 所述数学模型l为
<formula>formula see original document page 9</formula>
式中,所述D(x(O)-max(x(/),0)是一个最大值函数,x, y, z是状态变量,a, b, c是正的常数。所述数学模型l中a二0.3, b二0.3, c二1.0时,系统表现出混 饨行为。
所述实现电路2由第一、第二、第三通道电路3、 4、 5和函数单元电路6 组成,所述第一、第二、第三通道电路3、 4、 5分别实现所述数学模型1的第 一、第二、第三函数,所述函数单元电路6实现所述最大值函数 D(x(O)-maxO(O,O)。
所述第一通道电路3的输出信号反馈到输入端作为一路输入信号,该输出 信号分别作为所述第二通道电路4的一路输入信号和所述函数单元电路6的输 入信号,所述第二通道电路4的输出信号作为所述第一通道电路3的另一路输 入信号,所述函数单元电路6的输出信号作为所述第三通道电路5的输入信号, 该第三通道电路5的输出信号作为所述第二通道电路4的另一路输入信号。
如图2所示所述第一通道电路3由第一反相积分器U1、第一积分电容
Cl和第一、第二电阻R1 、 R2组成,所述第一、第二电阻R1 、 R2的一端分 别接收两路输入信号,该第一、第二电阻Rl 、 R2的另一端并接在所述第一 反相积分器U1的负向输入端,该第一反相积分器U1的正向输入端接地,在 所述第一反相积分器Ul的输出端和负向输入端之间并接有所述第一积分电容 Cl,所述第一反相积分器U1的输出端还与所述第一电阻R1的一端连接,将 输出信号反馈到输入端,该输出端还输出信号给所述第二通道电路4、函数单 元电路6。
如图2所示所述第二通道电路4由第二反相积分器U2、第二积分电容 C2、第三、第四电阻R3、 R4、第一反相器U3、第五电阻R5、第六电阻R6、第 七电阻R7组成,所述第三、第四电阻R3、 R4的一端分别接收来自所述第一通 道电路3、第三通道电路5的输出信号,所述第三、四电阻R3、 R4的另一端并 接在所述第二反相积分器U2的负向输入端,该第二反相积分器U2的正向输入 端接地,在所述第二反相积分器U2的输出端和负向输入端间并接有所述第二 积分电容C2,所述第二反相积分器U2的输出端还串接所述第五电阻R5后与所 述第一反相器U3的负向输入端连接,该第一反相器U3的正向输入端经所述第 七电阻R7接地,在所述第一反相器U3的输出端和负向输入端间并接有所述第 六电阻R6,所述第一反相器U3的输出端输出信号给所述第一通道电路3。
如图2所示所述函数单元电路6由第八、第九、第十、第十一电阻R8、 R9、 RIO、 Rll、第一比较器B1和第二比较器B2组成,所述第八电阻R8的 一端接收来自所述第一通道电路3的输出信号,该第八电阻R8的另一端与所 述第一比较器B1的负向输入端连接,所述第一比较器B1的正向输入端与电 源正极连接,该电源负极接地。
在所述第一比较器Bl的输出端和负向输入端之间并接有所述第九电阻 R9,所述第一比较器Bl的输出端还经所述第十电阻R10与所述第二比较器 B2的负向输入端连接,该第二比较器B2的正向输入端与电源的正极连接,该 电源负极接地,在所述第二比较器B2的输出端和负向输入端间还并接有第十 一电阻Rll,所述第二比较器B2的输出端输出信号给所述第三通道电路5。
如图2所示所述第三通道电路5由第三反相积分器U4、第二反相器U5、 第三积分电容C3、第十二电阻R12、第十三电阻R13、第十四电阻R14、第十 五电阻R15组成,所述第十二电阻R12的一端接收所述函数单元电路6输出的 信号,该第十二电阻R12的另一端与所述第三反相积分器U4的负向输入端连 接,该第三反相积分器U4的正向输入端连接电源正极,该电源负极接地;在 所述第三反相积分器U4的输出端和负向输入端之间并接有第三积分电容C3, 该第三反相积分器U4的输出端还串接所述第十三电阻R13后与所述第二反相 器U5的负向输入端连接,该第二反相器U5的正向输入端经所述第十五电阻 R15接地,在所述第二反相器U5的输出端和负向输入端之间并接有第十四电 阻R14,所述第二反相器U5的输出端输出信号给所述第二通道电路4。
所述第一、第二函数是线性函数,所述第三函数是非线性函数,其中的 D(柳卜max(W),0)是最简单的非线性方程之一,在电路上易于实现,也是所述 数学模型1能产生混沌行为的关键,三个函数构成一个简单的三阶自治混沌系 统。
为了促进所述数学模型l在工程中的应用,设计了所述实现电路2。该实 现电路2中第一反相积分器U1、第二反相积分器U2、第一反相器U3、第一比 较器B1、第二比较器B2、第三反相积分器U4、第二反相器U5的型号相同, 都为UA741芯片。在所述实现电路2中,第一通道电路3的输入为x和-y,输 出为x;所述第二通道电路4的输入为x和-z,输出为-y;所述函数单元电路6 输入为x,输出为D(x),所述第三通道电路5输入为D(x),输出为-z。四组电 路实现所述数学模型1构建的三阶自治混沌系统。所述实现电路2结构简单, 便于集成。
所述数学模型l有一个正的Lyapunov指数,为0. 1955,另外两个指数是 0. 0000和-0. 3182。所述三个指数均通过计算得出,表明该数学模型1构建的 系统是一个混沌系统,能够产生复杂的混沌行为。
其工作原理如下设置初始条件为0, 0, 0,接通所述实现电路2,第一 通道电路3、第二通道电路4、函数单元电路6、第三通道电路5开始工作,该 实现电路2构建的混沌系统产生混沌行为。该混沌系统的x、 y、 z的时间响应 曲线分别如图3、 4、 5所示,该混沌系统的x-y、 z-x、 y-z相图分别如图6、 7、 8所示。
权利要求
1、一种三阶自治混沌系统,包括有数学模型(1)和实现电路(2),其特征在于所述数学模型(1)为式中,所述D(x(t))=max(x(t),0)是一个最大值函数,x,y,z是状态变量,a,b,c是正的常数;所述实现电路(2)由第一、第二、第三通道电路(3、4、5)和函数单元电路(6)组成,所述第一、第二、第三通道电路(3、4、5)分别实现所述数学模型(1)的第一、第二、第三函数,所述函数单元电路(6)实现所述最大值函数D(x(t))=max(x(t),0);所述第一通道电路(3)的输出信号反馈到输入端作为一路输入信号,该输出信号分别作为所述第二通道电路(4)的一路输入信号和所述函数单元电路(6)的输入信号,所述第二通道电路(4)的输出信号作为所述第一通道电路(3)的另一路输入信号,所述函数单元电路(6)的输出信号作为所述第三通道电路(5)的输入信号,该第三通道电路(5)的输出信号作为所述第二通道电路(4)的另一路输入信号。
2、 根据权利要求1所述三阶自治混沌系统,其特征在于所述第一通道 电路(3)由第一反相积分器(Ul)、第一积分电容(Cl)和第一、第二电阻(Rl 、 R2)组成,所述第一、第二电阻(Rl 、 R2)的一端分别接收两路输 入信号,该第一、第二电阻(Rl 、 R2)的另一端并接在所述第一反相积分器(Ul)的负向输入端,该第一反相积分器(Ul)的正向输入端接地,在所述 第一反相积分器(Ul)的输出端和负向输入端之间并接有所述第一积分电容(Cl),所述第一反相积分器(Ul)的输出端还与所述第一电阻(Rl)的一端 连接,将输出信号反馈到输入端,该输出端还输出信号给所述第二通道电路(4)、函数单元电路(6)。
3、 根据权利要求1所述三阶自治混沌系统,其特征在于所述第二通道 电路(4)由第二反相积分器(U2)、第二积分电容(C2)、第三、第四电阻(R3、 R4)、第一反相器(U3)、第五电阻(R5)、第六电阻(R6)、第七电阻(R7)组 成,所述第三、第四电阻(R3、 R4)的一端分别接收来自所述第一通道电路(3)、 第三通道电路(5)的输出信号,所述第三、四电阻(R3、 R4)的另一端并接 在所述第二反相积分器(U2)的负向输入端,该第二反相积分器(U2)的正向 输入端接地,在所述第二反相积分器(U2)的输出端和负向输入端间并接有所 述第二积分电容(C2),所述第二反相积分器(U2)的输出端还串接所述第五 电阻(R5)后与所述第一反相器(U3)的负向输入端连接,该第一反相器(U3) 的正向输入端经所述第七电阻(R7)接地,在所述第一反相器(U3)的输出端 和负向输入端间并接有所述第六电阻(R6),所述第一反相器(U3)的输出端 输出信号给所述第一通道电路(3)。
4、 根据权利要求1所述三阶自治混沌系统,其特征在于所述函数单元 电路(6)由第八、第九、第十、第十一电阻(R8、 R9、 RIO、 Rll)、第一比 较器(Bl)和第二比较器(B2)组成,所述第八电阻(R8)的一端接收来自 所述第一通道电路(3)的输出信号,该第八电阻(R8)的另一端与所述第一 比较器(Bl)的负向输入端连接,所述第一比较器(Bl)的正向输入端与电 源正极连接,该电源负极接地;在所述第一比较器(Bl)的输出端和负向输入 端之间并接有所述第九电阻(R9),所述第一比较器(Bl)的输出端还经所述 第十电阻(R10)与所述第二比较器(B2)的负向输入端连接,该第二比较器(B2)的正向输入端与电源的正极连接,该电源负极接地,在所述第二比较器 (B2)的输出端和负向输入端间还并接有第十一电阻(Rll),所述第二比较 器(B2)的输出端输出信号给所述第三通道电路(5)。
5、 根据权利要求1所述三阶自治混沌系统,其特征在于所述第三通道 电路(5)由第三反相积分器(U4)、第二反相器(U5)、第三积分电容(C3)、 第十二电阻(R12)、第十三电阻(R13)、第十四电阻(R14)、第十五电阻(R15) 组成,所述第十二电阻(R12)的一端接收所述函数单元电路(6)输出的信号, 该第十二电阻(R12)的另一端与所述第三反相积分器(U4)的负向输入端连 接,该第三反相积分器(U4)的正向输入端连接电源正极,该电源负极接地; 在所述第三反相积分器(U4)的输出端和负向输入端之间并接有第三积分电容(C3),该第三反相积分器(U4)的输出端还串接所述第十三电阻(R13)后 与所述第二反相器(U5)的负向输入端连接,该第二反相器(U5)的正向输 入端经所述第十五电阻(R15)接地,在所述第二反相器(U5)的输出端和负 向输入端之间并接有第十四电阻(R14),所述第二反相器(U5)的输出端输 出信号给所述第二通道电路(4)。
6、 根据权利要求1所述三阶自治混沌系统,其特征在于所述数学模型 (1)中£1=0.3, b=0.3, c二1.0时,系统表现出混沌行为。
7、 根据权利要求1所述三阶自治混沌系统,其特征在于所述数学模型(1)有一个正的Lyapunov指数,为0. 1955。
全文摘要
本发明公开了一种三阶自治混沌系统,包括有数学模型和实现电路,所述数学模型由两个线性方程函数和一个非线性方程函数构建,其中,非线性方程函数由一个最大值函数的负数与一个正的常数之和表示。所述实现电路由第一、第二、第三通道电路和函数单元电路组成,所述第一、第二、第三通道电路分别实现所述数学模型的两个线性方程函数和一个非线性方程函数,所述函数单元电路实现所述最大值函数。所述数学模型构建的混沌系统有一个正的Lyapunov指数,能够产生丰富的混沌行为。本发明实现电路简单,便于集成,对于推动混沌系统在信息处理和保密通信的产业化中有很大的促进作用。
文档编号H04L9/00GK101355417SQ20081007027
公开日2009年1月28日 申请日期2008年9月10日 优先权日2008年9月10日
发明者廖晓峰, 段书凯 申请人:重庆大学