摄像设备的制作方法

文档序号:8004756阅读:234来源:国知局
摄像设备的制作方法
【专利摘要】一种摄像设备包括:图像传感器,其包括摄像像素和焦点检测像素,其中所述摄像像素生成图像生成用的信号,所述焦点检测像素将摄像镜头的光瞳区域分割成多个光瞳区域,并且通过对来自经过分割所获得的光瞳区域的被摄体图像进行光电转换,来生成相位差检测用的信号;切换单元,其在全部像素读出模式和间隔剔除读出模式之间进行切换,其中在所述全部像素读出模式下,读出来自所述多个像素的全部像素的信号,在所述间隔剔除读出模式下,间隔剔除并读出所述多个像素的信号;以及控制单元,其在所述切换部件将模式切换成所述间隔剔除读出模式的情况下,在图像生成所使用的摄像行和包括所述焦点检测像素的焦点检测行中彼此独立地控制电荷累积。
【专利说明】摄像设备
[0001](本申请是国际申请日为2010年2月I日、国家申请号为201080005180.2、发明名称为“摄像设备”的申请的分案申请。)
【技术领域】
[0002]本发明涉及一种包括具有以两维形式配置的多个像素的图像传感器的摄像设备。【背景技术】
[0003]作为针对摄像设备的自动焦点检测/调节方法的、使用穿过了摄像镜头的光束的普通技术,已知对比度检测技术(还称为“模糊技术”)和相位差检测技术(还称为“偏移技术”)。对比度检测技术是拍摄运动图像的摄录装置(便携式摄像机)和数字静态照相机等中所广泛使用的技术,并且在这种情况下,使用其图像传感器作为焦点检测传感器。该技术关注从图像传感器所输出的信号,尤其关注该信号的高频成分的信息(对比度信息),并且使用该高频成分信息的评价值最高的摄像镜头的位置作为聚焦位置。然而,如名称“爬山技术”所暗示的那样,在微小移动摄像镜头的同时求得评价值,并且最终必须将该透镜移动至可以检测到最大评价值的位置处,因此该技术不适合于快速焦点调节。
[0004]在使用银盐胶片的单镜头反光照相机中通常使用另一技术、即相位差检测技术,并且该技术是最有利于在单镜头反光照相机中实际应用自动焦点(AF)检测的技术。利用相位差检测技术,将穿过摄像镜头的出射光瞳的光束分割成两部分,并且通过一对焦点检测传感器接收由此得到的光束;检测基于所接收到的光的量而输出的信号的偏移量,或者换句话说,检测光束在分割方向上的相对位置偏移量。结果,直接检测摄像镜头在调焦方向上的偏移量。因此,可以通过使用焦点检测传感器进行单个累积操作获得调焦偏移的量和方向,因而可以进行快速焦点调节操作。然而,为了将穿过摄像镜头的出射光瞳的光束分割成两部分并且获得与由此得到的光束相对应的信号,通常在摄像用的光路中设置诸如快速复原镜或半透半反镜等的用于分割光路的部件,并且通常在其端部设置焦点检测光学系统和AF传感器。这样的缺点在于设备的尺寸增大并且成本升高。
[0005]为了避免上述缺点,提出了如下的技术,在该技术中,向图像传感器设置相位差检测功能,以消除对专用AF传感器的需要并且实现高速相位差AF。
[0006]例如,在日本特开2000-156823(以下称为“专利文献I”)中,通过在图像传感器的一些光接收元件(像素)中使光接收部的感光区域相对于片上微透镜的光轴偏心来提供光瞳分割功能。通过使用这些像素作为焦点检测像素并且将这些焦点检测像素以预定间隔布置在进行摄像所使用的像素组中,来实现进行相位差焦点检测的结构。由于配置焦点检测像素的区域对应于不存在摄像像素的区域,因而使用来自周边摄像像素的信息通过插值来产生图像信息。另外,在拍摄运动图像时,在从图像传感器进行读出时,执行间隔剔除,而在如运动图像一样、需要特定帧频的情况下,通过补偿由焦点检测像素所引起的缺失来产生图像信息的速度太慢,因此将焦点检测像素配置在该间隔剔除读出期间没有读出的行中。
[0007]同时,日本特开2003-189183(以下称为“专利文献2”)公开了如下的摄像设备,其中该摄像设备为了提高运动图像的图像质量并提高低亮度时的感光度,能够在间隔剔除读出模式和相加读出模式之间进行切换以进行输出。换句话说,专利文献2提出了:在被摄体的空间频率高并且可以预测出发生摩尔纹时,通过在相加模式下进行读出以便减少摩尔纹,或者在亮度高并且可以预测出发生拖尾的情况下使用间隔剔除读出模式,从而提高运动图像的图像质量。
[0008]另外,在日本特开2008-85535(以下称为“专利文献3”)中,以与专利文献I相同的方式,通过在图像传感器的一些光接收元件(像素)中使光接收部的感光区域相对于片上微透镜的光轴偏心来提供光瞳分割功能。通过使用这些像素作为焦点检测像素并且将这些焦点检测像素以预定间隔配置在进行摄像所使用的像素组中,来实现进行相位差焦点检测的结构。专利文献3还提出了:使摄像像素组和焦点检测像素组的累积控制信号独立,并对于这两个像素组采用不同的累积时间,由此增大了所拍摄图像的帧频并且提高了焦点检测像素组的针对低亮度被摄体的性能。
[0009]然而,上述已知技术存在诸如以下所述的问题。
[0010]对于专利文献I公开的技术,有三种类型的读出模式:静止图像模式,其读出所有像素;间隔剔除读出模式,其进行间隔剔除以仅读出存在摄像像素组的行;以及测距读出模式,其仅读出焦点检测像素组。由于该原因,在使用电子取景器的情况下以及在运动图像模式的情况下等,没有读出焦点检测像素,因而尽管可以提高运动图像的帧频,但是存在的问题是在正显示运动图片时,无法进行使用相位差技术的高速焦点检测。
[0011]专利文献2公开的发明涉及根据对运动图像进行读出时的场景而在间隔剔除读出模式和相加读出模式之间进行切换。在图像传感器中没有配置焦点检测像素,因而从一开始就没有考虑使用图像传感器的一部分像素来进行相位差焦点检测。例如,即使存在焦点检测像素,然而由于上述原因,这些焦点检测像素也不会被用于图像信息,因而在相加读出模式期间,焦点检测像素无法与摄像像素相加。此外,如果试图使用焦点检测像素进行焦点检测,则即使在相加读出模式期间,也需要单独读出焦点检测像素。
[0012]专利文献3公开的发明采用如下的结构:在该结构中,使摄像像素组和焦点检测像素组的累积控制信号独立,并且可以设置各像素组的最佳累积时间,由此使图像显示刷新能力和低亮度被摄体的测距能力并存。然而,存在的问题是:像素之间所配置的信号线的数量增加,导致像素的开口率的下降和像素的感光度的降低。同时,作为这里所述发明的变形例,专利文献3公开了使累积控制信号在摄像像素和焦点检测像素之间共通化。优点在于:摄像像素和焦点检测像素之间的配线减少,从而提高了开口率。然而,这也意味着对于摄像像素和焦点检测像素来说累积控制是相同的。因此,专利文献3公开了将焦点检测像素组的输出相加多次,以提高焦点检测像素的S/N比。然而,问题在于:尽管在读出之后对输出进行相加,然而由于也同样将来自像素放大器或读出增益放大器等的噪声相加了多次,因而并没有如在累积时间控制的情况下一样提高S/N比。

【发明内容】

[0013]本发明是考虑到上述问题而实现的,并且在显示运动图片期间使用相位差技术进行焦点检测时,提高焦点检测像素的S/N比。
[0014]为了解决上述问题并实现上述改进,根据本发明的摄像设备包括:图像传感器,其具有二维配置的多个像素,所述图像传感器包括摄像像素和离散地配置在多个所述摄像像素之间的焦点检测像素,其中,所述摄像像素通过对摄像镜头所形成的被摄体图像进行光电转换来生成图像生成用的信号,所述焦点检测像素将所述摄像镜头的光瞳区域分割成多个光瞳区域,并且通过对来自经过分割所获得的光瞳区域的被摄体图像进行光电转换来生成相位差检测用的信号;切换部件,其在全部像素读出模式和间隔剔除读出模式之间进行切换,其中,在所述全部像素读出模式下,读出来自所述多个像素的全部像素的信号,在所述间隔剔除读出模式下,间隔剔除并读出所述多个像素的信号;以及控制部件,其在所述切换部件将模式切换成所述间隔剔除读出模式的情况下,在图像生成所使用的摄像行和包括所述焦点检测像素的焦点检测行中彼此独立地控制电荷累积。
[0015]通过以下(参考附图)对典型实施例的说明,本发明的其它特征将变得明显。
【专利附图】

【附图说明】
[0016]图1是示出根据本发明第一实施例的照相机的结构的图;
[0017]图2A和2B分别是根据第一实施例的图像传感器中的摄像像素的平面图和断面图;
[0018]图3A和3B分别是根据第一实施例的图像传感器中的焦点检测像素的平面图和断面图;
[0019]图4是示出根据第一实施例的图像传感器中的像素阵列的图;
[0020]图5是示出根据第一实施例的图像传感器中的像素电路的图;
[0021]图6是示出根据第一实施例的图像传感器的总体结构的框图;
[0022]图7是示出根据第一实施例的整个画面的累积和读出操作的图;
[0023]图8是示出根据第一实施例在间隔剔除期间的累积和读出操作的图;
[0024]图9是示出根据第一实施例在焦点检测期间的累积和读出操作的图;
[0025]图10是示出根据第二实施例在焦点检测期间的累积和读出操作的图;
[0026]图11是示出根据第三实施例在焦点检测期间的累积和读出操作的图。
【具体实施方式】
[0027]第一实施例
[0028]图1是示出根据本发明第一实施例的照相机(摄像设备)的结构的图,并且示出将具有图像传感器和摄像镜头的照相机主体集成在单个单元中的数字照相机。在图1中,附图标记101表示配置在摄像光学系统(图像形成光学系统)的端部的第一透镜组,其中,以能够在光轴方向上前后移动的方式来保持第一透镜组。附图标记102表示光圈/快门,并且控制光圈/快门102的开口直径使得能够调节摄像期间的光量;在静止图像拍摄期间,光圈/快门102还用作曝光时间调节快门。附图标记103表示第二透镜组。光圈/快门102和第二透镜组103整体在光轴方向上前后移动,从而通过与第一透镜组101的前后动作连动地进行动作来实现变倍作用(变焦功能)。
[0029]附图标记105表示通过在光轴方向上前后移动进行焦点调节的第三透镜组。附图标记106表示作为用于减少所拍摄图像中的伪色和摩尔纹等的光学元件的光学低通滤波器。附图标记107表示包括CMOS传感器及其外围电路的图像传感器(CMOS图像传感器)。对于图像传感器107,使用二维单板彩色传感器,在该传感器中,在以水平方向为m个像素且垂直方向为η个像素的方式二维排列的光接收像素的上方,将Bayer图案原色马赛克滤波器形成在芯片上。附图标记111表示变焦致动器,其中,变焦致动器111通过转动筒形凸轮(未示出),在光轴方向上前后驱动第一透镜组101和第二透镜组103,从而执行变倍操作。附图标记112表示光圈/快门致动器,其中,光圈/快门致动器112控制光圈/快门102的开口的直径以调节摄像光量,并且控制拍摄静止图像时的曝光时间。附图标记114表示调焦致动器,其中,调焦致动器114在光轴方向上前后驱动第三透镜组105,从而调节焦点。
[0030]附图标记115表示用于在摄像期间照明被摄体的电子闪光灯,尽管优选使用氙气管的闪光灯照明装置,但是还可以使用设置有连续发射光的LED的照明装置。附图标记116表示AF辅助光,其中,AF辅助光116经由投影透镜将具有预定开口图案的掩模图像投影在被摄体场上,从而提高对于暗被摄体或低对比度被摄体的焦点检测能力。附图标记121表示CPU,并且是对照相机主体进行各种控制的照相机内的CPU。CPU121包括处理单元、ROM、RAM、A/D转换器、D/A转换器和通信接口电路等;CPU121基于存储在ROM中的预定程序驱动照相机内的各种电路,并且执行用于进行AF、摄像、图像处理和记录等的一系列操作。
[0031]附图标记122表示与摄像操作同步控制电子闪光灯115的发光的电子闪光灯控制电路。附图标记123表示与焦点检测操作同步控制AF辅助光116的发光的辅助光驱动电路。附图标记124表示图像传感器驱动电路,其中,图像传感器驱动电路124控制图像传感器107的摄像操作,并且对所获得的图像信号进行A/D转换,并将这些图像信号发送给CPU121。附图标记125表示对通过图像传感器107所获得的图像进行诸如Y转换、颜色插值和JPEG压缩等的处理的图像处理电路。附图标记126表示调焦驱动电路,其中,调焦驱动电路126基于焦点检测结果控制对调焦致动器114的驱动,从而在光轴方向上前后驱动第三透镜组105来调节焦点。附图标记128表示控制对光圈/快门致动器112的驱动以控制光圈/快门102的开口的光圈/快门驱动电路。附图标记129表示响应于用户做出的变焦操作来驱动变焦致动器111的变焦驱动电路。
[0032]附图标记131表示诸如IXD等的显示单元,其中,显示单元131显示与照相机的摄像模式有关的信息、摄像前的预览图像和摄像后的确认图像、以及焦点检测期间的聚焦状态显示图像等。附图标记132表示包括电源开关、快门释放(摄像触发器)开关、变焦操作开关、以及摄像模式选择开关等的可操作开关组。附图标记133表示存储所拍摄图像的可拆卸闪存。
[0033]图2A?3B是示出本实施例的图像传感器中所使用的图像生成用摄像像素和相位差检测用焦点检测像素的结构的图。本实施例采用Bayer阵列,其中,在2 X 2排列的四个像素中,在对角线上彼此相对地配置具有G(绿色)光谱感光度的两个像素,并且在其余两个位置分别配置具有R(红色)和B(蓝色)光谱感光度的一个像素。按照预定规则在Bayer阵列之间分布具有后述结构的焦点检测像素。
[0034]图2A和2B示出摄像像素的配置和结构。图2A是示出2X2摄像像素的平面图。众所周知,在Bayer阵列中,在对角线上彼此相对地配置G像素,并且在其它两个像素位置上配置R和B像素。重复配置该2行X2列的结构。图2B示出沿图2A所示的A-A线观察时的断面图。ML表不布置在每一个像素的最上表面上的片上微透镜,而CFk表不R(红色)颜色滤波器且CFe表示G(绿色)颜色滤波器。H)示意性示出图像传感器的光电转换部,而CL表示用于形成发送CMOS传感器内的各种类型信号的信号线的配线层。TL示意性示出摄像光学系统。
[0035]这里,将摄像像素的片上微透镜ML和光电转换部H)配置成能够最大程度地有效捕获穿过了摄像光学系统TL的光束。换句话说,摄像光学系统TL的出射光瞳EP和光电转换部ro由于微透镜ML而被设计成处于共轭关系,从而使得光电转换部的有效面积是大的面积。此外,尽管图2B示出被引导至R像素的光束,但相同的结构也适用于G像素和B像素这两者。因此,对应于摄像用的RGB像素,出射光瞳EP具有大的直径,从而有效捕获来自被摄体的光束,由此提高图像信号的S/N比。
[0036]图3A和3B示出用于在水平方向(横方向)上将摄像镜头的光瞳区域分割成多个光瞳区域的焦点检测像素的配置和结构。图3A是示出包括焦点检测像素的2行X2列像素的平面图。在获得摄像信号时,G像素获得亮度信息的主成分。由于人的图像识别特性对亮度信息敏感,因而当存在G像素的缺失时,图像质量劣化明显。同时,尽管R和B像素是获得颜色信息的像素,但是人对颜色信息相对不敏感,因而即使在获得颜色信息的像素中发生一定程度的缺损,图像质量劣化也不会很明显。因此,在本实施例中,在2行X2列排列的像素中,保持G像素作为摄像像素,而以焦点检测像素替换R像素和B像素。在图3A中以SA和SB对此进行表示。
[0037]图3B示出沿图3A所示的A-A线观察时的断面图。微透镜ML和光电转换部H)具有与图2B所示的摄像像素的微透镜和光电转换部相同的结构。在本实施例中,在生成图像时不使用来自焦点检测像素的信号,因而代替颜色分离颜色滤波器,布置透明薄膜CFW(白色)或CFe。另外,由于利用图像传感器进行光瞳分割,因而配线层CL的开口部相对于微透镜ML的中心线在一个方向上偏移。更具体地,像素SA及其开口部OPHA向右偏移,因而接收穿过了摄像镜头TL左侧的出射光瞳EPHA的光束。类似地,像素SB及其开口部OPHB向左偏移,因而接收穿过了摄像镜头TL右侧的出射光瞳EPHB的光束。因此,在水平方向上规则地配置像素SA,并且获取由该像素组所获得的被摄体图像作为图像A。当在水平方向上还规则地配置像素SB并且获取由该像素组所获得的被摄体作为图像B时,检测图像A和图像B的相对位置使得可以检测被摄体图像中偏离焦点的量(离焦量)。
[0038]同时,在要检测垂直方向上偏离焦点的量的情况下,可以采用下面的结构:SA及其开口部OPHA向上偏移,并且SB及其开口部OPHB向下偏移。在这种情况下,不用说,将开口部OPHA和OPHB的形状转动90度。
[0039]图4是示出根据本实施例的图像传感器中的像素配置的例子的图。近来,具有从数百万像素到上千万像素的巨大数量的像素的图像传感器已得到实际应用,因而为了简化,本实施例的说明将讨论24像素X 24像素的配置。此外,尽管图像传感器通常适当地设置有用作像素输出的基准的遮光光学黑像素(以下缩写为“0B像素”),但是为了简化,图4同样省略了这些OB像素。
[0040]本实施例的像素配置是基于2X2Bayer阵列。图4中的字母G、R和B分别表示绿色、红色和蓝色滤波器。此外,在Bayer阵列图像传感器的一部分中,按照预定比规则地混入作为焦点检测像素的SA和SB像素。如图4所示,在行V4上以在光瞳分割方向上彼此相距12个像素的方式离散地配置作为相位差AF用的基准像素的焦点检测像素SA,并且在行V5上以在光瞳分割方向上彼此相距12个像素的方式离散地配置作为相位差AF用的参考像素的焦点检测像素SB。获得行V4和V5的像素SA和SB的图像偏移量使得可以获得摄像镜头的离焦量。另外,配置成在行VlO和Vll上同样以相同的规则配置像素SA和SB。
[0041]由于将焦点检测像素当作缺失像素,并且使用周围正常像素的信息进行插值,因而离散地配置像素SA和SB,以使得在焦点检测像素的周围配置插值用的正常像素,从而通过该插值抑制图像劣化。因此,在光瞳分割方向上离散地配置这些像素,并且在与光瞳分割方向垂直的方向上也离散地配置这些像素,在本实施例中,与光瞳分割方向垂直的方向对应于行方向。V4和V5中的基准和参考像素对以及VlO和Vll中的基准和参考像素对被配置成相距5行。注意,本实施例中的配置仅是示例性配置,并且本发明不局限于该配置。
[0042] 接着使用图5简要说明本实施例中采用的CMOS传感器的操作。
[0043]图5示出CMOS传感器中的单个像素的电路结构。在图5中,附图标记501表示光电二极管(以下缩写为“PD”),而附图标记502和503表示用于将累积在上述TO501中的信号电荷转换成电压的浮动扩散放大器。具体地,附图标记502表示浮动扩散电容器(以下缩写为“FD”),而附图标记503表示MOS晶体管放大器。附图标记504表示用于将Η)501的信号电荷传送给浮动扩散电容器的传送门(以下缩写为“ΤΧ”),而附图标记505表示用于复位PD501和FD502的复位门(以下缩写为“RES”)。附图标记506表示像素选择MOS晶体管(以下缩写为“SEL”)。附图标记507表示用于控制TX的通用信号线;附图标记508表示用于控制RES的通用信号线;以及附图标记509表示用于输出FD放大器的电压输出的垂直输出线。最后,附图标记510表示用于控制SEL的信号线,并且附图标记511表示与垂直输出线连接的FD放大器的负载电流源。
[0044]图6是示出CMOS传感器的总体结构的框图。附图标记601表示像素部,在像素部601中,配置图4所示的各种像素。各像素中的构件如图5所示进行构造。附图标记602表示垂直扫描单元,垂直扫描单元602能够通过输出诸如φ¥?、φν?、(pV2、以及fV 11等的顺序扫描信号,来逐行进行累积读出。附图标记603表示信号选择单元,通过时序生成器电路(以下缩写为“TG”)(未示出)将在预定时刻输出的复位信号RES、传送信号TX和选择信号SEL输入至信号选择单元603,并且信号选择单元603将这些信号适当地输出给通过从垂直扫描单兀602输出的垂直扫描信号所指定的行。附图标记604表不信号保持单元,在信号读出时,信号保持单元604使用采样保持信号(未示出),临时存储通过SEL信号所选择出的一个行的像素输出。附图标记605表不水平扫描单兀,水平扫描单兀
605通过输出诸如φΙ 10.(pill、φΗ2、......、以及φΗ23等的顺序扫描信号,使临时
存储在信号保持单兀605中的像素信号顺次输入给输出放大器606并从CMOS传感器输出。
[0045]图7是用于说明由CMOS传感器所进行的累积和读出的图,并且示出在全部像素读出模式下所进行的操作。图7还示意性示出基于已知的卷帘快门的控制。由于这是已知技术,因而对此仅进行简要说明。
[0046]首先,水平轴表示时间的经过,这里,通过卷帘快门操作顺次捕获全部24X12个像素的像素信号。垂直方向表示垂直扫描顺序,这里,逐行对VO~Vll行进行顺次扫描。图7中的斜的虚线表示在读出之前所执行的卷帘复位操作,而斜的实线表示卷帘读出。卷帘读出包括从ro向FD的电荷传送、信号保持单元中的临时存储、以及通过水平扫描所进行的外部输出操作。累积时间是通过卷帘复位和卷帘读出的时间间隔而定义的,并且可以通过改变卷帘复位的定时而进行改变。在期望比图7所示的累积时间更长的累积的情况下,可以将卷帘读出间隔设置得更长。
[0047]在这种情况下,在相同累积时间下控制正常像素和焦点检测像素,并且与正常像素相比,开口被部分遮光的焦点检测像素具有更低的信号电平。如专利文献3所公开的那样,无法获得所需的S/N比,因而需要对焦点检测像素的输出等进行相加,以获得所需的S/N比。然而,在需要焦点检测的实时取景模式期间以及在拍摄/记录运动图像时等(后面说明),通常不进行用于以该方式来捕获所有像素的卷帘累积。
[0048]近年来,数字照相机通常包括用于实时取景模式和拍摄/记录运动图像等的规范,并且在这些情况下,需要以30帧/秒的帧频来刷新图像显示,从而获得平滑的运动图像。由于该原因,进行间隔剔除了部分像素的读出。此外,在实时取景模式期间以及在拍摄/记录运动图像等时等,执行焦点检测操作,并且基于此时所检测到的焦点检测结果拍摄静止图像。因此,在读出全部像素的静止图像的情况下,不需要焦点检测。另外,对于卷帘控制,累积定时在画面的上部和下部之间有所不同,因此在拍摄静止图像时,通常使用机械快门,并且在这种情况下通常不以卷帘模式进行控制。
[0049]图8是示意性示出间隔剔除操作期间的累积和读出的图。间隔剔除操作期间的卷帘累积和读出操作与图7所示的基本相同。如图7—样,水平轴表示时间的经过,并且垂直轴表示在垂直方向上扫描的行。如图8所示,设置隔行扫描中使用的行的数量以使得运动图像显得平滑;例如,设置1/30秒内的读出,从而使得可以显示30帧的运动图像。当然不用说,本发明不局限于30帧。只要至少大约存在20帧,就可以获得一定程度的平滑性。
[0050]本发明说明了垂直扫描是每三行扫描一次的隔行扫描并且读出了 30帧的例子。因此,在图8中,对于在垂直方向上进行了间隔剔除的四个行执行读出,并且如果图8所示的时间T大于或等于0,则可以显示30帧的运动图像。另外,在运动图像显示中,读出没有配置焦点检测像素的行VO、V3、V6和V9,因而不会发生图像劣化。
[0051]图9是示意性示出执行焦点检测操作的情况下的在间隔剔除操作期间的累积和读出的图。间隔剔除操作期间的卷帘累积和读出操作与图8所示的基本相同。如图8—样,水平轴表示时间的经过,并且垂直轴表示在垂直方面上扫描的行。
[0052]如图9所示,在焦点检测期间的间隔剔除操作中,通过垂直扫描单元首先扫描如图8所示的实时取景和拍摄/记录运动图像所使用的行VO、V3、V6和V9。此后,连续垂直扫描焦点检测所使用的行V4和V5,从而进行累积和读出控制。在图9中,斜的实线表示卷帘读出操作,并且由于垂直输出线在不同行之间共用,因而需要在垂直方向上进行扫描并且逐行执行顺序读出。图9所示的斜的虚线表示在读出之前所执行的卷帘复位操作,并且由于对于实时取景/运动图像记录所使用的各行和焦点检测所使用的各行都存在RES和TX控制线,因而可以进行并行控制。因此,如图9所示,可以对摄像行和焦点检测行独立执行卷帘复位;因此,可以使摄像行和焦点检测行具有不同的复位定时,由此可以使摄像行和焦点检测行具有不同的累积时间。由于该原因,可以对摄像行和焦点检测行这两者执行累积控制以实现适当曝光。利用诸如本实施例所述的这类结构,可以在没有增加控制信号线的数量并且不会导致诸如像素的开口面积减小等的问题的情况下,提高焦点检测像素的S/Nt匕。另外,由于没有如帧相加那样多次相加来自像素放大器或读出放大器等的噪声,因而本实施例进一步有利于S/N比。[0053]此外,在本实施例中,假定采用两行作为30帧的余量时间T的间隔内要读出的行,并且因此读出了行V4和V5。可以基于余量时间T或者基于可允许的运动图像帧频来适当确定要附加地读出的具有焦点检测像素的行的数量,并且即使在没有可用的余量时间T的情况下,也可以适当确定这样的行数量。
[0054]第二实施例
[0055]图10是示出根据第二实施例的操作的图,并且是图9的变形例。在本实施例中,焦点检测行的读出周期不同,并且将焦点检测像素的累积时间延长得比图9中的累积时间还长。图10示出对于运动图像的每两个帧读出I个焦点检测行的例子。可以在参考焦点检测像素的输出结果的情况下,适当确定焦点检测像素的读出周期。
[0056]第三实施例
[0057]图11是示出根据第三实施例的操作的图,并且是图9的另一变形例。本实施例说明了这样的例子:在实时取景和拍摄/记录运动图像等期间,余量时间T不足,并且逐帧切换要读出的焦点检测行。在图11中,从第三帧起,将从焦点检测行V4和V5的读出切换成从行VlO和Vll的读出;这使得可以在不增加读出时间的情况下移动焦点检测行。
[0058]尽管已经参考典型实施例说明了本发明,但是应该理解,本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改、等同结构和功能。
[0059]本申请要求2009年3月17日提交的日本专利申请2009-065221的优先权,其全部内容通过引用包含于此。
【权利要求】
1.一种摄像设备,包括: 图像传感器,其具有二维配置的多个像素,所述图像传感器包括摄像像素和配置在多个所述摄像像素之间的焦点检测像素,其中,所述摄像像素通过对摄像镜头所形成的被摄体图像进行光电转换来生成图像生成用的信号,所述焦点检测像素对所述摄像镜头的光瞳区域进行分割,并且通过对来自经过分割所获得的光瞳区域的被摄体图像进行光电转换来生成相位差检测用的信号; 控制部件,其在一帧内分出用于图像生成的摄像行和具有所述焦点检测像素的焦点检测行,在进行控制使得将所分出的所述摄像行和所述焦点检测行的一方依次读出之后,进行控制使得将另一方依次读出;以及 生成部件,其使用读出所述摄像行所获得的信号来生成一帧的显示用图像。
2.根据权利要求1所述的摄像设备,其特征在于, 连续进行构成所述摄像行的像素的信号的读出和构成所述焦点检测行的像素的信号的读出。
3.根据权利要求1所述的摄像设备,其特征在于, 构成所述焦点检测行的像素的信号的读出周期与构成所述摄像行的像素的信号的读出周期相同或者比构成所述摄像行的像素的信号的读出周期长。
4.根据权利要求1所述的摄像设备,其特征在于, 所述图像传感器是CMOS型 的图像传感器。
5.根据权利要求1所述的摄像设备,其特征在于, 在要读出所述摄像行和所述焦点检测行的第一帧以及要读出所述摄像行和所述焦点检测行的第二帧中,对要进行读出的所述焦点检测行进行变更。
6.根据权利要求1所述的摄像设备,其特征在于, 所述控制部件使所述摄像行与所述焦点检测行的像素的累积时间不同。
7.根据权利要求6所述的摄像设备,其特征在于, 所述控制部件通过使所述摄像行和所述焦点检测行的像素的复位定时不同,来使累积时间不同。
8.根据权利要求1所述的摄像设备,其特征在于, 还具有模式选择部件,该模式选择部件基于来自所述图像传感器的输出信号,选择静止图像模式和运动图像模式中的任一个,该静止图像模式生成静止图像用的图像信号,该运动图像模式生成运动图像用的多个帧的图像信号, 在通过所述模式选择部件选择了所述运动图像模式的情况下,所述控制部件在一帧内对用于图像生成的摄像行和具有所述焦点检测像素的焦点检测行独立地进行电荷的累积控制。
9.根据权利要求8所述的摄像设备,其特征在于, 所述静止图像模式是读出所述多个像素的全部像素的信号的全部像素读出模式,所述运动图像模式是间隔剔除地读出所述多个像素的信号的间隔剔除读出模式。
10.一种摄像设备的控制方法,该控制方法控制具备图像传感器的摄像设备,该图像传感器具有二维配置的多个像素,所述图像传感器包括摄像像素和配置在多个所述摄像像素之间的焦点检测像素,其中,所述摄像像素通过对摄像镜头所形成的被摄体图像进行光电转换来生成图像生成用的信号,所述焦点检测像素对所述摄像镜头的光瞳区域进行分割,并且通过对来自经过分割所获得的光瞳区域的被摄体图像进行光电转换来生成相位差检测用的信号,该控制方法的特征在于, 在一帧内分出用于图像生成的摄像行和具有所述焦点检测像素的焦点检测行,进行控制使得将所述摄像行分别依次读出,并且进行控制使得将所述焦点检测行分别依次读出,使用读出所述摄像行所获得的信`号来生成一帧的显示用图像。
【文档编号】H04N5/345GK103501405SQ201310363404
【公开日】2014年1月8日 申请日期:2010年2月1日 优先权日:2009年3月17日
【发明者】谷口英则 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1