一种传感器网络中分组丢失和错误的原因识别方法和系统的制作方法

文档序号:7984038阅读:244来源:国知局
一种传感器网络中分组丢失和错误的原因识别方法和系统的制作方法
【专利摘要】本发明公开了一种传感器网络中分组丢失和错误的原因识别方法和系统。包括:在实验传感器网络中,获得多个实验样本分组,建立二元分类器;通过二元分类器,识别真实传感器网络中分组丢失和错误的原因。本发明为传感器网络高性能的数据传输提供了关键保障。
【专利说明】一种传感器网络中分组丢失和错误的原因识别方法和系统
【技术领域】
[0001]本发明涉及无线传感器网络链路感知与控制领域,尤其涉及一种传感器网络中分组丢失和错误的原因识别方法和系统。
【背景技术】
[0002]随着物联网技术的提出与不断发展,面向各种应用需求的物联网前端无线传感器网络在工业、军事和民用领域得到了广泛的应用,如室内外环境监测、智能家居、远程医疗及精准农业等。目前无线传感器网络设备大多工作在ISM频段,采用无线介质进行通信,无线信道固有的广播特性导致其它工作在ISM频段的高功率网络或设备,如802.11网络、家用电器如微波炉和无绳电话等会干扰传感器节点间的通信。同时无线传感器网络一般部署在复杂的环境中,无线通信会受到天气、障碍物等因素的影响。从而导致网络中频繁的数据分组丢失和错误。并且传感器节点射频硬件本身存在性能差异。因此,在实际应用系统部署过程中考虑影响无线通信质量的各种因素,为传感器网络数据传输提供及时、可靠的链路状态?目息,是实现闻性能网络协议的基础。
[0003]一般可将导致分组丢失和错误的因素分为以下两大类:一是信号衰减、信道衰落、多径传播或节点移动等引起的无线链路本身质量不好,从而导致分组丢失和错误,称之为信道错误类发送失败 ;二是由隐藏终端、或多个节点同时向接收节点发送数据而产生的冲突、或其它高功率网络干扰而引起的分组丢失和错误,称之为冲突类发送失败。传统基于竞争信道访问方式的无线网络采用确认机制来判断分组发送结果:如果接收到确认分组,则分组发送成功,如果在规定的时间内未收到确认分组,则认为是冲突导致的分组丢失和错误。这种在发送方基于确认机制的分组发送结果识别方法不能反映接收方接收分组的实际情况。如何准确而高效地识别分组丢失和错误的原因对设计高性能的网络协议具有重要和基础性的意义。如功率控制协议根据识别结果动态调整发送功率的大小;链路层根据识别结果自适应调整信道访问策略;路由协议根据识别结果选择可靠稳定的路径收集数据;而传输层拥塞控制协议根据识别结果设计高效的速率自适应协议。
[0004]已有方法大部分是针对802.11网络中分组发送失败(包括丢失和错误)的原因进行识别的。如采用RTS(Request-to-Send)/CTS(Clear-to_Send)控制分组来识别冲突类还是信道错误类发送失败。但是RTS/CTS控制分组会引入大的控制开销,大大降低了信道的利用率。从而现有无线网络设备一般会禁用RTS/CTS功能。也有方法通过将整个错误的分组返回给发送节点这种策略来诊断分组出错的原因,但该方法会引入大的控制开销,不适合存储和能量资源都有限的传感器节点。还有结合RTS/CTS和数据分段两种机制来区分物理层丢包和拥塞类丢包,通过分析802.1ln标准下块确认位图的损耗模式来区分弱信号类和冲突类丢包。由于802.15.4和802.11物理层标准不同,最后两种方法都不能直接应用于传感器网络。也有方法通过分析物理层比特误码率BER(Bit Error Rate)的突发性特征来判断是否有冲突发生,但该方法需要额外的硬件支持,很难在低成本的传感器节点上实现。[0005]也有少数针对无线传感器网络提出分组丢失和错误的原因识别方法。如通过分析接收信号强度指示符(RSS1: Received Signal Strength Indicator)和链路质量指示符(LQ1: Link Quality Indicator)在弱信号和冲突环境下的统计分布特征来分类分组发送结果,但该方法需要实时采集RSSI值,会引入大的能量开销。也有方法通过分析802.15.4的物理层片错误模式(CEP: Chip Error Pattern)的统计特征来识别链路当前状态,但该方法是在USRP (Universal Software Radio Peripheral)设备上实现的,在普通传感器节点上很难实现,因此实用价值小。并且该方法只考虑了同种802.15.4网络内部间的干扰,而未考虑不同网络或设备对传感器节点通信的干扰。
[0006]因此,在传感器网络中实现高效可行的分组丢失和错误的原因识别方法需要解决以下两个方面的挑战:
[0007](I)影响因素提取与分析。由于实际传感器网络应用中节点间的通信受到地理环境、天气、干扰或障碍物等很多因素的影响,获取真实网络中节点间的通信状况代价大,且会影响传感器网络的正常运行。如何提取影响当前分组丢失和错误的主要因素是分组丢失和错误原因识别问题面临的最大挑战;
[0008](2)在传感器节点上实现在线、实时和自适应的轻量级识别算法。因为受限的传感器节点资源及高度动态变化的通信状态,所以需要识别方法易于在节点上实现,且开销低、自适应性强。
[0009]本发明公开的基于机器学习理论的传感器网络分组丢失和错误的原因识别方法和系统,能够有效解决上述挑战,具有轻量级的、准确实时和易于在实际传感器网络中实现的特点。

【发明内容】

[0010]本发明的目的在于,克服现有技术的缺陷,设计轻量级的、准确实时的、易于在实际传感器网络中实现的分组丢失和错误的原因识别方法和系统,为传感器网络高性能的数据传输提供关键保障。
[0011]本发明公开了一种传感器网络中分组丢失和错误的原因识别方法,包括:
[0012]步骤1:在实验传感器网络中,获得多个实验样本分组,建立二元分类器;
[0013]步骤2:通过所述二元分类器,识别真实传感器网络中分组丢失和错误的原因。
[0014]所述步骤I包括:
[0015]步骤1.1:建立第一实验样本分组,提取分组丢失和错误的特征属性;
[0016]步骤1.2:建立第二实验样本分组;
[0017]步骤1.3:获得分组丢失和错误的所述第二实验样本分组的分组丢失和错误的原因;
[0018]步骤1.4:计算所述分组丢失和错误的第二实验样本分组的所述特征属性的特征属性值,根据所述特征属性值和所述分组丢失和错误的原因建立所述二元分类器。
[0019]所述步骤2包括:
[0020]步骤2.1:计算所述真实传感器网络的分组丢失和错误的分组的所述特征属性的所述特征属性值;
[0021]步骤2.2:将所述特征属性值输入所述二元分类器,获得所述真实传感器网络的分组丢失和错误的原因。
[0022]所述特征属性包括一时间段内正确分组的接收信号强度指示符RSSI平均值、所述时间段内所述正确分组的链路质量指示符LQI平均值、单个丢失或错误分组的RSSI瞬时值相比所述时间段内所述正确分组的RSSI均值的变化幅度、分组级比特误码率和所述时间段内全部分组中分组头部出错的概率。
[0023]所述实验传感器网络包括信道错误主导的实验传感器网络、冲突主导的实验传感器网络和信道错误和冲突都存在的实验传感器网络。
[0024]所述分组丢失和错误原因包括信道错误和冲突。
[0025]通过朴素贝叶斯、逻辑回归模型和决策树分类器的任一算法建立所述二元分类器。
[0026]本发明还公开了一种传感器网络中分组丢失和错误的原因识别系统,包括:
[0027]二元分类器建立模块,用于在实验传感器网络中,获得多个实验样本分组,建立二元分类器;
[0028]原因识别模块,用于通过所述二元分类器,识别真实传感器网络中分组丢失和错误的原因。
[0029]所述二元分类器建立模块包括:
[0030]特征属性提取子模块,用于建立第一实验样本分组,提取分组丢失和错误的特征属性;
[0031]样本采集子模块,用于建立第二实验样本分组;
[0032]原因获得子模块,用于获得分组丢失和错误的所述第二实验样本分组的分组丢失和错误的原因;
[0033]监督学习子模块,用于计算所述分组丢失和错误的第二实验样本分组的所述特征属性的特征属性值,根据所述特征属性值和所述分组丢失和错误的原因建立二元分类器。
[0034]所述原因识别模块包括:
[0035]在线特征属性值预测子模块,用于计算所述真实传感器网络的分组丢失和错误的分组的所述特征属性的所述特征属性值;
[0036]在线识别子模块,用于将所述特征属性值输入所述二元分类器,获得所述真实传感器网络的分组丢失和错误的原因。
[0037]本发明的有益效果在于:能够有效识别分组丢失和错误的原因,为无线传感器网络链路层及上层协议提供实时、准确的链路质量信息。
【专利附图】

【附图说明】
[0038]图1为本发明的方法的总流程图。
[0039]图2为图1中建立二元分类器的方法的流程图。
[0040]图3为图1中识别真实传感器网络中分组丢失和错误的原因的方法的流程图。
[0041]图4为本发明使用的CC2420分组格式。
[0042]图5为本发明的传感器设备性能测试的示意图。
[0043]图6A为本发明在信道错误和冲突的环境中所测量的丢失和错误分组的F-BER累计分布的示意图。[0044]图6B为本发明在802.11干扰和802.15.4干扰的环境中所测量的丢失和错误分组的F-BER累计分布的示意图。
[0045]图7为本发明的特征属性定义的示意图。
[0046]图8为本发明的系统结构图的一实施例。
[0047]图9为图8中二元分类器建立模块的结构图。
[0048]图10为图8中原因识别模块的结构图。
[0049]图11为本发明的系统结构图的另一实施例。
【具体实施方式】
[0050]下面结合实施例和附图对本发明的技术方案进行详细地介绍。
[0051]图1为本发明的方法的总流程图,包括如下步骤:(SI)在实验传感器网络中,获得多个实验样本分组,建立二元分类器;(S2)通过二元分类器,识别真实传感器网络中分组丢失和错误的原因。
[0052]图2为图1中建立二元分类器的方法的流程图。包括如下步骤:(S21)建立第一实验样本分组,提取分组丢失和错误的特征属性;(S22)建立第二实验样本分组;(S23)获得分组丢失和错误的第二实验样本分组的分组丢失和错误的原因;(S24)计算分组丢失和错误的第二实验样本分组的特征属性的特征属性值,根据特征属性值和分组丢失和错误的原因建立所述二元分类器。
[0053]步骤S21:建立第一实验样本分组,提取分组丢失和错误的特征属性,即特征属性提取。
[0054]首先,在不同的实验传感器网络中,对传感器接收的分组(第一实验样本分组)进行测量,对接收到的错误分组的F-BER分布模式和接收到的所有分组的RSSI和LQI的具有统计特征的属性进行分析,提取表征实验传感器网络的分组丢失和错误的特征属性。本实施例使用带有CC2420射频接口的传感器,三种实验传感器网络为:信道错误主导的实验传感器网络、冲突主导的实验传感器网络、信道错误和冲突并存的实验传感器网络,这三种实验传感器网络的分组丢失和错误的状态可以通过对发送节点间的通信距离和发送功率的调节来实现。
[0055]图4是本发明使用的CC2420分组格式。根据“序列号”字段可以判断分组是否丢失,因为分组的序列号是顺序递增的,从而根据“序列号”字段即可判断分组是否丢失。根据“CRC校验序列”字段可以判断分组是否错误。CRC校验通过则表明分组正确接收,否则说明分组发生错误。
[0056]图5是本发明所用传感器设备的性能测试结果的示意图。横坐标是节点的ID号,左侧纵坐标表示节点的实际输出功率,右侧纵坐标表示丢包率。该图表明不同节点之间的性能存在差异。在相同实验条件下(具体实验条件为:发送功率=OdBm ;工作信道:26 ;距离:30米左右;测试时间:凌晨1-3点;测试地点:中科院计算所7层实验室;没有重传机制)对每个传感器节点进行性能测试,105号节点的实际输出功率为-3.18dBm,丢包率为10.22%,而106号节点的实际输出功率为-4.04dBM,丢包率为18.89%。
[0057]本实施例中,通过对上述三种网络中的F-BER的累计分布和RSS1、LQI的均值、方差进行统计分析,提取以图7所定义的五种特征属性来表征网络中分组丢失和错误的情况,本实施例中,“一段时间”可以是5秒、10秒等。其中,对Dev(RSSI)和R(F_BER,H)的计算公式定义如下。
[0058]Dev(RSSI)的计算公式:
[0059]Dev(RSSI) = (Mean (RSSI, C) -1nst (RSSI, E))2 (I)
[0060]其中,Inst(RSSI1E)是接收到的错误分组或者丢失分组的瞬时RSSI值,C表示正确分组,E表示错误分组或者丢失分组。
[0061]R(F_BER,H)的计算公式:
[0062]
【权利要求】
1.一种传感器网络中分组丢失和错误的原因识别方法,其特征在于,包括: 步骤1:在实验传感器网络中,获得多个实验样本分组,建立二元分类器; 步骤2:通过所述二元分类器,识别真实传感器网络中分组丢失和错误的原因。
2.如权利要求1所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,所述步骤I包括: 步骤1.1:建立第一实验样本分组,提取分组丢失和错误的特征属性; 步骤1.2:建立第二实验样本分组; 步骤1.3:获得分组丢失和错误的所述第二实验样本分组的分组丢失和错误的原因; 步骤1.4:计算所述分组丢失和错误的第二实验样本分组的所述特征属性的特征属性值,根据所述特征属性值和所述分组丢失和错误的原因建立所述二元分类器。
3.如权利要求2所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,所述步骤2包括: 步骤2.1:计算所述真实传感器网络的分组丢失和错误的分组的所述特征属性的所述特征属性值; 步骤2.2:将所述特征属性值输入所述二元分类器,获得所述真实传感器网络的分组丢失和错误的原因。
4.如权利要求2所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,所述特征属性包括一时间段内正确分组的接收信号强度指示符RSSI平均值、所述时间段内所述正确分组的链路质量指示符LQI平均值、单个丢失或错误分组的RSSI瞬时值相比所述时间段内所述正确分组的RSSI均值的变化幅度、分组级比特误码率和所述时间段内全部分组中分组头部出错的概率。
5.如权利要求1所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,所述实验传感器网络包括信道错误主导的实验传感器网络、冲突主导的实验传感器网络和信道错误和冲突都存在的实验传感器网络。
6.如权利要求1所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,所述分组丢失和错误原因包括信道错误和冲突。
7.如权利要求1所述的传感器网络中分组丢失和错误的原因识别方法,其特征在于,通过朴素贝叶斯、逻辑回归模型和决策树分类器的任一算法建立所述二元分类器。
8.—种传感器网络中分组丢失和错误的原因识别系统,其特征在于,包括: 二元分类器建立模块,用于在实验传感器网络中,获得多个实验样本分组,建立二元分类器; 原因识别模块,用于通过所述二元分类器,识别真实传感器网络中分组丢失和错误的原因。
9.如权利要求8所述的传感器网络中分组丢失和错误的原因识别系统,其特征在于,所述二元分类器建立模块包括: 特征属性提取子模块,用于建立第一实验样本分组,提取分组丢失和错误的特征属性; 样本采集子模块,用于建立第二实验样本分组; 原因获得子模块,用于获得分组丢失和错误的所述第二实验样本分组的分组丢失和错误的原因; 监督学习子模块,用于计算所述分组丢失和错误的第二实验样本分组的所述特征属性的特征属性值,根据所述特征属性值和所述分组丢失和错误的原因建立二元分类器。
10.如权利要求9所述的传感器网络中分组丢失和错误的原因识别系统,其特征在于,所述原因识别模块包括: 在线特征属性值预测子模块,用于计算所述真实传感器网络的分组丢失和错误的分组的所述特征属性的所述特征属性值; 在线识别子模块,用于将所述特征属性值输入所述二元分类器,获得所述真实传感器网络的分组丢失和错误的原因。`
【文档编号】H04L1/00GK103716123SQ201210380531
【公开日】2014年4月9日 申请日期:2012年9月29日 优先权日:2012年9月29日
【发明者】黄庭培, 陈海明, 张招亮, 崔莉 申请人:中国科学院计算技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1