专利名称:内窥镜系统和内窥镜图像处理装置的制作方法
技术领域:
本发明涉及输出色校正处理后的内窥镜图像的内窥镜系统和内窥镜图像处理装置,尤其涉及根据色空间上的超过6个的色轴进行色校正处理的内窥镜系统和内窥镜图像
处理装置。
背景技术:
出于对医生无法直接目视的被检体内部的目标进行观测的目的,而广泛使用了内窥镜系统。在医疗领域中,被插入到作为被检体的被检者体内的内窥镜的摄像部使用来自光源装置的照射光,根据所拍摄的内窥镜图像进行诊断。内窥镜图像的颜色再现,即是否如实地再现了原始的颜色,较大程度地影响诊断结果,是非常重要的,因此在与内窥镜连接的处理器的图像处理部中,进行视频信号的色校正处理。作为颜色再现良好的色调校正方式,公知了 6色独立色调校正方式。6色独立色调校正方式不改变白平衡,即不对无彩信号添加颜色,针对由R(红)、M(品红)、B(蓝)、 C(青)、G(绿)和Y(黄)这6色的基准色轴(在后文中称为“基准轴”或“色轴”)划分的每个色相区域,进行彩度和色相的调整、即作为色调调整的色校正处理。这里,“针对每个色相区域”意味着仅对色轴两侧的两个色相区域产生影响。但是在6色独立色调校正方式中,对于接近R、M、B、C、G和Y这6色的颜色,能有效地进行调整,但是对于这些颜色之间的中间色,不能充分地进行色调调整。对此,在日本特开平9-247701号公报中公开了如下的色校正装置,该色校正装置为了对中间色进行细致的校正,进一步分割颜色,利用由色空间上的与6色对应的6个基准色轴和R轴与Y轴之间的1个辅助色轴构成的7个色轴对色空间进行分割,针对分割后的每个色空间进行色校正处理。此外,在日本特开2001-61160号公报中公开了如下的色校正装置该色校正装置进一步分割颜色,根据由色空间上的与6色对应的6个基准色轴和在各个基准色轴之间进一步设定的6个基准色轴构成的12个色轴,进行色校正处理。医疗用内窥镜系统的摄像部所拍摄的、作为被检体的被检者体内的内窥镜图像, 完全不同于TV摄像机等拍摄的普通的景色和人物外观等。即,在内窥镜系统所拍摄的内窥镜图像中,存在较多以红色为中心的微妙的色调。因此,使用公知的色校正技术,在色空间上的与6色对应的6个基准色轴之外加上与作为红色与黄色之间的中间色的肤色对应的1 个辅助色轴,而得到7个色轴,使用基于这7个色轴的色校正,有时无法得到满意的结果。此外,对于使用由色空间上的与6色对应的6个基准色轴和各个基准色轴之间的6 个基准色轴构成的12个色轴来校正中间色的色校正处理,系统的结构变得复杂,并且处理花费时间。而且,使用了多个色轴的色校正处理不仅使得要设定的项目变多,医生进行的设定作业变得复杂,而且很难设定最佳的设定状态。另一方面,在医疗用内窥镜系统中,根据目的使用多种内窥镜和光源装置。此外, 关于内窥镜图像,色调不仅根据所观察的部位的种类而大为不同,而且例如当发生了出血时,即使同一部位,色调也较大程度地变化。此外,在与过去拍摄的内窥镜图像进行比较而诊断的情况下,最好使用色调与过去拍摄的内窥镜图像相同的内窥镜图像。并且,医生对色调的喜好各不相同,在使用前需要调整色校正处理的处理条件,使得成为各个医生所喜好的色调。并且,作为内窥镜系统,实际应用了如下的普通光观察模式的内窥镜系统,其使用白色光等普通光作为照射光,拍摄生物体内的组织并取得内窥镜图像,将该内窥镜图像显示在监视器等上,从而进行观察。在获得使用特殊光作为照射光进行拍摄的内窥镜图像的特殊光观察模式的内窥镜系统中,能容易地识别正常组织与肿瘤等病变组织的差异。例如,使用对照射光的分光透射率特性进行了窄带化的窄带光观察模式的内窥镜系统。并且已经知晓如下的荧光观察模式的内窥镜系统,该荧光观察模式的内窥镜系统利用来自光源的激励光照射观察部位,由此对激励而产生的荧光进行拍摄。作为荧光观察模式的内窥镜系统,使用向观察部位投放具有肿瘤亲和性的荧光物质并进行拍摄的方法、以及拍摄生物体中原本存在的自身荧光的方法。另外,在1台内窥镜系统中,可以通过改变从光源装置供给的照射光的波长,来实现普通光观察模式的内窥镜系统的功能和特殊光观察模式的内窥镜系统的功能。这里,特殊光观察模式、即窄带光观察模式或荧光观察模式的内窥镜系统所拍摄的内窥镜图像的色调不同于普通光观察模式的内窥镜图像,因此用于容易地进行诊断的色校正处理条件也完全不同于普通光观察模式的内窥镜图像。因此在可以切换普通光观察模式和特殊光观察模式来进行使用的内窥镜系统中,不容易设定分别适合这两个模式的色校正处理条件。这样,在内窥镜系统和内窥镜图像处理装置中,不容易适当地设定颜色处理的处理条件以得到所希望的色调的内窥镜图像。
发明内容
本发明的目的在于,提供一种能得到所希望的色调的内窥镜图像的内窥镜系统和内窥镜图像处理装置。为了达到以上目的,本发明实施方式的内窥镜系统具有内窥镜,其具有插入到被检体的体内的插入部以及配置在所述插入部的前端部的摄像单元;照明单元,其利用照明光对所述被检体的体内进行照明,该照明单元可装卸地与所述内窥镜连接;以及处理器,其可装卸地与所述内窥镜连接,该内窥镜系统的特征在于,所述处理器具有处理条件存储单元,其存储由所述摄像单元所拍摄的内窥镜图像的处理条件;处理条件选择单元,其从所述处理条件存储单元所存储的所述处理条件中选择所述处理条件;以及图像处理单元,其在所述内窥镜图像的色空间上的针对R(红)、M(品红)、B (蓝)、C(青)、G(绿)和Y(黄) 的每个色相设定的6个基准轴之外,至少再设定基于所述处理条件选择单元所选择的所述处理条件的2个基准轴,针对至少由所述8个基准轴划分的每个色相区域,进行基于所述处理条件选择单元所选择的所述处理条件的所述色校正处理。此外,本发明的另一实施方式的内窥镜图像处理装置对内窥镜系统的摄像单元所拍摄的内窥镜图像进行色校正处理,该内窥镜系统具有内窥镜,其具有插入到被检体的体内的插入部以及配置在所述插入部的前端部的所述摄像单元;以及照明单元,其利用照明光对所述被检体的体内进行照明,该照明单元可装卸地与所述内窥镜连接,该内窥镜图像处理装置的特征在于,其具有处理条件存储单元,其存储所述摄像单元拍摄的内窥镜图像的处理条件;处理条件选择单元,其从所述处理条件存储单元所存储的所述处理条件中选择所述处理条件;以及图像处理单元,其在所述内窥镜图像的色空间上的针对R(红)、M(品红)、B (蓝)、C (青)、G (绿)和Y (黄)的每个色相设定的6个基准轴之外,至少再设定基于所述处理条件选择单元所选择的所述处理条件的2个基准轴,针对至少由所述8个基准轴划分的每个色相区域,进行基于所述处理条件选择单元所选择的所述处理条件的所述色校正处理。
图1是示出第一实施方式的内窥镜系统的结构的结构图。图2是用于说明第一实施方式的内窥镜图像处理装置的图像处理的结构图。图3是用于对6轴色校正进行说明的说明图。图4是用于对6轴色校正进行说明的说明图。图5是用于说明第一实施方式的内窥镜图像处理装置的8轴色校正的说明图。图6是用于说明第一实施方式的内窥镜图像处理装置的8轴色校正的说明图。图7是用于说明第一实施方式的内窥镜图像处理装置的色校正处理部的色校正处理的结构图。图8A示出第一实施方式的存储在处理条件存储部中的与内窥镜的种类对应的处理条件的例子。图8B示出第一实施方式的存储在处理条件存储部中的与内窥镜的种类对应的处理条件的例子。图9示出了氙灯的分光光度特性。图10示出了卤素灯的分光光度特性。图11示出了金属卤化物灯的分光光度特性。图12示出了发光二极管的分光光度特性。图13A示出了第一实施方式的存储在处理条件存储部中的与照明部的种类对应的处理条件的例子。图13B示出了第一实施方式的存储在处理条件存储部中的与照明部的种类对应的处理条件的例子。图14A示出了第一实施方式的存储在处理条件存储部中的与部位对应的处理条件的例子。图14B示出了第一实施方式的存储在处理条件存储部中的与部位对应的处理条件的例子。图15A示出了第一实施方式的存储在处理条件存储部中的与场景对应的处理条件的例子。图15B示出了第一实施方式的存储在处理条件存储部中的与场景对应的处理条件的例子。图16A示出了第一实施方式的存储在处理条件存储部中的与医生对应的处理条件的例子。图16B示出了第一实施方式的存储在处理条件存储部中的与医生对应的处理条件的例子。图17示出第一实施方式的修正处理条件的情况下的显示画面例。图18是示出第二实施方式的内窥镜系统的结构的结构图。图19是示出第三实施方式的内窥镜系统的结构的结构图。图20是具有图形输入部的监视器的显示画面的一例。图21是图形输入部的一例。图22是用于说明基于图形输入部的处理条件修正的说明图。图23是用于说明基于图形输入部的处理条件修正的说明图。图24是示出第四实施方式的内窥镜系统的结构的结构图。图25A是用于说明内窥镜系统的切换滤镜的结构的说明图。图25B是用于说明内窥镜系统的切换滤镜的结构的说明图。图26是示出透射率特性相对于滤镜波长的曲线图。图27是示出实施方式的透射率特性相对于滤镜波长的曲线图。图28是用于说明第四实施方式的内窥镜系统中的8轴色校正的说明图。图29是用于说明第四实施方式的内窥镜系统中的8轴色校正的说明图。图30是用于说明第四实施方式的内窥镜系统中的8轴色校正的说明图。图31是用于说明第四实施方式的内窥镜系统中的8轴色校正的说明图。图32是用于说明第四实施方式的内窥镜图像处理装置的色校正处理部中的色校正处理的结构图。图33A示出存储在处理条件存储部中的与照明光的种类对应的处理条件的例子。图33B示出存储在处理条件存储部中的与照明光的种类对应的处理条件的例子。图33C示出存储在处理条件存储部中的与照明光的种类对应的处理条件的例子。图34A示出存储在处理条件存储部中的与内窥镜的种类对应的处理条件的例子。图34B示出存储在处理条件存储部中的与内窥镜的种类对应的处理条件的例子。图35示出在第四实施方式的内窥镜系统中对处理条件进行修正时的显示画面例。
具体实施例方式〈第一实施方式〉以下参照附图来说明本发明第一实施方式的内窥镜系统1。图1是示出本实施方式的内窥镜系统1的结构的结构图。如图1所示,本实施方式的内窥镜系统1由内窥镜(也称为“镜体”)2、对被检者的体内进行照明的照明单元即光源装置3以及进行内窥镜图像的信号处理的处理器4构成,该内窥镜2具有插入到作为被检体的被检者(未图示)体内的插入部21。内窥镜2经由光源装置用连接部26可装卸地与光源装置3连接,并经由处理器用连接部27可装卸地与处理器4连接。S卩,处理器4通过组合各种内窥镜和/或各种光源装置,可用作适于各种目的的内窥镜系统。并且,内窥镜系统1具有显示内窥镜图像等的监视器5 ;以及作为医生进行内窥镜系统1的设定等的输入单元的键盘等输入部6。内窥镜2是具有作为在插入部21的前端部22拍摄彩色内窥镜图像的摄像单元的CCD 20、预处理部19、A/D转换部18以及并串转换(P/S)部17的电子内窥镜。在前端部22设置有观察窗(未图示),在该观察窗上配置有用于形成光学像的物镜系统23和拍摄被检者体内的CCD 20,由CCD 20拍摄的内窥镜图像被转换成数字信号并发送到处理器 4。作为摄像单元,可以取代CCD 20而使用CMD (Charged ModulationDevice 电荷调制器件)摄像元件、C-MOS 摄像元件、AMI (Amplified MOS Imager 放大 MOS 成像器)、BCCD (Back Illuminated CXD 背照式(XD)等。另外,也可以使用黑白C⑶来取代彩色(XD,按时序使照射光变化成RBG。并且,光纤25穿过插入部21内,该光纤25将来自光源装置3的照明光引导到前端部22。光源装置3具有通过灯驱动部31而发光的灯30、设置在该灯30的光路上的切换滤镜部33、以及对通过了该切换滤镜部33的光进行会聚的会聚透镜35。切换滤镜部33具有切换滤镜34,该切换滤镜34通过被旋转用电机36旋转而切换配置在光路上的滤镜。由光纤25引导到前端部22的照明光通过安装在照明窗(未图示)上的照明透镜24而扩散, 照射到体内的观察对象部位。并且,光源装置3配置有作为光源装置识别单元的灯识别部 32,灯识别部32用于识别与处理器4连接的光源装置3的种类(换言之,与内窥镜2连接的光源装置3的种类)。此外,在内窥镜2上设置有镜体开关15,该镜体开关15用于医生在身边进行内窥镜系统1的各种指示操作,镜体开关15的操作信号被输入到控制部11,控制部11进行与操作信号对应的动作。并且,在内窥镜2中设置有作为镜体识别单元的镜体识别部16,其用于识别与处理器4连接的内窥镜2的种类。来自内窥镜2的内窥镜图像的信号经由隔离部9输入到处理器4的内窥镜图像处理装置7中,隔离部9由用于确保隔离性的脉冲变压器9A等构成。内窥镜图像处理装置7 具有作为图像处理单元的图像处理部10,其对CCD 20拍摄的内窥镜图像进行色校正处理等;控制部11,其对以内窥镜图像处理装置7为首的内窥镜系统1进行控制;作为处理条件存储单元的处理条件存储部12,其存储图像处理部10进行的色校正处理的处理条件;作为处理条件选择单元的处理条件选择部13,其从处理条件存储部12中选择处理条件;以及D/ A转换部(D/A)14。关于内窥镜图像的色校正处理,在后文中详细描述。接下来使用图2说明内窥镜图像处理装置7的图像处理部10进行的内窥镜图像的图像处理。图2是用于说明本实施方式的内窥镜图像处理装置7的图像处理的结构图。如图2所示,来自内窥镜2的内窥镜图像信号经由Y/C分离部41、箝位部42、降噪 (NR)部43以及矩阵部44,在色校正处理部50中进行色校正处理。并且,色校正处理后的内窥镜图像经由伽马校正部45、缩放处理部46、加强部47、掩模设定部48以及重叠显示处理部49,发送到D/A转换部14,并显示在监视器5上。另外,图像处理部10进行的处理全都是在控制部11的控制下进行的。下面,使用图3 图9来说明色校正处理部50中的色校正处理。图3和图4是用于说明6轴色校正的说明图,图5和图6是对本实施方式的内窥镜图像处理装置7中的8 轴色校正进行说明的说明图,图7是用于对本实施方式的内窥镜图像处理装置7的色校正处理部50中的色校正处理进行说明的结构图。
图3示出了色空间上的由针对R(红)、M(品红)、B (蓝)、C (青)、G (绿)和Y (黄) 的每个色相设定的6个基准色轴划分的6个色相区域(1) (6)。S卩,图3所示的从色空间的中心点呈放射状地设定的色轴表示彩度(在下文中还称为“色饱和度”或仅称为“饱和度(Saturation)”,用记号“sat”表示)的大小,表示越靠近色环圆外侧,色饱和度越高。此外,色空间的圆周方向表示色相(在下文中用记号“hue”表示)。并且,如图4所示,在所谓的6轴色校正处理中,针对要进行色校正处理的图像信号,通过比较R信号、G信号、B信号的大小关系来判断位于6个色相区域的哪个区域,对所位于的色相区域进行校正处理,即,对夹着图像信号所处的色相区域的、两侧的色轴的颜色进行校正处理。因此,当对属于某一色相区域的像素进行校正处理时,虽然会影响到以像素所属的色相区域为中心的三个色相区域,但对像素所属的色相区域两侧的色相区域产生的影响较小。与此相对,图5示出了在6个基准色轴的基础上又设定了 2个基准色轴的本实施方式的所谓8轴色校正处理的色空间。在本实施方式的内窥镜系统1中,因为是观察被检者的体内,CCD 20拍摄的内窥镜图像中存在很多以红色为中心的微妙的色调。因此,如图5 所示,在内窥镜系统1中,在R基准色轴与Y基准色轴之间设定1个基准色轴即R-Y色轴, 在R基准色轴与M基准色轴之间设定1个基准色轴即R-M色轴。因此,在8轴色校正处理中,由色轴分割后的色相区域是(IA)、(IB)、(2A)、(2B)、(3)、(4)、(5)和(6)这8个区域。并且,例如在R-M色轴的校正处理时的校正系数变化的情况下,会影响到的是R-M 色轴两侧的区域(IA)和区域(IB)。因此,例如针对属于区域(IB)的像素,当按照每个色相区域进行色校正处理时,不仅仅是对区域(IB)、也会对区域(IA)和区域(2A)这三个色相区域产生影响,但对区域(IA)和区域(2A)的影响较小,对其他区域不会产生影响。如图6所示,通过分别比较R信号、G信号和B信号的大小关系,来判断要对内窥镜图像进行校正的像素的色信号位于8个色相区域中的哪个区域,并对所处的色相区域进行色校正处理。在内窥镜系统1中,设计为进行如下所述的8轴色校正处理的内窥镜图像处理装置,因此装置设计变得容易,并将电路等的复杂化限制在最小程度,其中,该8轴不仅包含表示RGB原色的基准色轴和表示作为这些原色的补色的CMY的基准色轴,还包括表示R与Y的中间色的基准色轴、以及表示R与M的中间色的基准色轴,后述的两种基准色轴用于对作为所设想的被摄体的体内所大量包含的R的周边色进行细微的校正。接下来,使用图7说明本实施方式的内窥镜图像处理装置7的色校正处理部50中的色校正处理。从矩阵部44输入到色校正处理部50的内窥镜图像是R信号、G信号和B信号的色信号。对于构成内窥镜图像的各像素的色信号,如图6所示,由RGB比较部51比较 R信号、G信号和B信号的大小关系,由此判断这些色信号位于8个色相区域中的哪一个。为了分别对8个色相区域进行色校正处理,在处理条件存储部12中预先存储有由 8 个饱和度(彩度)校正系数(KRsat、KGsat、KBsat、KYsat、KCsat、KMsat、KRYsat 和 KRMsat) 以及 8 个色相校正系数(KRhue、KGhue、KBhue、KYhue、KChue、KMhue、KRYhue、KRMhue)构成的处理条件。这里,表示校正系数的记号“K”后的字符是色相的简称,RM表示R与M之间的中间色,RY表示R与Y之间的中间色。控制部11根据从处理条件选择部13接收到的处理条件的设定值和RGB比较部51 的结果,向色校正处理部50输出与内窥镜图像的像素的色信号所处的色相区域相关的处理条件、即4个校正系数(Ksatl、Ksat2、Khuel、Khue2)。另一方面,色校正处理部50的矢量计算部52计算夹着内窥镜图像的像素的色信号所处的色相区域的色轴方向的矢量、即Dp、 Dc。系数计算部53根据从控制部11接收到的处理条件和由矢量计算部52计算出的矢量, 根据下式(式1)计算校正系数。(式1)
Rout — ^in+Psat+ (Phue X R-a1) +Csat(chueXR-a2)
G0Ut = Gin+psat:+ (PhueXG-a1) +Csat+ (chueXG_a2)
Bout = Bin+Psat:+(PhueXB_a1) +Csat+ (chueXB_a2)色校正运算部55根据来自固定系数部54的固定校正系数即R_al、G_al、B_al、R_a2、 G-a2、B_a2、以及来自系数计算部53的计算校正系数?㈣^?^^她^^,通过以下的式(2)进行内窥镜图像的色校正处理,输出到后面部分的伽马校正部45。(式2)psat = KsatlXdpPhue = KhuelXdpCsat = Ksat2XdcChue = Khue2Xdc在内窥镜系统1的色校正处理中,处理条件选择部13从存储在处理条件存储部12 中的由8个饱和度校正系数和8个色相校正系数构成的处理条件中,选择与内窥镜图像对应的最佳处理条件。即,处理条件选择部13经由控制部接收来自镜体识别部16、镜体开关 15、灯识别部32、输入部6或监视器5的信息,根据该信息选择处理条件。因此,在内窥镜系统1中能容易且适当地设定图像处理部10的校正条件。例如,在内窥镜系统1中,处理条件选择部13根据内窥镜2的种类选择处理条件。 这里,内窥镜2的种类不意味着型号等,由于即使是同一型号的产品,也存在因制造工艺的偏差而产生的色特性差别,因此每个内窥镜2分别相当于1个种类。尤其是,在彩色CCD中, 由于滤色镜制造时的偏差,即使是同一型号的产品,特性差别也较大,因此优选是处理条件选择部13针对每个内窥镜选择处理条件。处理条件选择部13根据配置在内窥镜2中的镜体识别部的信息,识别内窥镜的种类,换言之,识别与处理器4连接的各个内窥镜。在图8A、8B中示出了存储在处理条件存储部12中的与内窥镜的种类对应的处理条件的例子。图8A示出了与内窥镜A对应的处理条件,图8B示出了与内窥镜B对应的处理条件。另外,各个校正系数是相对值,例如用-100 100之间的整数表示。此外,在内窥镜系统1中,处理条件选择部13根据作为光源单元的光源装置3的种类来选择处理条件。这里,光源装置3的种类意味着灯30的种类,例如是氙灯、卤素灯、 金属卤化物灯或者发光二极管。这里,如图9 图12所示,分光光度特性因灯30的种类而不同,因此由不同种类的光源装置3照射的被检者内部的反射光不同,内窥镜图像的色调不同。在图13A、图13B 中示出了存储在处理条件存储部12中的与光源装置3的种类对应的处理条件的例子。图 13A示出了与氙灯对应的处理条件,图13B示出了与发光二极管(LED)对应的处理条件。在内窥镜系统1中处理条件选择部13根据光源装置3的种类来选择处理条件,因此能容易且适当地设定图像处理部10的校正条件。
当然,光源装置3的种类并不仅意味着灯30的种类,由于即使是同一型号的产品, 也存在因制造工艺的偏差而产生的特性差别,因此每个光源装置3可以分别具有与一个种类相当的识别标识。此外,在内窥镜系统1中具有部位输入部,该部位输入部是对CCD 20拍摄的体内部位进行选择的部位输入单元,处理条件选择部13根据由部位输入部选择出的部位来选择处理条件。这里,部位例如是耳鼻、食道、胃、小肠、大肠或腹腔中的任一个,内窥镜图像的色调因部位而不同。在图14A、14B中示出了存储在处理条件存储部12中的与部位的种类对应的处理条件的例子。图14A示出了与胃对应的处理条件,图14B示出了与耳鼻对应的处理条件。在内窥镜系统1中,处理条件选择部13根据拍摄部位来选择处理条件,因此能容易且适当地设定图像处理部10的校正条件。作为部位输入部,例如可以使用医生进行输入的输入部6或镜体开关15。此外,作为部位输入部,例如还可以使用基于内窥镜图像的图像解析的方法或者基于位置传感器等的方法的部位输入部。此外,在内窥镜系统1中具有场景输入部,该场景输入部是选择与体内状态对应的场景的场景输入单元,处理条件选择部13根据由部位输入部选择出的场景来选择处理条件。这里,场景例如是普通场景或出血场景中的任一个,内窥镜图像的色调因场景而异。 作为场景输入部,例如可以使用医生进行输入的输入部6或镜体开关15。图15A、图15B是示出存储在处理条件存储部12中的与场景对应的处理条件的例子。图15A示出普通场景的处理条件,图15B示出与出血(Reddish)场景对应的处理条件。 这里,由于出血场景是指R(红)因血而较浓的内窥镜图像,因此作为适当的色校正处理是抑制红色调的所谓的消红校正处理。另外,作为场景的种类,例如可以追加色素散布场景等,根据手法进行追加或变更。此外,在内窥镜系统1中具有医生信息输入部,该医生信息输入部是输入医生信息的医生信息输入单元,处理条件选择部13根据通过医生信息输入部输入的医生信息(即医生的姓名、首字母或识别编号等),选择与医生的喜好相对应的处理条件。图16A、图16B 示出了存储在处理条件存储部12中的与医生对应的处理条件的例子。图16A示出了医生 A喜好的处理条件,图16B示出了医生B喜好的处理条件。另外,与医生对应的处理条件也可以是该医生过去拍摄的内窥镜图像的处理条件。在内窥镜系统1中,处理条件选择部13选择用于获得与医生的喜好相应的色调的内窥镜图像的处理条件(换言之,与过去拍摄的内窥镜图像相同的处理条件),因此能容易且适当地设定图像处理部10的校正条件。作为医生信息输入部,例如可以使用输入部6或镜体开关15。与医生的喜好相应的处理条件可以预先从输入部6输入,也可以使用上一次的条件。并且,在内窥镜系统1中,处理条件选择部13具有对选择出的处理条件进行修正的处理条件修正部。即,如图17所示,对于处理条件,例如确认在监视器5的显示画面5A 上作为表5B而显示的值,并且利用选择标记5C选择特定值的位置5D,由此可使用输入部6 来修正数值。通过修正由处理条件选择部13选择出的处理条件,能够进行与状况对应的色调微妙调整。作为处理条件选择部13,例如可以使用输入部6或镜体开关15。此外,同样地,也可以使用输入部6等来设定存储在处理条件存储部12中的处理条件。 如以上说明的那样,内窥镜系统1可容易且适当地设定图像处理部10的校正条件。另外,在以上说明中,将处理条件存储部12和处理条件选择部13作为与控制部11 和图像处理部10独立的单独构成要素进行了说明,但也可以是使用与控制部11或图像处理部10相同的硬件的、与控制部11或图像处理部10成为一体的结构。此外,如以上所说明的那样,本实施方式的内窥镜图像处理装置7是对内窥镜系统1的CXD 20所拍摄的内窥镜图像进行色校正处理的内窥镜图像处理装置7,该内窥镜系统1具有内窥镜2和作为对被检者体内进行照明的照明单元的光源装置3,该内窥镜2具有插入到被检者体内的插入部21和配置在插入部21的前端部22的作为摄像单元的CXD 20, 其中,内窥镜图像处理装置7具有作为对CXD 20所拍摄的内窥镜图像进行色校正处理的图像处理单元的图像处理部10 ;以及处理条件选择部13,其从存储有色校正处理的处理条件的处理条件存储部12选择处理条件。图像处理部10设定色空间上的8个基准色轴,这 8个基准色轴分别针对R(红)、M(品红)、B(蓝)、C(青)、G(绿)和Y(黄)的色相以及R 与Y的中间色相、R与M的中间色相来设定,针对由基准色轴划分的每一个色相区域,进行基于由处理条件选择部13选择出的处理条件的色校正处理。内窥镜图像处理装置可容易且适当地设定图像处理部10的校正条件。〈第二实施方式〉以下,参照
本发明第二实施方式的内窥镜系统1B。图18是示出第二实施方式的内窥镜系统IB的结构的结构图。本实施方式的内窥镜系统IB与第一实施方式的内窥镜系统1类似,因此对相同的构成要素标注同一标号并省略说明。在第一实施方式的内窥镜系统1中,内窥镜2具有镜体识别部16,条件选择单元根据该镜体识别部16的信息,选择存储在处理器4的处理条件存储部12中的该内窥镜2 的处理条件。与此相对,如图18所示,在本实施方式的内窥镜系统IB中,内窥镜2B具有存储与该内窥镜2B的种类相应的处理条件的处理条件存储部12A。此外,在本实施方式的内窥镜系统IB中,光源装置3B具有存储与该光源装置3B相应的处理条件的处理条件选择部 12B。并且,在内窥镜系统IB中,内窥镜图像处理装置7B的处理条件选择部13B从处理条件存储部12A或处理条件选择部12B中的至少某一个条件存储单元中选择处理条件。由于处理条件选择部13B选择最佳处理条件,因此内窥镜系统IB能够适当地设定可得到所希望的色调的内窥镜图像的、图像处理部10的校正条件。〈第三实施方式〉以下,参照
本发明第三实施方式的内窥镜系统1C。图19是示出第三实施方式的内窥镜系统IC的结构的结构图。本实施方式的内窥镜系统IC与第一实施方式的内窥镜系统1类似,因此对相同的构成要素标注同一标号并省略说明。在内窥镜系统IC中,处理条件选择部13C选择基于多个条件的处理条件。例如, 在内窥镜2的种类是内窥镜A、光源装置3的种类是光源装置A、医生是医生A的情况下,内窥镜系统IC的处理条件选择部13C选择基于内窥镜A、光源装置A和医生A这三个条件的处理条件。基于多个条件选择出的处理条件可以预先存储在处理条件存储部12中,也可以是处理条件选择部13C根据各个处理条件进行预定的运算处理,计算与多个条件相应的处理条件。此外,在内窥镜系统IC中,还可以使用监视器5E作为图形输入单元。图20示出了内窥镜系统IC的具有图形输入单元功能的监视器5E的显示画面5E1。显示画面5C1是 16 9的宽画面,在右侧显示色校正处理后的内窥镜图像5E2,在左侧显示用于设定处理条件的图形输入部6A。并且,图形输入部6A可利用指针光标5E3进行操作。如图21所示,在图形输入部6A上以圆形的方式对色空间进行彩色显示,在色空间上对与R(红)、M(品红)、B(蓝)、C(青)、G(绿)和Y(黄)的各色相以及R与Y的中间色色相、R与M的中间色色相相应的8个基准色轴,分别示出了条件设定标记6A1 6A8。如图22和图23所示,医生通过鼠标等来使用画面上的指针光标5E3指定规定的条件设定标记(例如6AO,且可通过移动条件设定标记来对处理条件的设定进行修正。各条件设定标记的可设定范围(换言之,可移动范围),在色相方向上例如是区域的-78%到 78%的范围。并且,在内窥镜系统IC中,将图形输入部6A进行的处理条件的设定变更实时地反映在内窥镜图像的色调中。如以上说明的那样,内窥镜系统IC还具有作为显示单元的监视器5,该监视器5显示图形输入部6A以及色校正处理后的内窥镜图像,所述图形输入部6A通过移动显示在色空间上的基准色轴上的条件设定标记6A1 6A8,来进行处理条件的设定,通过基于条件设定标记6A1 6A8的处理条件设定,显示在监视器5上的内窥镜图像的色调实时地变化。因此,在内窥镜系统IC中,医生能容易且适当地设定用于获得所希望的色调的内窥镜图像的处理条件。〈第四实施方式〉以下,参照
本发明第一实施方式的内窥镜系统1D。本实施方式的内窥镜系统ID与第一实施方式的内窥镜系统1等类似,因此对相同的构成要素标注同一标号并省略说明。如图M所示,本实施方式的内窥镜系统ID由以下部件构成内窥镜(也称为“镜体”)2D,其具有插入到被检体体内的插入部21 ;作为照明单元的光源装置3D,其利用普通光或特殊光对被检体体内进行照明;处理器4D,其具有进行内窥镜图像的信号处理等的内窥镜图像处理装置7D。内窥镜2D经由光源装置用连接部沈可装卸地与光源装置3D连接, 并经由处理器用连接部27可装卸地与处理器4D连接。S卩,处理器4D通过组合各种内窥镜和/或各种光源装置,可以用作适合各种目的的内窥镜系统。在观察窗中配置有用于形成光学像的物镜系统23 ;透过所希望的波长的光并阻断其它波长的光的阻断滤镜观;以及拍摄被检体的体内的CCD 20,由CCD 20拍摄的内窥镜图像被转换成数字信号并发送到处理器4。其中,阻断滤镜观根据观察模式进行切换。光源装置3D具有通过灯驱动部31而发光的灯30 ;设置在该灯30的光路上的切换滤镜部33D ;以及对通过了该切换滤镜部33D的光进行会聚的会聚透镜35。切换滤镜部 33D具有切换滤镜34D,该切换滤镜34D通过被旋转用电机36旋转而切换配置在光路上的滤镜。光源装置3D通过切换滤镜向光纤25提供普通光或特殊光作为照明光。这里,使用图25A、图258、图沈和图27来说明切换滤镜34D。
如图25A所示,在切换滤镜34D中,在内周侧配置有普通光观察模式用R滤镜 34A1、G滤镜34A2以及B滤镜34A3,在外周侧配置有特殊光观察模式用El滤镜34A4、Gl 滤镜34A5以及Bl滤镜34A6。另外,作为切换滤镜34D,可以是图25B所示配置的切换滤镜 34D1,也可以使用多个切换滤镜。图沈示出普通光观察模式用R滤镜34A1、G滤镜34A2以及B滤镜34A3的透射率特性的一例,图27示出特殊光观察模式用El滤镜34A4、G1滤镜34A5以及Rl滤镜34A6的透射率特性的一例。例如,图27所示的El滤镜34A4的中心波长为420nm,Gl滤镜34A5的中心波长为540nm,Rl滤镜34A6的中心波长为630nm。通过驱动切换滤镜部33D的移动用电机38,可以在光路上设定普通光观察模式用 RGB滤镜34A1 34A3,设定为普通光观察模式(以下也称为“普通模式”)下的动作状态, 或者在光路上设定特殊光观察模式用的滤镜34A4 34A6,设定为特殊光观察模式下的动作状态。 特殊光观察模式大致分为荧光观察模式或窄带光观察模式。在荧光观察(Auto Fluorescence Lnaging,以下称为“AFI ”)模式中,例如,对观察部位照射用于观察来自骨胶原等荧光物质的自身荧光的蓝色激励光、以及被血液中的血红蛋白吸收的绿色光,在拍摄时由阻断滤镜观阻断激励光的波长成分。因此,AFI模式是如下所述的观察模式在内窥镜图像上,用容易识别的色调显示肿瘤性病变和正常粘膜,辅助早期发现癌等的细微病变。在自身荧光观察中利用了如下所述的特性对于肿瘤组织,当被照射蓝色激励光 7时,存在于粘膜中的骨胶原等荧光物质所发出的荧光即自身荧光比正常组织弱。但是,对于自身荧光的减弱,光不仅由于肿瘤组织的粘膜上皮的肥厚而被吸收/散射,光还会被血液中的血红蛋白吸收,因此在仅照射蓝色激励光的情况下,有时即使是炎症性病变,由于自身荧光衰减,因此也会被判断为肿瘤。与此相对,在AFI模式中,组合蓝色激励光和绿色反射光,该绿色反射光不受粘膜肥厚的影响而只受血红蛋白的的影响,由此,正常组织被观察到淡绿色,肿瘤组织被观察到品红色,深部血管被观察到深绿色,因此能更加容易地识别这些组织。另一方面,窄带光观察(Narrow Band Imaging,以下也称为“NBI ”)模式是通过调整照射光的分光透射率特性来提高观察功能的观察模式。例如,蓝色光等波长短的光进入到生物体的深入度较小,例如红色光等波长较长的光进入到生物体的深入度较大,因此在 NBI模式中使用波长短而波段窄的光的情况下,波长较短的光仅包含观察部位表面附近的信息而反射,因此获得特化为观察部位表面的观察图像。即,能提高观察部位的表面细微结构的对比度,例如使毛细血管等细微图案清晰化。相反,在NBI模式中使用红色等波长较长的光的情况下,波长较长的光包含观察部位的深部信息而反射,因此可以对观察部位的深部的状况进行图像化。此外,在NBI模式中,尤其是照射容易被血液中的血红蛋白吸收的窄带化的两个波长的光,由此也能实现对粘膜表层的毛细血管和粘膜细微图案进行强调显示。为了高对比度地观察血管,而着眼于利用具有被血液较强程度地吸收或被粘膜表层较强程度地反射 /散射这一特长的光,在NBI模式中,对观察部位照射用于观察粘膜表层的毛细血管的蓝色窄带光(例如390nm 445歷),并照射绿色窄带光(例如530nm 550歷)以强调深部的粗血管观察与粘膜表层的毛细血管的对比度。在NBI模式中,可以作为色素散布的代替法来使用,其中色素散布法广泛地用于食道区域的详细诊断或大肠的腺管开口形态(腺管结构)观察,由于减少了检查时间及不必要的活体检测,因此期待对检查的高效化做出贡献。并且,由光纤25引导到前端部22的照明光经过安装在照明窗(未图示)上的照明透镜M而扩散,照射到体内的观察对象部位。另外,光源装置3D中配置有灯识别部32, 该灯识别部32是用于识别光源装置3D的种类的光源装置识别单元。灯识别部32的灯30 的种类(例如是氙灯、卤素灯、金属卤化物灯或者发光二极管)的信息经由控制部IlD被发送到处理条件选择部13。另外,医生通过输入部6等来设定照明光的种类,换言之,设定观察模式。处理器 4D的控制部IlD根据所设定的观察模式,对内窥镜2D的阻断滤镜观和切换滤镜部33D等进行控制。对此,图观和图四示出了在6个基准色轴之外设定了 2个基准色轴的内窥镜系统ID的所谓8轴色校正处理的色空间。如图观所示,在内窥镜系统ID中,在普通光观察模式的情况下,根据处理条件选择部13所选择的处理条件,在R基准色轴和Y基准色轴之间设定1个基准色轴即R-Y色轴,在R基准色轴和M基准色轴之间设定1个基准色轴即R-M 色轴。因此,在8轴色校正处理中,由色轴分割的色相区域是(IA)、(IB)、(2A)、(2B)、(3)、 (4)、(幻、(6)的8个区域。并且,例如在R-M色轴的校正处理时的校正系数变化的情况下,会影响到的是R-M 色轴两侧的区域(IA)和区域(IB)。因此,例如针对属于区域(IB)的像素,当对每个色相区域进行色校正处理时,不仅对区域(IB),也对区域(IA)和区域OA)共三个色相区域产生影响,但对区域(IA)和区域OA)的影响较小,对其他区域不会产生影响。但是,在特殊光观察模式的情况下,在CCD 20拍摄的内窥镜图像中,不同于普通光观察模式,以C色为中心的微妙的色调较多。因此,如图四所示,在内窥镜系统ID中,在特殊光观察模式的情况下,根据处理条件选择部13所选择的处理条件,在C基准色轴和G 基准色轴之间设定1个上述基准色轴即C-G色轴,在B基准色轴和C基准色轴之间设定1 个上述基准色轴即C-B色轴。因此,在8轴色校正处理中,由色轴分割的色相区域是(1)、 (1)、(2)、(2)、(3)、(4A)、(4B)、(5A)、(5B)、(6)的 8 个区域。如图30和图31所示,通过分别比较R信号、G信号和B信号的大小关系,来判断要对内窥镜图像进行校正的像素的色信号位于8个色相区域中的哪个区域,对所处的色相区域进行色校正处理。在内窥镜系统ID中,设计为预先设定了 2个基准色轴并进行8轴色校正处理的内窥镜图像处理装置,因此装置设计变得容易,并将电路等的复杂化限制在最小程度。接着,使用图32说明本实施方式的内窥镜图像处理装置7D的色校正处理部50中的色校正处理。从矩阵部44输入色校正处理部50的内窥镜图像是R信号、G信号和B信号的色信号。对于构成内窥镜图像的各像素的色信号,如图30和图31所示,由RGB比较部 51根据观察模式比较R信号、G信号和B信号的大小关系,由此判断这些色信号位于8个色相区域中的哪一个区域。为了分别对8个色相区域进行色校正处理,在普通光观察模式下,在处理条件存储部12中预先存储有由8个饱和度(彩度)校正系数(KRsat、KGsat、KBsat、KYsat、KCsat、KMsat、KRYsat 和 KRMsat)以及 8 个色相校正系数(KRhue、KGhue、KBhue、KYhue、KChue、 KMhue、KRYhue、KRMhue)构成的处理条件。这里,表示校正系数的记号“K”后的字符是色相的简称,RM表示R与M之间的中间色,RY表示R与Y之间的中间色。此外,在特殊光观察模式下,在处理条件存储部12中预先存储有由8个饱和度 (彩度)校正系数(KRsat、KGsat、KBsat、KYsat、KCsat、KMsat、KCGsat 和 KCBsat)以及 8 个色相校正系数(KRhue、KGhue、KBhue、KYhue、KChue、KMhue、KCGhue、KCBhue)构成的处理条件。这里,CG表示C与G之间的中间色,CB表示C与B之间的中间色。在图33A、图33B、图33C中示出了存储在处理条件存储部12中的与观察模式对应的处理条件的例子。图33A示出了与普通光观察模式对应的处理条件,图3 示出了与荧光观察(AFI)模式对应的处理条件,图33C示出了与窄带光观察(NBI)模式对应的处理条件。另外,各个校正系数是相对值,例如用-100 100之间的整数表示。这里,在图33A所示的与普通光观察模式对应的色校正处理条件中,在R基准色轴与Y基准色轴之间以及在R基准色轴与M基准色轴之间分别设定1个基准色轴,设定了针对各个色轴的校正系数。与此相对,在图3 和图33C所示的与特殊光观察模式对应的色校正处理条件中,在C基准色轴与G基准色轴之间以及在B基准色轴与C基准色轴之间分别设定1个基准色轴,设定了针对各个色轴的校正系数。在内窥镜系统ID的色校正处理中,处理条件选择部13从存储在处理条件存储部 12中的处理条件中选择与观察模式对应的最佳处理条件。并且,处理条件选择部13经由控制部IlD接收来自灯识别部32的信息,根据该信息选择处理条件。在内窥镜系统ID中,处理条件是指对6色基准色轴追加设定的基准色轴的设定条件和校正系数的设定条件。在内窥镜系统ID中,追加设定的基准色轴至少是2个,至少设定了 8个基准色轴。追加设定的基准色轴也可以是3个以上,从处理时间等观点来看,优选2个基准色轴。因此,在内窥镜系统ID中,能容易且适当地设定图像处理部10的校正条件。另外,在内窥镜系统ID中,处理条件选择部13也可以根据内窥镜2D的种类选择处理条件。这里,内窥镜2D的种类不意味着型号等,由于即使是同一型号的产品,也存在因制造工艺的偏差而产生的色特性差别,因此每个内窥镜2D分别相当于1个种类。尤其是, 在彩色CCD中,由于滤色镜制造时的偏差,即使是同一型号的产品,特性差别也较大,因此优选处理条件选择部13针对每个内窥镜选择处理条件。处理条件选择部13例如根据配置在内窥镜2D中的镜体识别部16的信息,识别内窥镜的种类。换言之,在内窥镜系统ID中, 镜体识别部16存储针对每个内窥镜不同的处理条件,处理条件选择部13选择针对每个内窥镜不同的处理条件。图34A、34B中示出了存储在处理条件存储部12中的与内窥镜种类对应的处理条件的例子。图34A示出了与内窥镜A对应的普通光观察模式用的处理条件, 图34B示出了与内窥镜B对应的普通光观察模式用的处理条件。此外,在内窥镜系统ID中,处理条件选择部13选择与拍摄部位对应的处理条件, 或者选择与对应于待拍摄的体内状态的场景对应的处理条件,也可以选择与医生对应的处理条件。并且,在内窥镜系统ID中,处理条件选择部13具有对选择出的处理条件进行修正的处理条件修正部。即,如图35所示,对于处理条件,例如,对在监视器5的显示画面5A上作为表5B而显示的值进行确认,并且利用选择指示器5C选择特定值的修正位置5D,由此可使用输入部6来修正数值。通过修正由处理条件选择部13选择出的处理条件,可以进行与状况对应的色调微妙调整。作为处理条件选择部13,例如可以使用输入部6或镜体开关 15。此外,同样地也可以使用输入部6等来设定存储在处理条件存储部12中的处理条件。如以上所说明的那样,在内窥镜系统ID中,即使切换观察模式,内窥镜图像的色调变化较大的情况下,也能容易且适当地设定图像处理部10的校正条件。另外,在以上说明中,将处理条件存储部12和处理条件选择部13作为与控制部 IlD和图像处理部10独立的单独构成要素进行了说明,但也可以是使用与控制部IlD或图像处理部10同样的硬件的、与控制部IlD或图像处理部10成为一体的结构。如以上所说明的那样,内窥镜图像处理装置7能容易且适当地设定图像处理部10 的校正条件。另外,在特殊光观察模式下,可以通过组合各种滤镜等来获得具有特征的色调的内窥镜图像。因此,在上述说明中,说明了在特殊光观察模式的情况下,在C基准色轴与G 基准色轴之间、以及B基准色轴与C基准色轴之间分别设定一个基准色轴的内窥镜系统,但不限于此。本发明不限于以上实施方式和变形例,在不改变本发明的主旨的范围内,能做各种变更和改变等。本申请是以2008年10月17日在日本提交的专利申请日本特愿2008-268852号和特愿2008-268853号作为优先权要求的基础而提交的,在本申请的说明书、权利要求书和附图中引用了上述所公开的内容。
权利要求
1.一种内窥镜系统,该内窥镜系统具有内窥镜,其具有插入到被检体的体内的插入部以及配置在所述插入部的前端部的摄像单元;照明单元,其利用照明光对所述被检体的体内进行照明,该照明单元可装卸地与所述内窥镜连接;以及处理器,其可装卸地与所述内窥镜连接,该内窥镜系统的特征在于,所述处理器具有处理条件存储单元,其存储由所述摄像单元拍摄的内窥镜图像的处理条件;处理条件选择单元,其从所述处理条件存储单元所存储的所述处理条件中选择所述处理条件;以及图像处理单元,其在所述内窥镜图像的色空间上的针对R(红)、M(品红)、B(蓝)、 C (青)、G (绿)和Y (黄)的每个色相设定的6个基准轴之外,至少再设定基于所述处理条件选择单元所选择的所述处理条件的2个基准轴,针对至少由所述8个基准轴划分的每个色相区域,进行基于所述处理条件选择单元所选择的所述处理条件的所述色校正处理。
2.根据权利要求1所述的内窥镜系统,其特征在于,所述处理条件是在所述R基准轴与所述Y基准轴之间以及在所述R基准轴与所述M 基准轴之间,分别设定1个基准轴。
3.根据权利要求2所述的内窥镜系统,其特征在于,所述处理条件选择单元根据配置在所述内窥镜中的内窥镜识别单元的信息,识别所述内窥镜的所述种类。
4.根据权利要求2所述的内窥镜系统,其特征在于,所述处理条件选择单元选择基于所述照明单元的种类的所述处理条件。
5.根据权利要求4所述的内窥镜系统,其特征在于,所述照明单元的所述种类是将氙灯、卤素灯、金属卤化物灯或者发光二极管中的任一种作为光源。
6.根据权利要求1至5中的任一项所述的内窥镜系统,其特征在于,所述内窥镜系统具有部位输入单元,该部位输入单元选择所述摄像单元所拍摄的所述体内的部位,所述处理条件选择单元选择与由所述部位输入单元选择出的拍摄部位对应的所述处理条件。
7.根据权利要求1至5中的任一项所述的内窥镜系统,其特征在于,所述内窥镜系统具有场景输入单元,该场景输入单元选择与所述摄像单元所拍摄的所述体内的状态对应的场景,所述处理条件选择单元选择与由所述场景输入单元选择出的所述场景对应的所述处理条件。
8.根据权利要求7所述的内窥镜系统,其特征在于,所述场景是普通场景或出血场景中的任一种。
9.根据权利要求1至5中的任一项所述的内窥镜系统,其特征在于,所述内窥镜系统具有输入医生的医生输入单元,所述处理条件选择单元选择与由所述医生输入单元输入的所述医生信息对应的所述处理条件。
10.根据权利要求1所述的内窥镜系统,其特征在于,所述照明单元利用普通光观察模式或特殊光观察模式中的任一观察模式下的所述照明光进行照明,所述处理条件选择单元选择基于所述观察模式的种类的所述处理条件。
11.根据权利要求10所述的内窥镜系统,其特征在于,在所述观察模式是所述普通光观察模式的情况下,所述处理条件是分别在R基准色轴与Y基准色轴之间以及R基准色轴与M基准色轴之间,设定1个所述基准色轴,在所述观察模式是所述特殊光观察模式的情况下,所述处理条件是分别在C基准色轴与G基准色轴之间以及B基准色轴与C基准色轴之间,设定1个所述基准色轴。
12.根据权利要求11所述的内窥镜系统,其特征在于,所述特殊光观察模式是荧光观察模式或窄带光观察模式中的任一种。
13.根据权利要求10至12中的任一项所述的内窥镜系统,其特征在于,所述处理条件选择单元具有处理条件修正单元,该处理条件修正单元对选择出的所述处理条件进行修正。
14.根据权利要求1所述的内窥镜系统,其特征在于,所述内窥镜系统还具有显示单元,该显示单元显示图形输入部和所述色校正处理后的所述内窥镜图像,该图形输入部通过移动显示在色空间上的所述基准色轴上的条件设定标记,来进行所述处理条件的设定,通过基于所述条件设定标记的所述处理条件的设定,实时地改变所述显示单元上显示的所述内窥镜图像的色调。
15.一种内窥镜图像处理装置,其对内窥镜系统的摄像单元所拍摄的内窥镜图像进行色校正处理,该内窥镜系统具有内窥镜,其具有插入到被检体的体内的插入部以及配置在所述插入部的前端部的所述摄像单元;以及照明单元,其利用照明光对所述被检体的体内进行照明,该照明单元可装卸地与所述内窥镜连接,该内窥镜图像处理装置的特征在于,其具有处理条件存储单元,其存储所述摄像单元所拍摄的内窥镜图像的处理条件;处理条件选择单元,其从所述处理条件存储单元所存储的所述处理条件中选择所述处理条件;以及图像处理单元,其在所述内窥镜图像的色空间上的针对R(红)、M(品红)、B(蓝)、 C(青)、G(绿)和Y(黄)的每个色相设定的6个基准轴之外,至少再设定基于所述处理条件选择单元所选择的所述处理条件的2个基准轴,针对至少由所述8个基准轴划分的每个色相区域,进行基于所述处理条件选择单元所选择的所述处理条件的所述色校正处理。
全文摘要
内窥镜系统(1)具有内窥镜(2),其具有插入到被检体的体内的插入部(21)以及配置在插入部(21)的前端部的CCD(20);光源装置(3),其利用照明光对被检体的体内进行照明;以及具有内窥镜图像处理装置(7)的处理器(4),其中,处理器(4)具有存储内窥镜图像的处理条件的处理条件存储部(12)、选择所述处理条件的处理条件选择部(13)以及图像处理单元,该图像处理单元在内窥镜图像的色空间上的6个基准轴之外,至少设定基于处理条件选择部(13)所选择的处理条件的2个基准轴,进行所述色校正处理。
文档编号H04N7/18GK102170817SQ20098013864
公开日2011年8月31日 申请日期2009年10月14日 优先权日2008年10月17日
发明者小笠原弘太郎, 望田明彦, 铃木达彦, 须藤贤 申请人:奥林巴斯医疗株式会社