专利名称:一种针对高速总线传输通信系统上的快速捕获系统的制作方法
技术领域:
本发明属于通信领域,涉及一种指令响应型串行总线下的捕获技术,特别涉及一种针对高速总线传输系统的快速捕获系统。
背景技术:
本发明针对一种新型高速指令响应型串行总线传输通信系统,该系统具有传输速率高、反应速度灵敏、误码率低等优良特性,因此对捕获机制提出了较高的要求。首先,其物理层传输速率>100Mbps,传统前导序列系统开销较大,无法满足该系统的有效数据传输速率要求。其次,该系统反应时延较短,用户终端需要具有快速捕获能力,也就是说必须在有限的时间内快速完成信号捕获。并且,通信双方路由信息未知,需在较大动态范围内,实现快速自适应的PGA调节。典型的无限局域网如902. 11a、Homeplug AVI. O及WiMax前导序列均具有2个左右的OFDM符号长度(其帧结构如图I、图2、图3所示),捕获时间及AGC调节时间较长,因此传统的捕获方法不适用于上述新型通信系统,需要提出一种新型的信号快速捕获及AGC快速调节技术。
发明内容
针对物理层传输速率>100Mbps的新型高速指令响应型串行总线传输通信系统,为了保证上述系统的传输速率,加快系统响应时间,降低系统误码率,本发明公开了一种快速捕获系统,用于解决接收终端在短时间内的突发信号捕获问题及AGC快速调节问题。一种基于总线传输通信系统上的快速捕获系统,包括主控制系统、缓存模块、峰均比分析模块、专用短型前导序列模块、128FIR相关器、双峰检测模块、帧搜索模块、能量检测模块及PGA反馈控制模块、数据整合模块;所述主控制系统完成系统参数配置、系统状态监控及数据流控制,根据系统的状态及帧搜索模块的结果,向缓存模块、用短型前导序列模块、PGA反馈控制模块及、数据整合模块发送相应的控制指令;所述缓存模块将输入数据进行缓存操作,根据所述主控制系统的系统状态指示,对缓存数据完成相应的开始或停止输出。峰均比分析模块、专用短型前导序列模块产生本发明的专用短型前导序列,将该前导序列送入128FIR相关器模块完成接收数据与本地专用短型前导序列的相关操作,相关结果送入双峰检测模块完成峰值检测后,进入帧搜索模块判断是否捕获成功。如果捕获成功,帧搜索模块发送反馈信号到所述主控制系统模块,随即数据整合模块根据数据帧位置,将数据的C P剥离后,将有效数据输出。双峰能量检测模块一方面将接收信号情况送入128FIR相关器模块,另一方面与双峰能量检测模块、PGA反馈控制模块形成相应反馈控制字,完成模拟前端AGC自适应闭环增益调节;
上述技术方案所述的缓存模块,根据所述的主控制系统的状态指示,将输入数据进行缓存操作,对缓存数据完成相应的开始或停止输出,当捕获成功后,根据数据帧位置,将数据的C P剥离后,将有效数据输出。上述技术方案所述的峰均比分析模块,根据该新型高速指令响应型串行总线系统的电缆等物理线路元器件衰减模型,对系统捕获性能进行仿真,针对96%捕获概率要求,确定相关序列的峰均比指标,从而确定专用短型前导序列的码长Len,本发明实例中Len=128 ;上述技术方案所述的专用短型前导序列模块,根据所述的峰均比分析模块所确定的码长Len,及上述技术方案所述的主控制系统模块(I)的状态指示,产生码长为Len的kasami码,本发明实例中Len=128 ;上述技术方案所述的128FIR相关器,采用转置式FIR滤波器结构,加入饱和处理措施,将输入信号和所述的专用短型前导序列模块产生的128长度kasami码进行相关运算,得出相关系数CorrData。上述技术方案所述的双峰检测模块,考虑到本系统的物理传输环境,采用如下检 它还锁存两个峰值时刻的能量EngDatal、EngData2,送如所述PGA反馈控制模块完成自动
上述技术方案所述的帧搜索模块,采用一种专用方式对所述的双峰检测模块给出的双峰Peakl、Peak2进行判断,当EngDatal、EngData2幅值相差不超过30%时,则判断捕获成功,并将捕获成功信号送入所述的主控制系统;上述技术方案所述的能量检测模块,以滑动窗口模式,计算长度为128的输入信号的能量累加值EngData。根据此值,给出两个信号SActive_激活信号,SDeActive-消失信号,同时将EngData信号送到双峰值检测模块用于AGC处理;上述技术方案所述的PGA控制字模块,判断捕获成功时,根据所述的主控制系统状态指示,根据双峰能量EngDatal、EngData2,生成相应的PGA控制反馈字。从而快速完成模拟前端的自适应闭环调节;上述技术方案所述的数据整合模块,根据接收机后续FFT所需的数据包格式,对数据流进行CP剥离操作,输出有用数据流及FFT控制信号。本发明的有益效果是根据该新型高速指令响应型串行总线传输系统的电缆等物理环境衰减特点及捕获概率要求,本发明采用专用短型前导序列,其码长采用系统可容纳的最短长度,减小了捕获时间,降低了不必要的系统开销,保证了系统的传输速率;本发明采用一种自适应峰值判别方式,提高了捕获的信道动态范围,降低了系统复杂度;本发明采用了一种帧搜索技术,可简便有效的完成捕获判断,保证了信号捕获概率,降低了系统复杂度;本发明采用AGC反馈控制回路,估计当前的同步头的能量,完成PGA快速自适应增益调节,缩短了闭环增益调整时间。本发明特点如下I,采用专用短型前导序列,捕获速度提升至原有4倍;2,采用自适应双峰值判别方式,动态范围较大;3,采用一种帧搜索方式,搜索简便;
4,不需要先通过AGC,即开始捕获工作;5,捕获判断时,采用软判决方式;6,参数寄存器可配置。
图I是无限局域网902. Ila规范中规定的前导序列字格式;图2是Hom印lug AVl. O规范中规定的前导序列字格式;图3是WiMax规范中规定的前导序列字格式;图4是本发明实例提供的总线架构图;
图5是本发明实例提供的快速捕获系统的架构原理图;图6是本发明实例提供的快速捕获系统前导序列格式;图7是本发明实例提供的快速捕获系统的相关系数仿真图;图8是本发明实例提供的AGC快速调整结构图;图9是本发明实例提供的AGC控制电压查找表。
具体实施例方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。本发明所在的总线架构及通信连接方式如图4所示,总线电缆长度为100米,包括12个用户终端。单用户终端完成物理通信速率>100Mbps、实时的突发信息传输。为了保证上述系统的传输速率及系统响应时间,本发明公开了一种快速捕获方法,用于解决接收终端在短时间内的突发信号捕获问题及AGC快速调节问题。本发明处于信号处理芯片内,其技术途径是根据该新型高速指令响应型串行总线传输系统的电缆等物理环境衰减特点及捕获概率要求,确定系统所容纳的前导序列最短码长。在该前导序列与接收信号的相关过程中,采用自适应双峰值判别方式,提取相关系数CorrData序列段的两个最大值,并根据帧格式判断其间隔是否为128。该种提取最大值的方式适应本系统中通/[目双方路由未知,裳减未知的情况,有效提闻了捕获的/[目道动态范围,降低了系统复杂度;采用了一种帧搜索技术,判断双峰能量差值是否满足要求,可简便有效的完成捕获判断,保证了信号捕获概率,降低了系统复杂度。同时,本发明采用AGC反馈控制回路,估计当前的同步头的能量,完成PGA快速自适应增益调节,缩短了闭环增益调整时间。如图5所示,本发明包括主控制系统I、缓存模块2、峰均比分析模块3、专用短型前导序列模块4、128FIR相关器5、双峰检测模块6、帧搜索模块7、能量检测模块8及PGA反馈控制模块9、数据整合模块10。包括以下步骤所述主控制系统I完成系统参数配置、系统状态监控及数据流控制,根据系统的状态及帧搜索模块7的结果,向缓存模块2、用短型前导序列模块4、PGA反馈控制模块9及数据整合模块10发送相应的控制指令;所述缓存模块2将输入数据进行缓存操作,根据所述主控制系统I的系统状态指示,对缓存数据完成相应的开始或停止输出。峰均比分析模块3、专用短型前导序列模块4产生本发明的专用短型前导序列,将该前导序列送入128FIR相关器5完成接收数据与本地专用短型前导序列的相关操作,相关结果送入双峰检测模块6完成峰值检测后,进入帧搜索模块7判断是否捕获成功。如果捕获成功,帧搜索模块7发送反馈信号到所述主控制系统1,随即数据整合模块10根据数据帧位置,将数据的C P剥离后,将有效数据输出。双峰能量检测模块8—方面将接收信号情况送入128FIR相关器5,另一方面与双峰能量检测模块8、PGA反馈控制模块9形成相应反馈控制字,完成模拟前端AGC自适应闭环增益调节。上述技术方案所述的主控制系统I完成系统参数配置,根据所述主控制系统I的系统状态指示对所述缓存模块2发送相应的控制指令,完成接收数据的缓存、数据开始或停止输出;对短型前导序列模块4发送控制指令,产生系统的专用短型前导序列;根据系统的状态及帧搜索模块7的结果,对PGA反馈控制模块9,发送相应的PGA控制指令字。上述技术方案所述的缓存模块2根据所述主控制系统I的系统状态指示,完成数据流控工作,包括存储ADC转化后的接收数字信号;将接收信号送入所述能量检测模块8进行绝对能量计算;将接收信号送入所述128FIR相关器模块5完成接收信号与本地专用短型前导序列的相关操作;判断捕获成功,送入数据整合模块10。·上述技术方案所述的峰均比分析模块3,根据该新型高速指令响应型串行总线系统的电缆等物理线路元器件衰减模型,对系统捕获性能进行仿真,针对96%捕获概率要求,确定相关序列的峰均比指标,从而确定专用短型前导序列的码长Len,本发明实例中Len=128。由于指令响应型串行总线下的物理传输环境属于强频率选择性衰落信道,因此经过分析及仿真,将传统帧格式中前导序列长度从Len=512降至Len=128。通过仿真模型比较,该专用短型前导序列可以满足捕获性能要求,优化后的帧格式如图6所示。上述技术方案所述的专用短型前导序列模块4,根据所述的峰均比分析模块3所确定的码长Len,及上述技术方案所述的主控制系统I的状态指示,产生码长为Len的kasami码,其专用短型前导序列可表示为s = [S1, S2, , sN]τ(I)上述技术方案所述的128FIR相关器5,采用转置式FIR滤波器结构,加入饱和处理措施,将输入信号和所述的专用短型前导序列模块4产生的128长度kasami码进行相关运算,得出相关系数CorrData,如下所示
AT—ICorr[)a!a[fi] 二 y^v(n -i)s\. (2)
/=O此时输入信号未经AGC处理,因此运算单元采用了饱和处理措施,FIR乘加单元采用的数据为4位,以保证在所需要的动态范围内,都可以正确捕获。上述技术方案所述的双峰检测模块6,考虑到本系统的物理传输环境,采用如下检测方法发送端发送专用短型前导序列,因此检测相关系数CorrData[n]的最大值时,存在两个峰值Peakl及Peak2,搜索如下所示Peakl = max (CorrData [η]) η = 1,2,..., 128(3)Peak2 = max (CorrData[n])n = 129,130,...,256(4)当Peakl及Peak2相隔128长度时,输出这二个峰值,并给出峰值有效信号PeakValid,如图7所示,存在间隔128的两个尖锐相关峰。同时,将锁存两个峰值时刻的能量EngDatal、EngData2,送如所述PGA反馈控制模块9完成自动增益控制。
上述技术方案所述的帧搜索模块7,采用一种专用方式对所述的双峰检测模块6给出的双峰Peakl、Peak2进行判断,当EngDatal、EngData2幅值相差不超过30%时,如公式5所示,则判断捕获成功,并将捕获成功信号送入所述的主控制系统I。^--- < 30%(5)
\ii tgDa ια] + ing/)a/a2\上述技术方案所述的能量检测模块8,以滑动窗口模式,计算长度为128的输入信号的能量累加值EngData。根据此值,给出两个信号SActive_激活信号,SDeActive-消失信号,同时将EngData信号送到双峰值检测模块用于AGC处理。上述技术方案所述的PGA控制字模块9,判断捕获成功时,根据所述的主控制系统I状态指示,根据双峰能量EngDatal、EngData2,估计前导序列的平均能量。根据前导序列与PGA的增益特性的能量查找表,将能量映射成为合适的控制电压输出。如果同步头能量 高,那么输出电压低,对应增益也低。反之亦然,其过程如图8。其AGC控制电压查如图9所
/Jn ο上述技术方案所述的数据整合模块10,根据接收机后续FFT所需的数据包格式,对数据流进行CP剥离操作,输出有用数据流及FFT控制信号。
权利要求
1.一种基于总线传输通信系统上的快速捕获系统,其特征在于,包括主控制系统(I)、缓存模块(2)、峰均比分析模块(3)、专用短型前导序列模块(4)、128FIR相关器(5)、双峰检测模块出)、帧搜索模块(7)、能量检测模块(8)及PGA反馈控制模块(9)、数据整合模块(10);所述主控制系统(I)完成系统参数配置、系统状态监控及数据流控制,根据系统不同状态,向缓存模块(2)、用短型前导序列模块(4)、PGA反馈控制模块(9)及数据整合模块(10)发送控制指令; 所述缓存模块(2)将输入数据进行存储操作,根据所述主控制系统(I)的系统状态指示,对缓存数据完成相应的开始或停止输出; 峰均比分析模块(3)确定该通信系统所容纳的前导序列最短长度,根据该长度通过专用短型前导序列模块(4)产生短型前导序列,将该前导序列送入128FIR相关器模块(5)完成接收数据与本地短型前导序列的相关操作,相关结果送入双峰检测模块(6)完成峰值检测后,进入帧搜索模块(7)判断是否捕获成功; 如果捕获成功,帧搜索模块(7)发送反馈信号到所述主控制系统(I),随即所述缓存模块(2)将数据送入整合模块(10),将数据的CP剥离后,以接收机后续IFFT需要的数据帧格式,将有效数据输出; 双峰能量检测模块(8)完成两方面工作,一方面将激活信号SActive及消失信号SDeActive送入128FIR相关器(5);另一方面与双峰检测模块(6)、PGA反馈控制模块(9)形成相应反馈控制字,完成模拟前端AGC自适应闭环增益调节。
2.如权利要求I所述的系统,其特征在于,缓存模块⑵根据所述的主控制系统⑴的状态指示,将输入数据进行缓存操作,对缓存数据完成相应的开始或停止输出,当捕获成功后,根据数据帧位置,将数据的C P剥离后,将有效数据输出。
3.如权利要求2所述的系统,其特征在于,峰均比分析模块(3)根据该通信指令响应型串行总线的物理线路元器件衰减模型,对系统捕获性能进行仿真,针对96%捕获概率要求,确定相关序列的峰均比指标,从而确定专用短型前导序列的码长Len,Len=128。
4.如权利要求3所述的系统,其特征在于,专用短型前导序列模块(4)根据所述的峰均比分析模块(3)所确定的码长Len,及主控制系统(I)的状态指示,产生码长为Len的kasami 码。
5.如权利要求4所述的系统,其特征在于,128FIR相关器(5)采用转置式FIR滤波器结构,加入饱和处理措施,将输入信号和所述kasami码进行相关运算,得出相关系数CorrData0
6.如权利要求5所述的系统,其特征在于,双峰检测模块(6)采用如下检测方法检测相关系数CorrData的最大值,当CorrData中存在两个相隔128长度的峰值,输出第一个峰值Peakl,第二个峰值Peak2,并给出峰值有效信号PeakValid ;同时,它还锁存两个峰值时刻的能量EngDatal、EngData2,送入所述PGA反馈控制模块(9)完成自动增益控制。
7.如权利要求6所述的系统,,其特征在于,帧搜索(7)采用如下方式对所述的双峰检测模块(6)给出的双峰Peakl、Peak2进行判断,当两个峰值信号的能量累加值EngDatal、EngData2幅值相差不超过30%时,则判断捕获成功,并将捕获成功信号送入所述的主控制系统⑴。
8.如权利要求I所述的系统,其特征在于,能量检测模块(8)以滑动窗口模式,计算长度为128的输入信号的能量累加值EngData ;根据此值,给出两个信号=SActive-激活信号,SDeActive-消失信号,同时将EngData信号送到双峰检测模块(6)用于AGC处理。
9.如权利要求7所述的系统,其特征在于,判断捕获成功时,PGA控制字模块(9)根据所述的主控制系统(I)状态指示,根据双峰能量EngDatal、EngData2,生成相应的PGA控制反馈字。
10.如权利要求I所述的系统,其特征在于,数据整合(10)根据接收机后续FFT所需的数据包格式,对数据流进行CP剥离操作,输出有用数据流及FFT控制信号。
全文摘要
一种针对高速总线传输系统的快速捕获系统,包括主控制系统、缓存模块、峰均比分析模块、专用短型前导序列模块、128FIR相关器、双峰检测模块、帧搜索模块、能量检测模块及PGA反馈控制模块、数据整合模块;本发明采用专业短型前导序列,大幅减小捕获时间,降低系统开销;采用一种自适应双峰判别技术及帧搜索技术,提高信号动态范围,降低系统复杂度;采用AGC反馈控制回路,缩短闭环增益调整时间。本发明可解决突发信号的快速捕获问题及AGC快速调节问题,较传统捕获方法,捕获性能保持不变,且捕获时间缩减至1/4,并可迅速反馈AGC完成自适应闭环增益调节。
文档编号H04L12/40GK102833041SQ201210302859
公开日2012年12月19日 申请日期2012年8月23日 优先权日2012年8月23日
发明者王黎, 王剑峰, 陶慧宾, 唐磊, 吴龙胜 申请人:中国航天科技集团公司第九研究院第七七一研究所