专利名称:装置及方法
技术领域:
本发明涉及一种装置及方法。
背景技术:
已经出现了这样的MFP,其在复印打印有编码图像图案的印刷品时,生成该印刷品 上的图像的副本,并且还对该印刷品上的图像中的编码图像图案进行解码。应当指出,“编 码图像图案”有例如水印图像、二维条形码图像(又称为“二维码”)、条形码图像或者隐形码。然而,适合于生成副本的图像不同于用于对编码图像图案进行解码的图像。适合 于生成副本的图像是准确表现印刷品上的原始图像的图像,而适合于对编码图像图案进行 解码的图像是其黑色部分与白色部分清楚地相区别的图像。本发明的目的是使用适合于生成副本的图像以高速的(计算量小的)方法对所述 图像中的编码图像图案进行解码。
发明内容
为了解决以上问题,根据本发明的装置是一种用于对具有检测图案的编码图像图 案进行解码的装置,该装置包括检测单元,其被构造为从图像中检测所述检测图案;校正 单元,其被构造为基于所检测到的检测图案的浓度,来校正位置由所检测到的检测图案指 定的所述编码图像图案的浓度;以及解码单元,其被构造为对浓度已被校正的所述编码图 像图案进行解码。根据本发明,编码图像图案的解码处理时的解码性能得到提高,从而使得能够减 小解码处理的负荷。通过以下参照附图对示例性实施例的描述,本发明的其他特征将变得清楚。
图1是示出图像形成系统的图;图2是示出图像形成装置的图;图3是概念性地示出区块数据(tile data)的图;图4是扫描器图像处理单元的框图;图5是打印机图像处理单元的框图;图6是说明操作单元的复印画面的图;图7是示出二维码的图;图8是示出二维码的编码的流程图;图9是第一实施例的流程图;图10是二维码的检测图案的图;图11是示出二维码的解码处理的流程图12是示出扫描图像处理之后的二维码的图;图13是示出检测图案的检测处理的预处理之后的二维码的图;图14是示出编码图像图案的解码处理的预处理之后的二维码的图;图15是示出二维码的直方图的图;图16是示出第二实施例的流程图;以及图17是示出检测图案的示例的图。
具体实施例方式下面,将参照附图来说明本发明的实施例。<第一实施例>下面,将参照附图来说明第一实施例。〈打印系统(图1)>图1是示出根据本发明的实施例的打印系统的框图。在该打印系统中,主计算机 (以下称为PC)40及3台图像形成装置(10、20、30)连接至LAN 50,但是本发明的打印系统 不局限于上述连接数量。此外,在本实施例中,应用LAN作为连接方法,但是,也可以应用其 他连接方法,例如WAN(公用线路)等的任意网络、USB等的串行传输系统、以及诸如并行接 口(centronic)或SCSI等的并行传输系统。PC 40包括个人计算机的功能。PC 40能够通过LAN 50或WAN使用FTP或SMB协 议接收/发送文件,或者接收/发送电子邮件。此外,PC 40能够通过打印机驱动器向图像 形成装置10、20及30发出打印命令。图像形成装置10和20是类似的装置。图像形成装置30仅包括打印功能,而未设 有图像形成装置10及20中配备的扫描器。在下文中,将重点关注图像形成装置10及20 当中的图像形成装置10并对其详细说明。图像形成装置10包含有作为图像输入设备的扫描器13、作为图像输出设备的打 印机14、管理整个图像形成装置10的操作控制的控制器11、以及作为用户界面(UI)的操 作单元12。同样,图像形成装置20包含有作为图像输入设备的扫描器23、作为图像输出设备 的打印机24、管理整个图像形成装置20的操作控制的控制器21、以及作为用户界面(UI) 的操作单元22。同样,图像形成装置30包含有作为图像输出设备的打印机33、管理整个图像形成 装置30的操作控制的控制器31、以及作为用户界面(UI)的操作单元32。<图像形成装置10>图像形成装置10中的扫描器13包含有多个(XD。当各(XD的灵敏度互不相同时, 即使原稿上的各像素的浓度相同,各像素也会被识别为具有互不相同的浓度。因此,扫描器 13首先对白板(均勻白板)进行扫描曝光,并将通过该扫描曝光获得的反射光的量转换为 电信号,该电信号被输出到控制器11。应当指出,如后所述,控制器11中的阴影校正单元 500基于从各CCD获得的电信号,来识别各CCD之间的灵敏度差异。此外,阴影校正单元500 使用所识别出的灵敏度差异,来校正通过扫描原稿上的图像而获得的电信号的值。此外,当阴影校正单元500从后述的控制器11的CPU 301接收到增益调整的信息时,阴影校正单元500执行与该信息相对应的增益调整。增益调整用于调整如何将通过对 原稿的扫描曝光而获得的电信号的值分配到0至255的亮度信号值。利用该增益调整,可 以将通过对原稿的扫描曝光获得的电信号的值转换为高亮度信号值或低亮度信号值。也就 是说,利用该增益调整,可以调整读取信号的动态范围。接下来,将说明用于扫描该原稿上的图像的扫描器。扫描器将通过对原稿上的图像进行扫描曝光而获得的反射光输入到⑶D,以将图 像的信息转换为电信号。此外,将电信号转换为由R、G、B各颜色组成的亮度信号,并将该亮 度信号作为图像输出到控制器11。此时,用于扫描原稿的分辨率可以由控制器11来指定。应当指出,原稿被放置到原稿进给器的托盘(未示出)中。当用户从操作单元12 指示读取开始时,从控制器11向扫描器13给出原稿读取指令。当扫描器13接收到该指令 时,扫描器13从原稿进给器的托盘逐页进给原稿,以执行原稿的读取操作。应当指出,读取 原稿的方法不局限于原稿进给器执行的自动进给方式,而是也可以采用将原稿放置在玻璃 面(未示出)上、并在其上移动曝光单元来执行原稿的扫描的方法。此外,扫描器13的频率特性及特性参数的信息被保存在控制器11的RAM 302中。 在这里,特性参数包括白电平标准以及亮度与浓度之间的对应关系。打印机14是用于在纸张上形成从控制器11接收到的图像的图像形成设备。应当 指出,在本实施例中,图像形成方式是使用感光鼓或感光带的电子照相方式,但是本发明不 局限于此。例如,本发明可以应用于从微细喷嘴阵列喷出墨水以在纸张上进行打印的喷墨 方式。打印机14配备有可选择不同纸张大小或不同纸张方向的多个纸盒(未示出)。进行 了打印的纸张被输出到输出托盘(未示出)。<控制器11的详细说明(图2) >图2是更详细地说明图像形成装置10中的控制器11的框图。控制器11电连接到扫描器13及打印机14,另一方面控制器11通过LAN 50及WAN 331连接到PC 40、外部装置等。因此,可以进行图像及设备信息的输入/输出。CPU 301基于存储在ROM 303中的控制程序等,来总体控制对正与之连接的各种 设备的访问,并且还对控制器11中执行的各种类型的处理进行总体控制。RAM 302是用于操作CPU 301的系统工作存储器,也是用于临时存储图像的存储 器。RAM 302包括用于在电源断开后保存所存储的内容的非易失性RAM和在电源断开后所 存储的内容被删除的DRAM。装置的引导程序等存储在ROM 303中。HDD 304是硬盘驱动器,并在其中存储系统软件及图像。操作单元I/F 305是用于连接系统总线310和操作单元12的接口。操作单元I/F 305从系统总线310接收要显示在操作单元12中的图像,并将该图像输出到操作单元12, 而且还将从操作单元12输入的信息输出到系统总线310。网络I/F 306连接到LAN 50及系统总线310,以输入/输出信息。调制解调器307连接到WAN 331及系统总线310,以输入/输出信息。二值图像旋转单元308对发送前的图像的方向进行转换。二值/多值压缩/解压缩单元309将发送前的图像的分辨率转换为预定的分辨率 或适合对方能力的分辨率。应当指出,对于压缩及解压缩而言,使用诸如JIG、MMR、MR或MH 等的方法。
图像总线330是用于接收/发送图像的传送路径,并包括PCI总线或IEEE1394。扫描器图像处理单元312对经由扫描器I/F 311从扫描器13接收到的图像执行 校正、处理及编辑。应当指出,扫描器图像处理单元312确定接收到的图像是彩色原稿还是 单色原稿,或者是文字原稿还是照片原稿。然后,将确定结果附加到图像。这样的附加信息 称为属性数据。扫描器图像处理单元312执行的处理的详情将在后面进行描述。压缩单元313接收图像,并将该图像划分为各自具有32X 32像素的块。这种具有 32X32像素的图像称为“区块数据”。图3概念性地示出了区块数据。在原稿(读取之前的纸介质)中,与区块数据相对 应的区域称为“区块图像”。应当指出,具有32X32像素的块的平均亮度信息以及区块图像 在原稿上的坐标位置被作为标题信息添加到区块数据中。此外,压缩单元313对由多个区 块数据构成的图像进行压缩。解压缩单元316对由多个区块数据构成的图像进行解压缩, 之后对其执行光栅展开(raster development),并将光栅化后的数据发送到打印机图像处 理单元315。打印机图像处理单元315接收从解压缩单元316发送的图像,并通过参照附加到 该图像的属性数据对图像执行图像处理。图像处理后的图像通过打印机I/F 314输出到打 印机14。在这种情况下,图像被压缩单元313压缩一次,压缩后的图像由解压缩单元316解 压缩。然后,图像处理后的图像可以通过打印机I/F 314输出到打印机14。要由打印机图 像处理单元315执行的处理的详情将在后面进行描述。编码图像图案处理单元317对图像执行各种类型的处理,以执行图像中存在的编 码图像图案的解码的处理(解码处理)。要由编码图像图案处理单元317进行处理的图像, 是由扫描器图像处理单元312或打印机图像处理单元315进行处理、之后由压缩单元313 压缩的图像。以上处理单元可以不必是硬件,而可以是在RAM 302上被展开的程序。要由 编码图像图案处理单元317执行的处理的详情将在后面进行描述。RIP 330接收基于从PC 40发送的PDL码数据等生成的中间数据,以生成位图数据 (多值)。<扫描器图像处理单元312的详细说明(图4)>图4示出了扫描器图像处理单元312。扫描器图像处理单元312接收由各颜色均具有8位的RGB的亮度信号组成的图像。阴影校正单元500对亮度信号进行阴影校正。如上所述,阴影校正是用于防止由 于CCD的灵敏度的变化而导致错误识别原稿的亮度的处理。此外,如上所述,阴影校正单元 500可以依据来自CPU 301的指令来执行增益调整。接下来,通过掩模处理单元501将亮度信号转换为不依赖于(XD的滤波器颜色的 标准亮度信号。在通过一维查找表进行一次RGB的各颜色的调整之后,使用三维查找表来 执行向标准亮度信号的转换。滤波器处理单元502以任意方式校正接收到的图像的空间频率。滤波器处理单元 502使用例如7X7的矩阵对接收到的图像执行计算处理。顺便提及,在复印机或复合机中,通过按下图6中的标签704,可以选择文字模式、 照片模式或文字和照片模式作为复印模式。在这里,在用户选择了文字模式的情况下,滤波器处理单元502对整个图像应用文字滤波器。在选择了照片模式的情况下,滤波器处理单 元502对整个图像应用照片滤波器。在选择了文字和照片模式的情况下,滤波器处理单元 502响应于后述的文字和照片确定信号(属性数据的一部分),来适应性地切换各像素的滤 波器。也就是说,进行关于是对各像素应用照片滤波器还是文字滤波器的确定。应当指 出,以使得仅高频率成分被平滑化的方式对照片滤波器设置系数。这是为了防止图像的不 均勻度变得显著。此外,以着重强调边缘的方式对文字滤波器设置系数。这是为了产生文 字的清晰度。应当指出,滤波器处理单元502使用的滤波器参数被保存在RAM 302中,因为 在后期处理中可能用到这些参数。直方图生成单元503对接收到的图像中的各像素的亮度数据进行取样。更详细地 说,在主扫描方向和副扫描方向上以恒定的间距,分别对由主扫描方向和副扫描方向上指 示的起始点至终止点所包围的矩形区域中的亮度数据进行取样。然后,基于取样结果生成 直方图数据。所生成的直方图数据用于在执行背底消除处理时估算背底水平。应当指出, 直方图生成单元503进行取样的结果被保存在RAM 302中,以便可以在背底消除处理中或 其他后面的处理中使用。通过使用输入到输入侧伽玛校正单元504的一维查找表,输入侧伽玛校正单元 504将直方图数据转换为具有非线性特性的亮度数据。应当指出,输入侧伽玛校正单元504 使用的一维查找表参数被保存在RAM 302中,因为在后期处理中可能用到这些参数。彩色/单色确定单元505确定彩色/单色确定单元505接收到的图像的各像素是 彩色的还是非彩色的,并将该确定结果作为彩色/单色确定信号(属性数据的一部分)附 加到图像。文字/照片确定单元506基于各像素的像素值以及各像素的周边像素的像素值, 来确定图像的各像素是文字的像素、网点的像素、网点中的文字的像素还是贝塔图像(beta image)的像素。应当指出,不与任何像素相对应的像素是白色区域中的像素。该确定结果 作为文字/照片确定信号(属性数据的一部分)被附加到图像。<打印机图像处理单元315的详细说明(图5) >图5示出了打印机图像处理单元315执行的处理的过程。背底消除处理单元601通过使用扫描器图像处理单元312生成的直方图,来消除 (去除)图像的背底色。在进行单色打印的情况下,单色生成单元602将彩色数据转换为单色数据。对数转换单元603执行亮度浓度转换。对数转换单元603将例如输入的RGB图像 转换为CMY图像。输出色彩校正单元604进行输出色彩校正。例如,通过使用表或矩阵,将输入的 CMY图像转换为CMYK图像。输出侧伽玛校正单元605校正输入到输出侧伽玛校正单元605的信号值以及输出 副本后的反射浓度值,以使二者互成比例。半色调校正单元606对打印机要打印的的灰度级数执行半色调处理。例如,半色 调校正单元606对接收到的高灰度级图像执行二值化或32值化处理。应当指出,扫描器图像处理单元312及打印机图像处理单元315中的各个处理单元也可以在不对接收到的图像执行各处理的情况下输出接收到的图像。<编码图像图案处理单元317的详细说明(图2)>下面,将说明图2中描述的编码图像图案处理单元317的详情。解压缩单元318对解压缩单元318已接收到的图像进行解压缩。可以以任意顺序 使用处理单元320至329,来处理由解压缩单元318解压缩的图像。压缩单元319对压缩 单元319已接收到的图像进行压缩。压缩单元319要接收的图像可以是二值数据或多值数 据。多值简单二值单元320对多值简单二值单元320已接收到的多值图像执行简单二 值化。简单二值化是用CPU 301设置的阈值对图像进行二值化。通过任意的转换公式将彩 色图像转换为灰度图像,之后用CPU 301设置的阈值对其进行二值化。多值二值单元321对多值二值单元321已接收到的多值图像进行二值化。多值二 值单元321能够用除简单二值化以外的各种方法对多值图像进行二值化。具体地说,多值 二值单元321可以通过这样两种方式来确定阈值,一种方式是通过使用直方图使得两个群 集的分离度达到最大,另一种方式是通过使用直方图使得白色像素与黑色像素之间的占空 比变为50%。通过任意的转换公式将彩色图像转换为灰度图像,之后对其进行二值化。二值多值单元322将二值化图像转换为多值图像。具体地说,二值多值单元322 将二值图像转换为具有多值的最小值和最大值的图像,之后通过用诸如高斯滤波器等的滤 波器模糊化转换后的图像,来执行二值多值转换。变倍单元323对图像执行变倍处理。具体地说,变倍处理单元323进行线性变倍、 立方变倍或稀疏化变倍,来执行变倍处理。滤波器处理单元324对图像执行滤波处理。可以通过使用由CPU 301设置的任意 形状及任意系数的滤波器,来执行滤波处理。线性度调整单元325可以使用一维LUT(查找表),来调整图像的线性度。特殊处理单元(special processing unit) 326可以执行诸如噪声点去除、粗化处 理及细化处理等的特殊处理。剪切单元327可以剪切图像的任意大小的一部分。在说明检测图案检测单元328及编码图像图案解码单元329之前,对作为本实施 例中使用的编码图像图案的二维码进行说明。例如,可以使用QR码(注册商标)作为二维 码。应当指出,本发明可适用于其中存在有检测图案的所有编码图像图案,即使其不是二维 码。检测图案是用于检测编码图像图案的图案以及容易被检测的特征化图案。二维码的检 测图案是如图10所示的图案。检测图案以外的编码图像图案区域称为“编码图像图案主 体”。此外,作为编码图像图案的最小单位的白色区域称为“白色单元(white cell)”,其黑 色区域称为“黑色单元”。二维码是由JIS0X0510规定的编码图像图案。在本发明中,二维码被添加到原稿 侧的事件被定义为前提条件。下面,将说明编码的流程图。图8是示出通过使用复印限制信息等的附加信息来生成二维码的处理的流程图。 可以通过将二维码添加到原稿的装置中的CPU,或者通过与将二维码添加到原稿的装置连 接的个人计算机中的CPU,来执行图8中的流程图。首先,在步骤S900,CPU分析附加信息,以识别要编码的字符的不同种类。此外,CPU选择误差校正水平,并选择能够容纳附加信息的二维码的最小类型编号。二维码的类型 编号是表示二维码的大小的编号,并由1至40的值组成。类型编号1是21单元X21单元 的大小,并且最大变为1 77单元X 177单元。接下来,在步骤S901,CPU对附加信息执行编码。首先,CPU将附加信息转换为预 定的位列(bit line),并且如有必要,则添加表示该位列的原始数据(附加数据)的种类 (数字、英文数字、8位字节、汉字等)的标识符以及终端图案。接下来,CPU以8位为单位 对该位列进行划分。该8位单位的位列称为“数据码字”,以数据码字为单位划分的位列称 为“数据码字列”。数据码字的数量是依照类型编号及误差校正水平来规定的,并且如果规 定的数量未能满足,则CPU将无意义的数据码字添加到数据码字列。接下来,在步骤S902,CPU为了添加用于误差校正的信息,将在步骤S901获得的数 据码字列划分为数量与类型编号及误差校正水平对应的多个块。然后,CPU生成用于为各个 块修正该块中的误差的误差校正码字列,其被添加在数据码字列之后。应当指出,误差校正 码字也是8位单位的位列。数据码字及误差校正码字称为“码字”,其排列称为“码字列”。接下来,在步骤S903,CPU以8位为码字单位,使在步骤S902中获得的各个块的码 字列交错,并且依照类型编号来添加剩余的位。进行交错是为了通过降低码字列的连续性, 来提高抵制突发错误的能力。由此形成的最终的位排列称为“最终位列”。接下来,在步骤S904,CPU设置用来配置白色单元或黑色单元的矩阵。针对各个类 型编号确定矩阵的大小。将编码图像主体的构成要素连同检测图案一起配置在该矩阵中。 编码图像主体的构成要素包括分离图案、定时图案、定位图案等以及在步骤S903中获得的 最终位列。在最终位列的配置中,CPU使白色单元与位0相关联并使黑色单元与位1相关 联来配置黑色单元及白色单元。其配置是基于依照类型编号的配置规则来进行的。接下来,在步骤S905,CPU在排列有在步骤S904中获得的最终位列的区域中,选择 最合适的掩模图案,以通过异或(XOR,exclusive logicaladdition)计算来执行掩模处理。 X0R计算是这样一种处理在掩模图案是0并且相应的单元是白色单元的情况下,将白色单 元转换为黑色单元,而在掩模图案是1并且相应的单元是黑色单元的情况下,将黑色单元 转换为白色单元。在这里,将说明最合适的掩模图案。白色单元和黑色单元的理想配置图 案是这样一种区域,其中不包含与检测图案相类似的图案,黑色单元或白色单元不被连续 配置,并且白色单元与黑色单元的比率接近于1 1。作为掩模处理(异或)的结果,能够 获得这种图案的掩模图案是最合适的掩模图案。应当指出,作为掩模处理的结果,当获得与 检测图案相类似的图案时,导致对检测图案的错误检测,因此这是不期望的。此外,由于存 在白色单元或黑色单元连续配置的区域的可能性,一个单元往往很大并且该单元不具有本 来应该具有的大小,因此这是不期望的。反之,作为掩模处理的结果,当白色单元与黑色单 元的比率接近于1 1时(此外,单元并未在很大程度上被连续配置),即使难以形成黑色 单元,或者难以形成白色单元,但由于白色单元与黑色单元是以同等的数量形成,因此这是 可取的图案。接下来,在步骤S906,CPU在步骤S905中获得的模块中生成格式信息及类型编号 信息,以完成编码图像图案。误差校正水平及所使用的掩模图案信息包含在格式信息中。作为这样编码的结果,二维码变为具有如图7所示的外观的编码图像图案。可以将任意信息编码为二维码。在本发明中,在纸张原稿上提供二维码图案(其中复印条件信息被编码)并且该纸张原稿被图像形成装置10扫描的事件是前提条件。应 当指出,除了复印条件信息之外,也可以对诸如原稿的输出打印机/输出时间等的各种属 性信息进行编码。接下来,将通过提供这种二维码作为前提条件,来说明检测图案检测单元328及 编码图像图案解码单元329。检测图案检测单元328从图像中检测编码图像图案中存在的检测图案,以指定编 码图像图案的位置。通常对二值化图像进行检测以实现高速化,但是也可以对多值图像进 行检测。为了提高检测效率,可以通过对图像进行下取样来检测分辨率降低的图像。在编码图像图案主体的位置已知的情况下,编码图像图案解码单元329对该编码 图像图案主体执行解码处理,以取得信息数据。图11是说明对编码图像图案进行解码的图(在图11中的流程图中,检测图案的 位置已经指定并且编码图像图案主体的位置是已知的)。首先,在步骤S1201,编码图像图案解码单元329对与检测图案邻近的格式信息进 行解码,以获得应用于编码图像图案的误差校正水平以及掩模图案信息。接下来,在步骤S1202,编码图像图案解码单元329对与检测图案邻近的类型编号 信息进行解码,以确定编码图像图案的类型编号。接下来,在步骤S1203,编码图像图案解码单元329使用通过对格式信息进行解码 而获得的掩模图案,来对最终位列区域执行X0R计算,从而解除掩模。接下来,在步骤S1204,编码图像图案解码单元329根据与类型编号相对应的配置 规则,来读取掩模被解除的最终位列区域中的位图案。此外,编码图像图案解码单元329取 消交错,以对码字列(数据码字列及误差校正码字)进行解码。接下来,在步骤S1205,编码图像图案解码单元329使用误差校正码字列来检测数 据的误差。当未检测到误差时,处理进入到步骤S1207 ;而当检测到误差时,处理进入到步 骤 S1206。接下来,在步骤S1206,编码图像图案解码单元329校正数据码字列的误差。接下来,在步骤S1207,编码图像图案解码单元329基于示出原始数据(附加信 息)的种类的标识符,来对数据码字列进行解码,以获得编码的附加信息。接下来,在步骤S1208,编码图像图案解码单元329输出解码后的编码信息。在从步骤S1201到步骤S1204的处理中,通过将包含黑色单元及白色单元并以二 维码配置的黑白图案按需要转换为一位的数据列(data line)来进行处理。从如图7所示 的黑白图案的形状清晰的编码图像图案中,很容易取得一位的数据列。然而,从如图13所 示的黑白图案混乱并且黑色或白色图案被粗化或细化的编码图像图案中,很难取得一位的 数据列。对于难以取得一位的数据列的编码图像图案而言,有些情况下处理会失败。〈操作画面的说明〉图6是图像形成装置10的初始画面。区域701示出图像形成装置10是否处于能够进行复印的状态,并示出设置的份数。原稿选择标签704是用于选择原稿的类型的标签。当按下该标签时,弹出显示包 含文字模式、照片模式以及文字和照片模式的三种选择菜单。
10
整理标签706是用于执行与各种整理有关的设置的标签。双面设置标签707是用于执行与双面读取及双面打印有关的设置的标签。色彩模式标签702是用于选择原稿的色彩模式的标签。当按下该标签时,弹出显 示包含彩色、黑色及自动(ACS)的三种选择菜单。应当指出,当选择彩色时,进行彩色复印; 当选择黑色时,进行单色复印。当选择ACS时,通过前述单色彩色确定信号来确定复印模 式。对本实施例中的系统的说明如上所述。图9示出了本实施例的流程图。本流程图中的各步骤的处理由CPU 301进行总体控制。当用户通过操作单元12 选择伴随扫描处理的处理并按下开始按钮时,执行图9中所示的流程图。首先,在步骤S1001,当CPU 301检测到操作单元12的开始按钮被按下时,CPU 301 启动扫描器13来扫描原稿。CPU 301被构造为将扫描器13读取的原稿作为图像,经由扫描 器I/F 311发送到扫描器图像处理单元312。此外,CPU 301将诸如扫描时的扫描分辨率等 的设置参数以及扫描器的特性参数的信息保存在RAM 302中。接下来,在步骤S1002,扫描器图像处理单元312对图像执行扫描器图像处理。扫描器图像处理单元312对阴影校正单元500、掩模处理单元501、滤波器处理单 元502、直方图处理单元503、输入侧伽玛校正单元504、彩色/单色确定单元505以及文字 /照片确定单元506执行处理。扫描器图像处理单元312生成属性数据和处理后的图像,并 将该属性数据附加到图像。扫描器图像处理单元312将图像发送到压缩单元313,并将压缩 图像保存在RAM302或HDD 304中。CPU 301将关于扫描图像处理时的参数的信息保存在 RAM 302 中。接下来,在步骤S1003,CPU 301计算步骤S1004中的校正处理的参数,以及步骤 S1005中的简单二值化处理的阈值参数。在该计算中,CPU 301使用保存在RAM 302中的扫 描时的设置参数及扫描器的特性参数的信息以及扫描图像处理时的参数。接下来,在步骤S1004,CPU 301执行变倍单元323的变倍处理、滤波器处理单元 324的滤波处理,以及线性度调整单元325的线性度调整处理,作为主要校正处理。基于关于扫描时的扫描分辨率的设置参数,来确定变倍处理的参数,以使分辨率 适合于后面的编码图像图案的检测。例如,当扫描分辨率已倾向于诸如600X300的变 倍并且有必要令主、副扫描具有相同分辨率时,以使得主、副扫描具有诸如600X600或 300X300的相同分辨率的方式,来确定分辨率转换参数。在变倍方法中,由于是对整个扫描 图像表面执行变倍处理,因此,需要考虑到计算成本。因此,优先应用诸如简单消除或简单 放大等计算成本低的变倍方法。下面,将描述滤波处理的参数确定方法。首先,基于特性参数以及扫描图像处理时 滤波器处理单元502的滤波器参数,来估算此时的图像的编码图像区域的平均亮度及频率 特性。在这里,特性参数包括例如扫描器的频率特性以及白电平标准。接下来,基于该估算,以使得图像具有适合于后面的编码图像图案的检测的平均 亮度及频率特性的方式,来确定参数。理想的平均亮度是使得编码图像区域的平均亮度为 50%的值的水平(如果图像具有8位,则平均亮度为127或128)。理想的频率特性是使得 存在很多与相应的编码图像图案相对应的频率成分、而其他编码图像图案的频率成分很少的特性。下面,将描述线性度调整处理的参数确定方法。首先,基于特性参数、扫描图像处理时的直方图生成单元503的取样结果、输入侧伽玛校正单元504的一维LUT参数,来估算 此时的亮度与浓度之间的对应关系。在这里,特性参数为扫描器的白电平标准或者亮度与 浓度之间的对应关系。接下来,基于该估算,以使得图像具有适合于后面的编码图像图案的 检测的亮度与浓度之间的对应关系,来确定一维LUT的参数。适合于编码图像图案的检测 的亮度与浓度之间的关系取决于检测方法,亮度与浓度之间的关系优选为线性对应关系。如果正确执行了校正处理,则在步骤S1005中的简单二值化处理的阈值参数可以 是50%的值(如果图像是8位,则其为127或128)。然而,为了减轻校正处理的负荷,在未 充分执行校正处理的情况下,计算由于非校正处理导致的距50%的阈值的偏差。将反映该 偏差值的值定义作为阈值(因为需要考虑到滤波处理,所以不能计算出精确的偏差值)。接下来,在步骤S1004,CPU 301通过解压缩单元318对保存在RAM 302中或HDD 304中的压缩图像进行解压缩,以通过编码图像图案处理单元317对其进行处理。接下来, CPU 301基于在步骤S1003中确定的校正处理参数,来执行校正处理。也就是说,CPU 301 基于在步骤S1003中确定的校正处理参数,来确定用于执行校正处理的校正量。变倍单元323基于在步骤S1003中确定的变倍处理参数,来执行变倍处理。滤波 器处理单元324基于在步骤S1003中确定的变倍处理参数,来执行滤波处理。线性度调整 单元325基于在步骤S1003中确定的线性度调整处理参数,来执行线性度调整处理。作为 校正处理对象的图像可以是扫描图像的整个表面。此外,为了降低校正处理的负荷,作为校 正处理对象的图像可以是扫描图像的一部分。接下来,在步骤S1005,CPU 301基于在步骤S1003中确定的简单二值化处理的阈 值参数,通过多值简单二值单元320对在步骤S1004中校正过的图像执行简单二值化处理。接下来,在步骤S1006,CPU 301通过检测图案检测单元328执行从在步骤S1005 中进行二值化的图像中检测编码图像图案的检测图案。由于每一个信息码存在多个检测图 案,因此,可以由位置关系来指定编码图像图案主体的位置。结果,在检测到检测图案的情 况下,CPU 301由所检测到的检测图案信息得到编码图像图案的位置信息,并将该位置信息 保存在RAM 302中。接下来,在步骤S1007,CPU 301通过解压缩单元318对保存在RAM 302中或HDD 304中的压缩图像进行解压缩,以通过编码图像图案处理单元317对其进行处理。接下来, CPU 301基于在步骤S1006中确定的保存在RAM302中的编码图像图案的位置信息,通过剪 切单元327剪切用于对编码图像图案进行解码的图像。具体地说,剪切由三个检测图案构 成的矩形(即全部三个检测图案外接的矩形)的图像。对于用于检测图案的检测的二值图 像,需要对图像的整个表面执行校正处理和二值化处理,但是由于处理负荷很大,因此不能 执行充分的处理。然而,用于对编码图像图案进行解码的图像是整个图像的一部分,并且在 后面的步骤S1009及步骤S1010,可以在不考虑处理的负荷的情况下执行更复杂的图像处 理。因此,对于执行用于对编码图像图案进行解码的唯一图像处理而言,可以不使用检测图 案的检测图像来对编码图像图案进行解码。接下来,在步骤S1008,CPU 301计算在步骤S1009中使用的校正处理的参数,以及 在步骤S1010中使用的二值化处理的参数。在该计算期间,除了在步骤S1003中使用的RAM302中保存的关于扫描时的参数的信息以及扫描图像处理时的参数之外,还使用被剪切图 像自身的信息。通过除了使用在步骤S1003中使用的信息之外还使用被剪切图像自身的信 息,实现了更精确的校正处理及二值化处理。接下来,在步骤S1009,CPU 301执行由变倍单元323进行的变倍处理、由滤波器处 理单元324进行的滤波处理、由线性度调整单元325进行的线性度调整处理、以及由特殊处 理单元326进行的粗化处理,作为主要校正处理。步骤S1009中的变倍处理中的参数确定方法与步骤S1003中的参数确定方法相 同。然而,步骤S1009中的变倍处理是对部分图像的变倍处理。因此,步骤S1009中的变倍 处理的负荷低于步骤S1004中的变倍处理的负荷。因此,在步骤S1009,可以考虑能够应用 变倍性能高但计算成本也高的立方变倍,来确定变倍处理参数。下面,将描述滤波处理的参数确定方法。首先,对作为对象的被剪切图像进行分 析,以获得图像的平均亮度及频率特性。由滤波器处理单元324进行被剪切图像的分析。基 于所述值来确定参数,使得图像具有适合于后面的编码图像图案的检测的平均亮度及频率 特性。理想的平均亮度与50%的值相同(如果图像具有8位,则平均亮度为127或128)。 理想的频率特性是使得存在很多与相应的编码图像图案相对应的频率成分、而其他编码图 像图案的频率成分很少的特性。在步骤S1003,将图像的整个表面定义为待剪切的对象,对 图像特性的分析需要巨大的计算成本。然而,由于在步骤S1009中被剪切图像是图像的一 部分,因此步骤S1009中的计算成本低于步骤S1003中的计算成本。线性度调整处理的参数确定方法与步骤S1003中的确定方法相同。下面,将描述特殊处理中的参数确定方法。在诸如二维码等的编码图像图案中,黑 色单元区域与白色单元区域的比率通常接近于1 1。当特殊处理单元326执行通过使用 该性质分析被剪切图像、并且黑色单元区域与白色单元区域的比率接近于1 1的处理时, 获得更适合于编码图像图案的解码的图像。例如,计算浓度大于第一阈值的区域中的像素 数以及浓度小于第二阈值的区域中的像素数,并基于该比率来确定粗化处理及细化处理的 参数。通过分析被剪切图像,来确定在步骤S1010中的二值化处理的阈值参数。多值二 值单元321进行被剪切图像的分析。作为分析方法,考虑使用被剪切图像的直方图的方法。 例如,使用如图15所示的被剪切图像的直方图来确定阈值参数,使得两个群集(归类为白 色像素的群集以及归类为黑色像素的群集)的分离度达到最大。作为群集的分离度的评价 方法,考虑使用群集彼此的协方差矩阵的方法。此外,可以确定阈值参数,使得归类为白色 像素的像素数与归类为黑色像素的像素数的比率为1 1。应当指出,如果正常执行了校正 处理,则50%的值(如果图像由8位构成,则其为127或128)可以作为阈值参数。接下来,在步骤S1009,CPU 301基于在步骤S1008中确定的校正处理参数,来执行 校正处理。也就是说,CPU 301基于在步骤S1008中确定的校正处理参数,来确定用于执行 校正处理的校正量。变倍单元323基于在步骤S1008中确定的变倍处理参数,来执行变倍处理。滤波 器处理单元324基于在步骤S1008中确定的变倍处理参数,来执行滤波处理。线性度调整 单元325基于在步骤S1008中确定的线性度调整处理参数,来执行线性度调整处理。特殊 处理单元326基于在步骤S1008中确定的用于粗化处理及细化处理的参数,来执行特殊处理。作为校正处理对象的图像可以是从扫描图像的整个表面剪切的图像,并且与对图 像的整个表面进行校正的情况相比,校正处理的计算成本低。因此,首选执行全部的校正处 理,但是也可以执行一部分校正处理。接下来,在步骤S1010,CPU 301基于在步骤S1008中确定的二值化处理的阈值参 数,使多值二值单元321对在步骤S1009校正过的图像执行二值化处理。接下来,在步骤S1011,CPU 301通过编码图像图案解码单元329执行由在步骤 S1010中进行二值化的图像的编码图像图案的解码。当在步骤S1002中被执行扫描图像处理的编码图像图案如图12所示时,在步骤 S1005中进行二值化的编码图像图案变为如图13所示。由于如图13所示的编码图像图案具有用于步骤S1006中的检测图案的检测处理 的清晰检测图案,因此其在检测方面没有问题。然而,由于对于步骤S1011中的编码图像图 案的解码处理而言,黑色单元过细,因此出现解码上的问题。也就是说,即使在步骤S1004 和在步骤S1005中执行的校正处理及二值化处理对步骤S1006中的处理而言是充分的预处 理,它们对步骤S1011中的处理而言也不是充分的预处理。要在步骤S1006中处理的图像的大小与要在步骤S1011中处理的图像的大小相差 很大。因此,即使对步骤S1011中的处理执行需要高计算成本的预处理,其对总体计算成本 也没有大的影响。因此,在步骤S1009及步骤S1010,执行对与步骤S1004及步骤S1005中 的处理相比需要更高计算成本、并且适合于编码图像图案的解码处理的图像的预处理。这 样,能够生成如图14所示白色单元的大小与黑色单元的大小相均衡的图像。在步骤S1011, 对如图14所示的图像执行编码图像图案的解码处理。通过这样分别执行用于检测编码图 像图案的检测图案的图像和用于对编码图像图案进行解码的图像,能够以限制计算成本的 形式提高编码图像图案的解码性能。在解码处理完成之后,CPU 301使用数据总线(未示出)将解码结果保存在RAM 302 中。接下来,在步骤S1012,CPU 301由保存在RAM 302中的解码结果,来确定是否进行 扫描图像的打印。在CPU 301分析解码结果、关于打印确定的信息包含在该解码结果之中而且该信 息被定义为复印禁止的情况(禁止情况)下,中止打印的执行。然后,处理结束。在信息不是禁止(是准许)的情况下,CPU 301确定准许打印的执行,处理进入到 步骤S1013。应当指出,在未找到编码图像图案的情况下,CPU301也确定准许打印的执行。接下来,在步骤S1012中的确定之后,在步骤S1013,CPU 301执行打印图像处理。首先,CPU 301通过解压缩单元316对保存在RAM 302中或HDD 304中的、在步骤 S1002中生成的压缩图像进行解压缩,以通过打印机图像处理单元315对其进行处理。接下来,CPU 301通过打印机图像处理单元315,对解压缩的图像执行打印图像处 理。打印机图像处理单元315通过背底消除处理单元601、单色生成单元602、对数转换单 元603、输出色彩校正单元604、输出侧伽玛校正单元605、半色调校正单元606对图像进行 处理。应当指出,在彩色打印时,CPU 301不操作单色生成单元602。CPU 301将执行了打印图像处理的图像经由打印机I/F 314发送到打印机14。
接下来,在步骤S1014,CPU 301在打印机14中的纸张上形成通过打印机I/F 314 接收到的图像。进行了打印的纸张被输出到输出托盘(未示出)。〈第二实施例〉接下来,将通过参照附图来说明第二实施例。应当指出,在第一实施例中说明过的 附图以及关于流程图的说明将被省略。在这里,将使用图16作为要在第二实施例中说明的 流程图来进行说明。图16中的流程图中的各步骤的处理由CPU 301进行总体控制。当用户通过操作 单元12选择伴随扫描处理的处理并按下开始按钮时,执行图16中的流程图。作为第二实施例中的流程图的图16中的步骤S1001至步骤S1005与第一实施例 中的步骤S1001至步骤S1005相同。在步骤S2006,CPU 301通过检测图案检测单元328执行从步骤S1005中进行二 值化的图像中检测编码图像图案的检测图案。由于每一个信息码存在多个检测图案,因此, 可以由位置关系来指定编码图像图案主体的位置。结果,在检测到检测图案的情况下,CPU 301执行以下处理。也就是说,CPU301由所检测到的检测图案信息得到编码图像图案的位 置信息,并将该位置信息保存在RAM 302中。在检测时,能够获得检测到的检测图案的粗化/细化信息。二维码的检测图案具 有这样的结构,其中,在3X3的黑色单元周围存在具有一个单元宽度的白色单元框,再向 其外侧又存在具有一个单元宽度的黑色单元框。因此,通过3X3的黑色单元的中心的任意 截面均被理想地构造为使得黑色区域白色区域黑色区域白色区域黑色区域的比 率为比率1 1 3 1 1。在检测时,能够获得该比率距理想值的偏差。距理想值的偏 差信息示出二维码的白色单元或黑色单元或者被粗化,或者被细化,该粗化/细化信息被 保存在RAM302中。由于粗化/细化可能具有方向性,因此,可以保存纵向上及横向上的两 种粗化/细化信息。顺便提及,在粗化/细化信息是“粗化”的情况下,应该对编码图像图案(通过步骤 S1007中的剪切处理获得的图像)执行细化处理。另一方面,在粗化/细化信息是“细化” 的情况下,应该对编码图像图案(通过步骤S1007中的剪切处理获得的图像)执行粗化处理。作为第二实施例中的流程图的图16中的步骤S1007与第一实施例中的步骤S1007 相同。接下来,在步骤S2008,CPU 301计算在步骤S2009中使用的校正处理的参数,以及 在步骤S2010中使用的二值化处理的参数。在该计算期间,除了关于扫描时的参数的信息 之外,还使用以下参数。也就是说,使用在步骤S1003中使用的保存在RAM 302中的扫描图 像处理时的参数、保存在RAM302中的粗化/细化信息、或者在步骤S2006中检测到的检测 图案。通过使用除了在步骤S1003中使用的信息之外还使用这些信息,实现了更精确的校 正处理及二值化处理。接下来,在步骤S2009,CPU 301执行由变倍单元323进行的变倍处理、由滤波器处 理单元324进行的滤波处理、由线性度调整单元325进行的线性度调整处理、以及由特殊处 理单元326进行的粗化处理及噪声像素去除,作为主要校正处理。步骤S2009中的变倍处理中的参数确定方法与步骤S1003中的参数确定方法相同。然而,步骤S2009中的变倍处理是对部分图像的变倍处理。因此,步骤S2009中的变倍 处理的负荷低于步骤S1004中的变倍处理的负荷。因此,在步骤S2009,可以考虑能够应用 变倍性能高但计算成本也高的立方变倍,来确定变倍处理参数。滤波处理中的参数确定方法与步骤S1003中的参数确定方法相同。线性度调整处理中的参数确定方法与步骤S1003中的参数确定方法相同。下面,将说明特殊处理中的参数确定方法。使用在步骤S2006中检测到的检测图 案,来计算用于校正黑色单元及白色单元的粗化/细化的参数。例如,假设在通过检测图 案的中心的截面中,黑色区域白色区域黑色区域白色区域黑色区域的比率为比率 1.2 0.8 3.6 0.8 1.2。在这种情况下,如果执行了黑色单元的大约0. 83倍的细 化处理或者白色单元的大约1.25倍的粗化处理,则黑色区域白色区域黑色区域白 色区域黑色区域的比率为比率1 1 3 1 1。确定用于使检测图案变形到该理想 比率的粗化/细化处理的参数。此外,特殊处理单元326具有去除噪声像素的能力,并且还 计算去除参数。此外,提供以下方法作为其他特殊处理中的参数确定方法。在这种情况下,同样使 用在步骤S2006中检测到的检测图案,来计算用于校正黑色单元及白色单元的粗化/细化 的参数。应当指出,就检测图案而言,在步骤S2006检测到三个检测图案的情况下,此处使 用其中的任意一者作为对象。例如,假设该检测图案是如图17所示的检测图案。假设在通过检测图案中心的水 平截面中,黑色区域的像素数白色区域的像素数黑色区域的像素数白色区域的像素 数黑色区域的像素数是a像素b像素c像素d像素e像素。然后,如图1 7所 示,左边黑色区域的中心与右边黑色区域的中心之间的单元数将是六个单元。因此,计算 (a/2+b+c+d+e/2)/6作为一个单元的像素数,并将一个单元的像素数设为i以这种方式, 求出作为基准的一个单元的像素数。然后,确定用于使得各黑色区域(a像素、c/3像素或e 像素)具有大约w个像素的宽度的校正的粗化/细化处理的参数(如果黑色区域具有大约 w个像素的宽度,结果白色区域具有大约w个像素的宽度)。为了求出作为基准的一个单元 的像素数,也考虑使用从左边黑色区域的左端到右边黑色区域的右端的距离的方法。在这 种情况下,该距离预期达到七个单元,但是由于黑色像素的粗化/细化的影响,该距离变化 很大,达到多于或少于七个单元。因此,为了求出作为基准的一个单元的像素数,优先选用 前述使用左边黑色单元的中心与右边黑色单元的中心之间的单元数的方法,该方法不容易 受到粗化/细化的影响。接下来,将更为详细地说明参数确定方法。为此可以考虑各种方法,但是,其中的 一个示例是令参数xh= (a+c+e-5w)/60其前半部分表达式(a+C+e-5w)示出了关于作为总 体黑色区域总计有多少黑色区域被粗化的计算(在表达式(a+C+e-5W)变为最小的情况下, 该表达式示出关于有多少黑色区域被细化的计算)。此外,通过将该表达式(a+C+e-5W)除 以6,计算各黑色区域左/右平均粗化了多少。因为总共有三个黑色区域,并且可以被粗化 的位置的数量是2,将2分配到各黑色区域的左、右两侧,所以,使用3X2得到的6作为除 数。为了使所述参数xh像素的粗化返回到先前状态,有必要进行_xh像素的粗化处理 (即xh像素的细化处理)。作为使用该参数的粗化/细化处理,考虑下面的处理。应当指出,在该步骤中,执行直到求出参数为止的处理,并且在特殊处理单元326中,以如下方式 执行实际使用该参数的如下粗化/细化处理。首先,在粗化处理的情况下,执行将关注像素的浓度值(valueU,y))替换为包含 关注像素在内的邻近于关注像素的像素的浓度值当中的最大值(processed value (x, y)) (在细化处理的情况下,不是最大值,而是最小值)的处理。这通过计算公式示出如下。processed value(x, y) = max value(value(x~l, y),value(x, y),value(x+1,
y))processed value (x,y)执行上述替换处理之后的关注像素的浓度值;value (x, y)执行上述替换处理之前的关注像素的浓度值;max value (a, b, c)输出a、b、c当中的最大值的函数。具体来说,首先,将关注像素设置为位于x = l、y = 1(左上部)的像素,来执行所 述替换处理。在执行所述替换处理之后,移动关注像素使得x = 2,y = 1。在以使得对该 关注像素执行所述替换处理的方式逐一移动关注像素时,对所有像素(通过步骤S1007中 的剪切处理获得的图像中的所有像素)执行替换处理。应当指出,邻近的搜索范围如公式中所示,被确定为围绕关注像素的横向上的三 个像素的范围。也就是说,邻近的像素包括由关注像素左边的像素、关注像素及关注像素右 边的像素组成的三个像素。当执行一次上述处理时,结果导致一个像素的粗化/细化处理。在本实施例中,这种替换处理被执行“xh”次(“xh”是通过对xh进行舍入获得的 整数)。为了执行第N次(N为小于等于“xh”并且大于等于2的自然数)替换,将通过执行 第(N-1)次替换处理而获得的所有像素的processed value (x, y)设置为value (x,y),然 后,执行第N次替换处理。应当指出,同样在纵向上,以类似于横向的形式来进行校正参数 的计算。在纵向的情况下,粗化/细化处理的邻近搜索范围是围绕关注像素的纵向上的三 个像素。以这种方式,针对纵向和横向两个方向,确定用于粗化/细化处理的参数。使用这 些参数,依次执行所述纵向上及横向上的粗化及细化处理(具体地说,例如,在完成横向上 的粗化及细化处理之后,执行纵向上的粗化及细化处理。也就是说,在完成横向上的“xh”次 替换处理之后,执行纵向上的“yh”次替换处理。应当指出,yh是纵向上的参数。)。此时,为了同时执行纵向和横向上的粗化处理,粗化/细化处理时的邻近搜索范围可以是围绕关 注像素的3X3像素。特殊处理单元326具有去除噪声像素的能力,并且计算去除参数。与解码相对应 的编码图像图案的单元大小可以由粗化/细化信息来预测,并且是被预测的前面所述的w 像素的单元大小。基于所预测出的单元大小,来计算要作为噪声被去除的独立像素的大小 (例如,纵向w/2、横向v/2),其被定义为去除参数。例如,在横向上的w是10个像素、纵向 上的单元大小v是12个像素的情况下,将大小小于等于一半即横向上小于等于5个像素、 纵向上小于等于6个像素的独立像素组假定为噪声像素。以这种方式,确定出用于从图像 (通过步骤S1007中的剪切处理获得的像素)中将噪声去除的噪声去除参数。如果正确执行了校正处理,则步骤S2010中的二值化处理的阈值参数通常可以是50% 的值(如果图像是8位,则其为127或128)。然而,为了减轻校正处理的负荷,在未 充分执行校正处理的情况下,计算由于非校正处理导致的距阈值50%的偏差。将反映该偏 差值的值定义为阈值(因为涉及到滤波处理,所以不能计算出精确的偏差值)。接下来,在步骤S2009,CPU 301基于在步骤S2008中确定的校正处理参数,来执行 校正处理。也就是说,CPU 301基于在步骤S2008中确定的校正处理参数,来确定用于执行 校正处理的校正量。作为校正处理对象的图像是从扫描图像的整个表面剪切的图像。变倍单元323基于在步骤S2008中确定的变倍处理参数,来执行变倍处理。滤波器 处理单元324基于在步骤S2008中确定的变倍处理参数,来执行滤波处理。线性度调整单 元325基于在步骤S2008中确定的线性度调整处理参数,来执行线性度调整处理。特殊处 理单元326基于在步骤S2008中确定的粗化处理及细化处理的参数,来执行特殊处理(粗 化处理及细化处理)。该处理如前所述。特殊处理单元326基于在S2008中确定的噪声去 除参数,来执行特殊处理(噪声去除)。作为校正处理对象的图像可以是从扫描图像的整个表面剪切的图像,并且与对图 像的整个表面进行校正的情况相比,校正处理的计算成本低。因此,首选执行全部的校正处 理,但是也可以执行一部分校正处理。接下来,在步骤S2010,CPU 301基于在步骤S2008中确定的二值化处理的阈值参 数,通过多值二值单元321对在步骤S2009中校正过的图像执行二值化处理。接下来,在步骤S2011,CPU 301通过编码图像图案解码单元329执行由在步骤 S2010中进行二值化的图像对编码图像图案的解码。当在步骤S1002中被执行扫描图像处理的编码图像图案如图12所示时,在步骤 S1005中进行二值化的编码图像图案变为如图13所示。由于如图13所示的编码图像图案具有用于步骤S1006中的检测图案的检测处理 的清晰检测图案,因此其在检测方面没有问题。然而,由于对于在步骤S2011中的编码图像 图案的解码处理而言,黑色单元过细,因此出现解码上的问题。也就是说,即使在步骤S1004 和在步骤S1005中执行的校正处理及二值化处理对步骤S1006的处理而言是充分的预处 理,它们对步骤S2011的处理而言也不是充分的预处理。要在步骤S1006中处理的图像的大小与要在步骤S2011中处理的图像的大小相差 很大。因此,即使对步骤S2011中的处理执行需要高计算成本的预处理,这对总体计算成本 也没有大的影响。因此,在步骤S2009及步骤S2010,执行对与步骤S1004及步骤S1005相 比需要更高计算成本、并且适合于编码图像图案的解码处理的图像的预处理。这样,能够生 成如图14所示白色单元的大小与黑色单元的大小相均衡的图像。在步骤S2011,对如图14 所示的图像执行编码图像图案的解码处理。如上面所说明的,根据以上实施例,可以实现以下目的。也就是说,通过分别执行 用于检测编码图像图案的检测图案的图像和用于对编码图像图案进行解码的图像,能够以 限制计算成本的形式提高编码图像图案的解码性能。在解码处理完成之后,CPU 301使用数据总线(未示出)将解码结果保存在RAM 302 中。作为第二实施例中的流程图的图16中的步骤S1012至步骤S1014与第一实施例 中的步骤S1012至步骤S1014相同。
[其他实施例]还可以由读出并执行记录在存储装置上的程序来执行上述实施例的功能的系统 或装置的计算机(或诸如CPU或MPU等的装置),来实现本发明的各方面;并且可以利用由 通过例如读出并执行记录在存储装置上的程序来执行上述实施例的功能的系统或装置的 计算机来执行各步骤的方法,来实现本发明的各方面。为此,例如经由网络或从充当存储装 置的各种类型的记录介质(例如计算机可读介质)将程序提供给计算机。虽然参照示例性实施例对本发明进行了描述,但是应当理解,本发明不局限于所 公开的示例性实施例。应当对所附权利要求的范围给予最宽泛的解释,以使其涵盖所有的 这类变型例及等同结构和功能。
权利要求
一种用于对具有检测图案的编码图像图案进行解码的装置,该装置包括检测单元,其被构造为从图像中检测所述检测图案;校正单元,其被构造为基于所检测到的检测图案的浓度,来校正位置由所检测到的检测图案指定的所述编码图像图案的浓度;以及解码单元,其被构造为对浓度已被校正的所述编码图像图案进行解码。
2.根据权利要求1所述的装置,其中,所述校正单元只对所述图像中的所述编码图像 图案一者的浓度进行校正。
3.根据权利要求2所述的装置,其中,所述图像是对原稿进行扫描并对通过所述扫描 获得的图像执行图像处理后的图像,所述校正单元使用所检测到的检测图案的浓度以及所 述扫描时的参数和所述图像处理的参数,来确定用于进行所述校正的校正量。
4.一种用于对具有检测图案的编码图像图案进行解码的方法,该方法包括检测步骤,其从图像中检测所述检测图案;校正步骤,其基于所检测到的检测图案的浓度,来校正位置由所检测到的检测图案指 定的所述编码图像图案的浓度;以及解码步骤,其对浓度已被校正的所述编码图像图案进行解码。
5.根据权利要求4所述的方法,其中,所述校正步骤只对所述图像中的所述编码图像 图案一者的浓度进行校正。
6.根据权利要求5所述的方法,其中,所述图像是对原稿进行扫描并对通过所述扫描 获得的图像执行图像处理后的图像,所述校正步骤使用所检测到的检测图案的浓度以及所 述扫描时的参数和所述图像处理的参数,来确定用于进行所述校正的校正量。
全文摘要
本发明的主题是提供一种能够提高编码图像图案的解码处理时的解码性能以减小解码处理的负荷的装置及方法。为了解决以上问题,根据本发明的装置是一种用于对具有检测图案的编码图像图案进行解码的装置,该装置包括检测单元,其被构造为从图像中检测所述检测图案;校正单元,其被构造为基于所检测到的检测图案的浓度,来校正位置由所检测到的检测图案指定的所述编码图像图案的浓度;以及解码单元,其被构造为对浓度已被校正的所述编码图像图案进行解码。
文档编号H04N1/40GK101800827SQ20101011239
公开日2010年8月11日 申请日期2010年2月10日 优先权日2009年2月10日
发明者荒川纯也 申请人:佳能株式会社