数字记录和重放装置的制作方法

文档序号:7566376阅读:205来源:国知局
专利名称:数字记录和重放装置的制作方法
技术领域
本发明涉及数字记录和重放装置,其中,通过压缩记录信号的带宽,能够实现相对长的记录以及具有不同搜索速度的多种搜索重放模式。
为建立被期望成为下一代的、家用的数字盒式磁带录象机VTR的国际统一标准规范,已经建立了高清晰度数字VCR联合会(HD-DIGITAL VCR CONFERENCE),并且于1994年4月已在当前电视系统(为了简化,此后用SDTV表示)和高清晰度电视系统(HDTV)的记录方案之间达成了国际统一意见。被通过的规范的特征在于,用于SDTV和HDTV的电视信号能被用共同的设施进行记录。这种方法主要实施高效帧内编码技术,在其中主要执行离散余弦变换(此后,称作DCT)和可变长度编码。采用高效帧内编码技术的一个原因是,需在高速搜索模式下平滑地重放高质量的图象,它使完成编辑工作容易。这就是,当以至少10倍或较低一些的速度用搜索模式重放图象时,系统应能重放高质量的图象而不会不自然。


图1是一个框图,简化地表示了已被国际上认可的上述家用DVCR(此后,将把那些SD-VCR规范称作SD-VCR)。被输入的原始视频图象信号经A/D转换成亮度信号Y和两种色度信号CN和CW,并且然后被分成8×8象素块。之后,被划分的数据在每块的块混合部101被混合。这样既实现了分散频率分量以提高主要包括DCT的、后继的高效编码的效率,又实现了分散在重放模式中由于漏失(信息)而将产生的脉冲错误。高效编码部102实施应用DCT技术的正交变换,从而使信号用与频率分量有关的余弦表示。部分102进而自适应地实施对系数的量化以及可变长度编码,以去除冗余和连续的0。通过足够多地去除高效编码部分102的冗余,可显著降低信号比特率。在纠错编码部分103,加上了经过如此高效编码的、被压缩的信号,以及用以纠正在重放模式中将产生的误码的必要的奇偶校验位。在SYNC(同步)和ID(标识)添加部分104,将实现PCM同步的同步码和用于区别块内容的ID码都添加在每个包括同步码的SYNC块中。调制部分105表示一个用于有效地记录数字记录信号的调制器。DVCR规范的装置中所用的调制器采用24-25调制方法,以达到降低记录信号直流(d.c.)分量的目的。经调制的输出信号经过记录放大器被放大,并通过视频磁头被记录到磁记录介质上。在重放模式,通过视频磁头接收到被记录信号,并且通过重放放大器,使如此重现的信号被放大并被加到解调部分107,以便在那里恢复数字信号。然后,正好是以相反方向,即按照与在记录模式下所进行的方向相反的方向进行操作。即,SYNC和ID检测部分108检测用于PCM的同步码,并对ID码进行解码和解密。纠错和解码部分109检测误码并完全纠正可能出现的错误。解码和修正部110将经高效编码部分压缩的视频信息进行可变长度解码和反向量化,并对被如此处理的记录信息进行IDCT以恢复和原始视频信号近似相当的视频信号。如果有不可恢复的错误码,部分110就利用有问题的码前后的码来进行内插。因此,被如此恢复的输出仍不是完整的视频信号,但是应当通过下面反混合部分111的每个块进行反混合,从而重现原始视频信号。
图2表示了上述DVCR中SYNC块的结构和记录格式。每个SYNC块包括90字节,90字节中有2个字节用作同步码,3个字节用作ID码,以及77字节用于视频数据,8字节用于Reed-Solomon码的内部校验码。在该格式中被分配给视频数据的有135个SYNC块(简写为SB),每个有77字节。
图3A和3B表示SD-VCR可用的两类磁头结构。
目前,还没有建立采用磁带驱动器、信号处理器以及上述DVCR中的记录和重放系统的、基于由MPEG(运动画面图象编码专家组织)制定的高效编码方案对于通过压缩图象数据而形成的信号进行记录的具体方案。图4表示了一个被建议作为用于ATV的临时标准的编码结构。图中,符号I代表帧内的编码过程,P代表与向前帧相关的、作为帧间编码过程的可预测性编码过程,以及B代表另一个与向前、向后帧都相关的可预测性编码过程。在基于上述帧间可预测编码而形成的视频信号如同基于已认可的SD标准那样被记录的情况下,当系统运行在图象搜索重放模式下时,信号从几个不同磁道重新产生,就象图5A和5B所示的互不连接的数据那样。因此,几乎不可能产生有清晰内容的完整图象。
在象ATV中那样采用MPEG信号处理方案的情况下,注意这一事实,即每个第12帧重复出现一次帧内处理的I-图象,这是在日本电视工程师组织的技术报告Vol,17,No.59中公开的一种技术,其中准备用于特殊重放的特殊数据被记录在被专门分配的记录区。但是,这种方案要求相当大量的数据以便重现用于ATV的I-图象(这将在下面示出)。
考虑一种情况,即用降低的图象质量(例如相当于NTSC或比它更差的质量)对I-图象进行记录,其中只使用对8×8象素的每个DCT块象素出现一次的直流(d.c.)分量的DCT系数。在这种情况下,假定有效抽样数为1,9 20;有效扫描行为1,080,因此,块总数为32,400。当只有每个DCT的每6 4个分量才有一次的直流分量被转换成8位数据时,要被记录的总数据量为32,400字节。而且,如果给每个剩余的、用于交流(a.c.)分量的系数分配4比特,那么就需要另外的1,020,600字节的数据,因为每个DCT块有63个交流分量。换言之,使用交流系数集将使要求的数据量达到32倍。另一方面,实际上,在搜索重放模式的可用数据量取决于记录系统和所用记录信号的类型。作为ATV的例子,如果传输数据分组被以速率19.3Mbps来传输,并且磁头的旋转速率被设为高达150rps,那么,每条磁道需有105SB的数据记录区以便完整地记录被传输的数据分组。因此,在搜索重放模式下,30SB能被作为用于数据的数据记录区来进行分配,并且因此允许的用于每个第12帧周期性出现的ATV信号的I-图象的数据记录区总量为3600SB。只记录I-图象的直流分量要求421SB,这相应于允许的数据记录区的八分之一,而记录每个DCT块的8字交流系数另外要求3366SB。
如果考虑能被两类磁头装置(见图3A和B)共同使用的数据区(随后将参考图25进行描述),对于3倍速搜索重放模式,30个磁道需要15个数据记录区。这就是,在12帧的周期内需要60个数据区,每个数据区包括60SB。这些数据区中,40个区能被有效地用于上述搜索重放模式,并且这和2,400SB或184,800字节相对应。这种情况下,每个DCT块所允许有的交流分量数为4.7。当所有区域都被分配给3倍速搜索模式时,其结果就是如此。实际上,数据记录区应被分配给5倍速模式、15倍速模式等等,这样每种搜索模式所允许的有效数据量就显著减少了。例如,假设1,740SB被取作为3倍速搜索模式所允许占用的数据记录区,那么可用记录区达1,160SB或89,320字节。下面将进一步讨论细节。
具体地说,在实现高速搜索模式(例如,15倍速搜索模式)时,在30条磁道中获得10个有效数据记录区则需要96个已建立的记录区。这将随后参考图13描述。
下面是在此描述的记录装置所要解决的问题(1)作为未来的广播技术,计划通过地面广播、卫星广播和CATV来并行地传送用于高质量图象的ATV广播以及SDTV(NTSC、PAL或SECAM)。但是,没有任何装置既能记录高比特率信号,又能记录低比特率信号,因此,要求有两类记录装置来记录与其相应的信号。(2)传统的装置与本发明不同,在本发明中具有的设备可同时记录高比特率信号和低比特率信号,并且允许低-比特率信号被用于普遍重放和特殊重放。在传统的设备中,就需用高价格、高清晰度、宽屏显示器来显示特殊播放的图象,即使是在搜索模式中能重新产生的图象的质量比SCTV低的情况下。(3)因为在已经被建议为MPEG记录和ATV记录的特殊重放方法中只在I-图象将被记录并且被用于特殊重放操作,不可能平滑地重新产生动态图象。(4)已有一项关于将帧内和帧间分开进行记录的方法的报导。由于帧内数据量一般是帧间数据量的10倍,这使建立用于特殊播放的记录区非常困难。另外有一项建议,是将帧间转化为帧内以用于特殊重放,但这种方法仍增加了特殊播放所需的数据量。(5)如果被记录信号的帧周期和多个记录区的数量无关,那么使普通重放数据记录位置和特殊重放数据记录位置一致就变得很困难。这使在搜索-重放模式中确定磁带上的数据内容变得困难,并使数字信号处理电路复杂。(6)如果必需确保正向和反向搜索操作,仅分配用于特殊重放集的、将要被记录数据量的记录区。(7)关于磁头装置,为了在使用双磁头和使用单磁头之间建立可互换性,需更大的记录区。(8)由于在高速搜索-重放中,磁头的重新寻迹的周期变长,不可能有效地跟随搜索-重放速度的变化。为了系统能实现积极地跟随,必须在不同地方记录重复的数据。这就要求更大的数据记录区。
本发明在上述问题方面已有改进,因此,本发明的一个目的是提供一种数字记录和重放装置,即使帧内和帧间都根据高效编码方案来编码,该装置也能在搜索-重放模式下重现高质图象。
本发明已经实现了上述目的,并且本发明的核心如下首先,根据本发明的第一个特征,一种数字记录和重放装置,用于记录和重放供普通重放用的相对高的比特率数据和供特殊重放用的相对低的比特率数据,它被这样地构造,使得作为特殊重放数据而进行记录的数据的量被适当调整,从而使用于记录普通重放数据的记录区易于被改变。
根据本发明的第二个特征,一种用于记录和重放图象的数字记录和重放装置,该图象是通过高效编码而进行频带压缩的,该装置被这样构造,使得当既具有帧内信息又具有帧间信息的信号被经过处理以便记录和重放图象时,相对高的比特率和相对低的比特率的信号被同时记录在接近相同的位置,而且全部的或部分的相对低的比特率的信号被用于实现作为视频记录装置的不可缺少功能的特殊重放,从而可以自适应地改变用于特殊重放的数据量。
本发明的第三个特征在于,一种具有上述第二特征的数字记录和重放装置,其中一个用于自适应地改变特殊重放的数据量的装置被用于在任意整数个磁道上以每个一定数量的帧作为一个单元来记录图象数据。
根据本发明的第四个特征,一种用于记录和重放以高效编码进行了频带压缩的图象的记录和重放装置,它被这样地构造,使得当具有帧内信息和帧间信息的数字信号被经过处理以便记录和重放图象时,相对高的比特率和相对低的比特率的信号同时地被记录在接近相同的位置,并且相对低的比特率信号的全部或一部分被用来完成特殊重放。
其次,本发明的第五个特征是,一种具有上述第四个特征的数字记录和重放装置,它被构造成这样,使得根据MPEG方案实现频带压缩,并且图象数据以一个序列作为一个单元被记录在固定数目的磁道上,该序列包括至少一个GOP(图象组)作为一个单元,而用于特殊重放的数据量能自适应地变化。
本发明的第六个特征是,一种数字记录和重放装置,它具有上面的第二特征,该装置被构造成这样,使得当在VCR磁带上以已被记录的数据来进行插入和替换的方式来记录不同的视频节目数据时,如果用于新的被插入视频节目的数据量和平均数据量不同,可以自适应地调节用于特殊重放的数据量,以使得用于新插入的视频节目的数据只被录在磁带上的规定区域上,并且被从该区域重放。
根据本发明的第七个特征,一种数字记录和重放装置的特征在于,其操作包括步骤接收输入信号;将输入信号分配到多个SYNC块以便将数据记录到VCR上;为了保护例如是被包括在输入信号中的数据分组头那样的重要信息,将包括作为整体的重要信息或只包括例如数据分组头那样的重要部分的SYNC块记录到先前为备用数据而保留的数据区中;以及当重要数据出现任何错误并且该错误不能纠正时,用被记录成备用数据的相应SYNC块代替具有错误数据的整个SYNC块,或者用相应的重要部分代替错误数据本身。
其次,本发明的第八个特征在于,一种具有上述第七个特征的数字记录和重放装置,它被构造成这样,使得可在高速操作模式下搜索被复制并记录在备用记录区中的数据分组头。
本发明的第九个特征是,具有上述第七个特征的记录和重放装置,其中使用一种具有上述第二特征的设备,通过自适应地改变用于特殊重放的数据量,来建立用于记录包括重要部分或只有重要部分的SYNC块及相似结构的备用数据的记录区域。
最后,根据本发明的第十个特征,一种数字记录和重放装置包括一个同时重放磁头;以及用于检测有关在用该磁头进行记录时被重放出的数据分组头的误码的检测电路,并且该设备被构造成这样,使得当检测电路在数据分组头中检测出误码时,记录信号中包括数据分组头的数据部分被重新插入到被记录信号中,从而使数据能被正确地记录。
为了实现上述特征,用到以下两种设备。作为第一种设备,数字记录和重放装置包括一种能在同一节目内容上同时记录高比特率信号数据和低比特率信号数据的装置;一种使用低比特率信号数据的装置(该低比特率信号数据以分层方式既包括帧内信息又包括帧间信息),以产生特殊重放数据;一种记录装置,用于记录如此形成的三类数字信号数据,从而使所有数据与被记录的高比特率信号的帧周期相关地记录在记录磁头的相同位置上;以及一种用于为记录磁道上的特殊重放信息建立记录区的装置,它使得该记录区的出现周期和高比特率信号帧周期之间的关系成为一个简单的整数比,并且由某个或若干个搜索速率的1.c.m或多个1.c.m来确定记录磁道的单元。
第二设备被这样地构造,使得用于低比特率的记录区一起都被放在磁带上大约中间的位置,以便确保使用用于搜索-重放的低比特率数据,并且各种不同搜索速率模式可用的数据组从低速搜索数据起被以分层方式分配,而记录用于在帧之间实现向前可预测性编码处理的P-图象的区域被确保是处在用于低速搜索数据的记录区域中,从而,能重放出平滑的动态图象。而且,所有被确保用于最低速搜索重放的数据适合于共同使用在普通重放模式下进行的重放,因此,只用于搜索重放模式的数据被最大程度地减少。以这种配置,实现上述各种不同互换功能变为可能。
在本发明中,能基于例如19.3Mbps的ATV信号形成5Mbps或更低的低比特率信号,这样,所形成的低比特率信号能被用于显示和包括在ATV信号中的一样的节目。另外,几乎所有上述低比特率信号(包括P-图象和双向可预测B-图象)适于作为搜索-重放数据而被共同使用。因此,如果在不远的将来开始同时广播ATV信号和低比特率信号,该装置既用于记录同时广播的信号,又能以搜索-重放模式重放平滑的动态图象。另外,上述搜索-重放图象能在低价格、小巧、重量轻的当前系统的显示器(它例如被内装在VTR之中)上显示。而且,能在多媒体终端设备的显示器上显示搜索-重放图象而不用变换系统方案。而且,如所需要的话,能在用于ATV的、宽屏面的高质量显示器上显示搜索重放图象,这只需增加简单的双扫描系统转换设备。
图1是先有的SD-VCR技术的电路框图;图2是先有的SD-VCR技术的SB的结构;图3A是先有的SD-VCR技术中按径向相对位置设置的单芯片磁头对的磁头结构的一个视图;图3B表示先有的SD-VCR技术中的双芯片磁头的磁头结构的一个视图4表示了用于先有的典型ATV的传输数据分组的帧结构;图5A用以表示采用先有的单芯片磁头(其中,单芯片磁头对按径向相对位置排列)在9倍速搜索-重放模式下的数据重现方式的例子。
图5B用以表示以先有的双芯片磁头在9倍速搜索重放模式下的数据-重现方式的例子。
图6是一个框图,表示本发明第一实施例的记录系统,其中ATV比特流被作为它的输入。
图7是一个框图,表示本发明第一实施例的重放系统,其中ATV比特流被作为它的输入。
图8是一个框图,表示本发明第一实施例的记录系统,其中高比特率和低比特率数据被同时输入;图9是一个框图,表示本发明第一实施例的重放系统,其中高比特率和低比特率数据被同时输入;图10A是一个示意图,表示本发明第一实施例的磁道上的数据分组结构,其中磁道上包括以3倍速和5倍速搜索-重放操作的数据;图10B是一个示意图,表示本发明第一实施例的磁道上的数据分组结构,其中,磁道上包括以15倍速搜索-重放操作的数据。
图11A是一个示意图,表示本发明的第一实施例中的沿磁道方向上的普通重放操作的SB结构;图11B是一个示意图,表示本发明的第一实施例中沿磁道方向上的输入数据包的SB结构;图11C是一个示意图,表示本发明的第一实施例中的沿磁道方向上的用于特殊重放数据的数据分组的SB结构;图12是一个示意图,表示本发明的第一实施例中的用于搜索-重放操作的磁带上的数据分布;图13是一个示意图,表示本发明的第一实施例中的用于15倍速重放操作的磁头轨迹及其数据分布;图14是一个示意图,表示本发明的第一实施例中的用于5倍速搜索-重放操作的磁头轨迹及其数据分布;图15是一个框图,表示本发明的第二实施例的记录系统,其中ATV数据被作为它的输入;图16是一个框图,表示本发明的第二实施例的重放系统,其中ATV比特流被作为它的输入;图17是一个框图,表示本发明的第二实施例的记录系统,其中高比特率和低比特率信号被同时输入;图18是一个框图,表示本发明的第二实施例的重放系统,其中高比特率和低比特率信号被同时输入;图19A是一个示意图,表示在本发明的第二实施例中当ATV分组上的数据被分配给SB时的普通重放数据的SB结构;图19B是一个示意图,表示在本发明的第二实施例中当ATV数据分组中的数据被分配给SB时的输入信号的SB结构;图19C是一个示意图,表示在本发明的第二实施例中,当ATV数据分组中的数据被分配给SB时的特殊重放数据的SB结构;
图20是一个示意图,表示用于本发明的第二实施例的专用磁头的结构;图21A是一个示意图,表示本发明的第二实施例中的磁带上的GOP数据的记录区的情况,其中数据被记录在固定数目的磁道上;图21B是一个示意图,表示本发明的第二实施例中的磁带上的GOP数据的记录区的情况,其中数据被记录在整数数目的磁道上;图21C是一个示意图,表示一个比较性的例子,其中磁道不被用作用于记录GOP数据的单元,从而作为和图21A和21B的比较,而在那两种情况下,第二实施例中的磁带上具有GOP数据的记录区;图22A是一个示意图,表示一种在本发明的第二实施例中的磁带上的GOP数据的记录区中调整搜索数据量的方法,其中,用首先的50个区(大的区域具有40SB,以及小的区域具有38SB)来调整数据量;图22B是一个示意图,表示一种在本发明的第二实施例中的磁带上的GOP数据的记录区中调整搜索数据量的方法,其中,用首先的3个区(大的区具有40SB,小的区域具有20SB,并且用点划线表示的区域中无数据)来调整数据量;图23A是一个示意图,表示在本发明的第二实施例中的连接性记录中的编辑点的情况;图23B是一个示意图,比较性地表示与图23A所示实施例相比较的连接性记录中的编辑点情况;
图24A是一个示意图,表示当本发明第二实施例中的搜索数据量变化时用于搜索-重放操作的磁头轨迹及其数据分布,其中搜索-数据的每个单元按5SB而递增;图24B是一个示意图,表示在本发明的第二实施例中当搜索数据量变化时用于搜索重放-操作的磁头轨迹及其数据分布,其中每个搜索数据单元按5SB而递减;图25是一个示意图,表示在本发明的第一实施例中用于3倍速搜索重放操作的磁头轨迹及其数据分布;图26A是一个示意图,表示当在编辑时将视频节目插入或记录到磁带上时的磁带上数据记录区的情况,以及和本发明第二实施例中相似的情况;以及图26B是一个示意图,表示当在编辑时将视频节目插入或记录到磁带上时的磁带上数据记录区的情况,以及与图26A所示实施例相比较时的类似情况。
下面将描述本发明的第一实施例。
开始,图6和8表示一个应用了本发明的举例性的VCR的记录部分的框图,而图7和9表示相同例子的重放部分的框图。尽管将参考SD-VCR来描述该实施例,但本发明将不限于SD-VCR系统。也就是说,本发明与纠错码(ECC)、数据调制和解调方案、磁带类型、机械结构以及辅助机构都无关。
图6和7表示一种情况,其中输入ATV比特流信号以形成用于特殊播放的数据。图8和9表示一种情况,其中高速和低速比特流都作为输入信号被提供,并且低速比特流被用于形成用于特殊播放的数据。
当低速数据信号被输入时,数据能被搜索数据和普通重放模式下的低速数据信号共同使用。相反地,ATV比特流数据或高比特率信号被用于准备搜索数据时,所产生的搜索数据被只用于该目的的作为专用数据。
用一种情况来举例表示基本操作,其中,输入的是ATV比特流。
在图6中,输入侧的数据分组接口部分221和典型ATV解码器一样。首先,该装置接收ATV比特流211,并检测数字同步码,以从相应的数据分组头形成所要求的时序信号。术语“数据分组头”(packet header)在这里被用来指不同的所有头。ATV的传送层包括一个链接分组头(Link header)和一个适配分组头(adaptation header)。被MPEG用来传送的层包括一个PES分组头以及用于不同的较低级别层的分组头。该装置按照链接分组头、适配分组头、PES分组头等实现诸如数据拢频、PID处理等所需的处理。
之后,装置开始在速率转换器222中转换数据速率,其中,输入数据被转化成两类数据流,即用于普通重放模式和搜索模式的数据流。
对于用于普通重放模式的数据,将比特流(188字节×2=376字节)的两个数据分组分配给5个SD-VTR SYNC块(被称作SB块)并被记录在其中(77字节(有效区)×5=385字节)。在重放中,找到所有数据,以重新构成原始比特流,并将其输出。
按如下方式来准备和记录用于搜索-重放模式的数据首先在数据分组和分组头处理电路225中分析每个数据分组的语法,并且按可编长度码来解码有效数据(在可变长度码的解码部分226中)。然后,DCT系数选择电路227从数据中选出DCT系数,并且从这些系数为相应的搜索-重放模式构造数据。在这个实施例中,在相应的数据缓冲器228、229和230中准备了三类数据,即,用于3倍速模式、5倍速模式和15倍速模式的数据。下面将更详细地讨论。
然后,多路复用器223对用于普通重放的数据和用于搜索重放模式的三类数据进行复用,以形成下面的磁带结构型式(tapepattern)。为完成这项操作,磁道映象信号生成电路224产生一个控制信号,用于根据输入的数据分组的数据分组头、SB号和磁道信号进行复用。
按照和普通SD-VCR中一样的方法来进行记录时的后续处理,这就是,给数据加上纠错信号,并对数据进行24-25调制,并且通过记录放大器(设置在SD-VCR重放系统中的数字调制/解调/记录器231中)将其记录在磁带上。
这里,在普通重放和搜索重放模式下,操作都按普通SD-VCR方式一样进行,数据在通过重放放大器和量化器之后,对其进行数字调制和纠错(在SD-VCR重放系统中的数字解调/ECC231中进行)。然后在SB数据处理电路322中,对SB数据进行鉴别。
在普通重放模式下,缓冲器323控制来自SB数据处理电路322的信号的时序,并且将信号输出到多路分离器324,该多路分离器324处理该数据,以使其成为与初始数据分组一样。数据分组重建电路325实现速率转换和添加分组头等操作,并通过数据分组接口326输出所获得的数据。
在搜索-重放模式下,在SB数据处理电路322中,完成了相同数据的鉴别之后,特殊重放数据的数据分组处理电路327组构来自分组头的数据、有效数据、无效数据(填充字节)。然后再插入填充字节,这样,最终数据就变成了188个字节的数据分组。
在多路分离器324中实现普通重放数据和特殊重放数据之间的转换以及对特殊重放数据输出时序的控制,而由数据分组头处理和时序信号生成电路328来产生控制信号。
下面,图11A到11C表示作为磁带结构型式的例子的一个磁道上的数据结构。
图11A到11C表示了一个磁道上的数据排列结构。
在这些图中,用沿磁道方向上排列的SB单元表示数据。如图10A所示,用于5倍速和3倍速模式的数据大约位于磁道中间部分。这种排列允许5倍速模式和3倍速模式共享数据。用于15倍速模式的数据被分成5个段,如图10B所示排列。
在本发明中,考虑了正向和反向搜索模式以及两种磁头的排列方式。在两类磁头排列方式之一中包括有两个磁头,它们排列在一个共同的基片上,类似于一个双方位磁头(使用双芯片磁头的情况);另一种结构具有两个以径向相对位置排列的磁头(使用单芯片磁头的情况)。
图12表示包含15倍速模式的所要保有的记录区。图13和14表示用于15倍速、5倍速和3倍速的磁带上的磁头轨迹,以及轨迹和用于相应的搜索-重放模式的数据位置之间的关系。
表1表1表示用于将为每种搜索-重放模式而写入的所有数据的SB数只用于15倍速率的数据 132(1)5倍速率 378(2)只用3倍速率的数据 292(3)总计 802(4)表2为搜索-重放模式而读出的数据量区域数区域内SB数总SB数15倍速率2 12 24(5)96BS(因为12帧组成一个I-图象)5倍速率 6 40 240(6)3倍速率 10 40 400(7)总计18 644(8)表3可用于搜索-重放模式的数据量用于SD-VCR输入的数据率24.94Mbps(9) 4050SB*ATV比特流 19.30Mbps(10) 3175SB*上述两者之间的差异(对于搜索-重放模式) 5.32Mbps(11) 875SB**在数据平均分配给所有磁道的情况下,30个磁道上的SB数。
875SB>802SB(4)剩余73SB(12)当要考虑一些因素(例如,正向和反向搜索重放操作、磁头排列类型、为搜索-重放增加起始位置数)时,有必要记录重复的数据。如图12所示的,30条磁道(即,所有搜索-重放模式速度倍数的最小公倍数的2倍)被选择作为用于记录区域排列型式的一个周期。因此,即使当用于15倍速度模式的记录区已被确保在5个磁道的范围,以降低用于15倍速度模式的锁定时间,该区域与用于5倍速度模式的记录区精确地相对应,从而使记录区域能有效地被共享。下一步,将详细说明用于搜索模式的数据结构。在从ATV比特流中准备出用于搜索的数据的情况下,假定每个GOP包括12帧,其中只有一帧(即I-图象)被用作搜索数据,用于搜索的数据将按如下方式结构。这里,各色度信号的信号分量比是4∶1∶1,并且12帧的120个磁道与I-图象相对应)。
在单一帧中DCT块的数目1,920×1,080/64=32,400(13)假定,分配给Y-信号的直流分量和色度信号1个字节,分配给有最低频率的两个交流分量系数1个字节,分配给有次最低频率的三个系数0.5个字节,并且,数据被平均地分配给30条磁道。在这种情况下,在30条磁道内用于3倍速度模式搜索数据的SB数为32,400×1.5/4×2.5/77=395 SB(14)(<400SB(7),剩余部分5(15))。
当分配给Y-信号的直流分量和色度信号1个字节,分配给有最低频率的两个交流分量系数0.5个字节时,5倍速率模式搜索数据的SB数目为32,400×1.5/4×1.5/77=237SB(16)(<240SB(6),剩余3(17))。
当平均分配给Y-信号的直流分量和色度信号0.6个字节时,SB数是32,400×1.5/4×O.15/77=24SB(18)(<24SB(5),剩余0(9))。
图(15)、(17)和(19)中表示的剩余的SB可被用于保护象数据分组头那样的重要数据之类等目的。除数据分组头外,ATV包括一些重要信息,诸如,由程序映象表和程序相关表等组成的程序特别信息。因此,在这些重要信息和数据分组头中,通过考虑它们的重要性,根据用于保护的可用数据区数目,在事先选择出将被保护的数据。
下一步将描述第二实施例的总体结构。
在此描述的第一实施例有如下问题。当普通重放数据将被编辑时,例如,如果输入数据由已经基于MPEG方案而被数据压缩过的数据组成,那么必须以每个GOP作为单元或以一个序列为单元来完成编辑工作,该序列包括几个GOP作为一个单元。在这种情况下,当两个GOP之间的边界点出现在磁道中间时,从机械精度和控制特性的角度来看,在编辑时很难记录从那个点起的下一个信号。具有这些功能的装置将变得太昂贵,特别是作为通用VCR而言。在编辑时通过插入方式来记录视频节目的情况下,如果监视器显示视频节目的时间和分配给用于插入视频节目的区域的时间相等,那么其数据量就可以彼此不同。特别是,如果将被插入的数据量不比该区域所能记录的数据量小,那么,不可能实现插入记录。显然,对于用在ATV中的编码器和MPEG来说,平均数据速率是确定的,但是,对于每个GOP,数据量则未被明确规定。如果它们之间数据量差异太大,那么空白期或分配给非显示图象的显示时间将变得长。这将会引起多种错误,诸如解码器的缓冲区下溢或者监视器上图象的不连续性。为了避免这一点,必须在监视器上显示不必要的图象。
而且,被用于保护象数据分组头等那样的重要部分的记录区必须事先被设定。因此,如果有很多数据要被保护,那么,必须选择要被保护的数据。相反地,如果没有数据要被保护,那么保有记录区就变得没用处。
与之相反,在第二实施例中,可编辑的帧数被作为一个数据单元,它被分配给整数个磁道,从而用于编辑工作所需的控制等功能就被简化了。这就是说,提供了一种用于调整在记录特殊重放数据(特别是搜索-重放数据)时的数据量的装置,以便控制记录阶段的总数据量,从而使总数据量能和能被记录在整数条磁道上的数据量相对应。因此,任何编辑点都出现在磁道开始之处,这样就没必要考虑伺服信号的连续性或用于PLL操作的信号的连续性,这是在进行编辑工作时(例如,从磁道中间点开始连接性记录时)应该注意到的事。没有必要采取措施来防护这样一种偶然性,即由于缺乏机械互换性的精度,而使应被保有的信号数据被错误地擦除。
通过上述的用于在记录中调整特殊重放数据量的装置,能够自适应地建立将被用于保护重要部分(例如被包括在输入信号中的数据分组头)的记录区。这就是说,当输入信号比特流被分配给将被记录在VCR中的SB之后,包括了重要部分的SB作为备用数据被记录。在重放时,如果不能对包括重要部分的某个SB进行纠错,就由作为备用数据被记录的相应SB代替整个错误的SB。或者,当只把例如数据分组头这样的重要部分分配给SB时,以及如果包括了数据分组头等的重要部分不能被纠错,那么,只有出错部分才被作为备用数据来存储的相应重要部分所代替。
按照这种方式,在第二实施例中,例如,根据例如为19.3Mbps的ATV信号形成搜索数据,并且,两类数据(即普通重放数据和搜索数据)被记录在磁带上接近于相同的位置上。同时,通过考虑从输入比特流所得到的GOP数据量,自适应地设定搜索数据量,然后,在记录阶段如此建立的数据就作为一个整体被记录在整数条的磁道上。因此,这一方案在记录时不再要求更复杂的控制,过去,在为了完成(象连续性记录这样的)编辑时通常需要这些复杂控制,在这里新记录的数据将被记录在已经记录有数据的磁带上,从而使较前的数据将与较后的数据相连续地记录。另外,本发明的方案不要求有大的间隙,这种间隔是在传统方法中当没有控制时在已记录的信号数据和新记录的信号数据之间所必需的。这就是说,可以通过有效地利用磁带而不必设置浪费性的大间隔来记录信号。而且,由于无需象过去习惯做的那样为了考虑已完成(象这种连续性记录的)编辑工作的磁带的可交换性,而需提高机械精度或对信号进行复杂的控制,因此,这种装置适于大批量生产。
在过去,当某个视频节目的数据被插入或记录时,如果将被插入的数据量稍微大于记录区,那么,不可能插入数据。根据本发明,由于在记录阶段通过调整搜索数据量而使总的数据量受到了控制,因此,就可以插入数据量大于磁带上的被指定区域的视频节目。或者,即使将被插入的数据量小于指定的区域,也可以记录视频节目而不存在不连续性。因此,本发明的方法不仅通过参考某个视频节目的显示期间的时钟时间(该时钟时间是不可靠的,因此不可依靠它)就能够确定插入该视频节目是否可行,并且还使得能够实现实际的插入记录操作。而且,在传统装置中,直到某个视频节目完整地被实际接收之前,不能确定该视频节目是否能被插入,这是因为,在接收结束时不能知道将被插入的信号数据量。特别是,当将被插入的记录数据量大于指定的插入区时,超出指定的插入区的数据必须被抛弃。但是,通过本发明的方法,如果,例如通过广播节目安排表能够知道将被插入的某个视频节目或其中一部分的所需时间,就能实现包括连续性记录在内的编辑工作。
下面将描述本发明第二实施例的进一步的细节。第二实施例的描述将以与上述第一实施例中的数字VCR相比较的方式来进行。
图15和17表示本实施例的记录部分的框图,而图16和18表示同一实施例的重放部分的框图。和第一实施例(在图6到9中表示)的VCR结构的不同之处是,在记录侧,有检测GOP中数据量的电路401(被称作GOP数据检测电路401)、和用于控制搜索数据的量的信号生成电路402(被称作搜索数据控制信号生成产路402),而在重放侧,有通过检测专用磁头的SB选择信号生成电路404(基于专用磁头的SB选择信号生成电路404)、以及数据处理条件建立ROM405。
本发明将不限于SD-VCR系统。也就是说,本发明与纠错码(ECC)、数字调制和解调方案、磁带类型、机械结构以及伺服机械无关。只要输入数据速率能被调整,并且数据分组格式能被转换,那么,任何数字输入都能被处理,并且任何数字VCR都能被使用。下面将通过示例性SD-VCR来描述该实施例。
本实施例能被用于ATV比特流作为高比特率信号被输入的情况、以及从ATV比特流准备特殊重放数据的情况(记录侧见图15,而重放侧见图16),并且其中高数据率比特流和低数据率比特流都作为输入信号被输入,并且从低数据率比特流中准备特殊重放数据(记录侧见图17,以及重放侧见图18)。由于作为本实施例的基本操作,在图15和图17的装置之间是一样的,并且在图16和18的装置之间也一样,因此只对图15和16所示装置进行描述。
首先,将描述记录侧的操作(图15)。输入的ATV比特流通过接口之后,被输入到GOP数据检测电路401之中,并在那里计算每个GOP中的数据量。然后,搜索数据控制信号生成电路402检查缓冲器中的上溢/下溢情况,并且输出和被检测条件相对应的可接受的搜索数据量。这就是,电路402具有预定信息,其中根据每个不同缓冲器关于上溢和下溢的条件规定了可接受的搜索数据量。根据如此指定的搜索数据量,DCT系数选择电路227为先前建立起的每种搜索速率模式选择适当数量的搜索数据(这里,具有三种搜索速率模式)。磁道映象信号生成电路224生成用于控制复用器223的控制信号,从而当复用器复用不同种类数据(即,普通重放数据、±15倍速率数据、±5倍速率数据、±3倍速率数据、和用于备份数据分组头的数据)时,这些数据的每一个都能被记录在磁道的位置上。由搜索数据控制信号生成电路402形成关于转换的定时的信息。
上述搜索数据控制信号生成电路402根据数据处理条件建立ROM405中先前指定的数据量(对不同数据中的每一个)产生数据量控制信号。
而且,上述搜索数据控制信号生成电路402有另一种功能。这就是,根据先前在ROM405中为每种不同搜索速度模式所确定的可接收搜索数据量,电路402生成控制信号以用来控制用于不同速率模式的不同数据缓冲器,在磁道映象信号生成电路224中,根据搜索数据量事先地建立起搜索数据分配。电路224生成输出信号以用来控制复用器223并适当地分配SB,从而,能根据被检测到的搜索数据量自适应地形成磁带上的数据结构型式。
在再生成操作中,如图16所示,在普通重放模式和搜索-重放模式,基于专用磁头的SB选择信号生成电路404将根据新提供的一个字节数据的专用分组头(dedicated header)来鉴别SB。SB数据处理电路322根据数据的类型适当地完成转换,从而使普通重放数据的SB被输出到缓冲器,而搜索-重放数据的SB被输出到特殊重放数据的数据分组处理电路327、以及数据分组头处理和时间信号生成电路328。图20表示了专用分组头的结构,其细节将在稍后描述。然后,在搜索重放中找到的数据被重新构造成有数据分组结构的数据,它能被ATV解码器解码。
下面参考图19A到19C,通过解释一个其中使用了国际上一致的SD-VCR的例子,来说明在本实施例中将ATV数据分组的数据分配到SB。将ATV比特流上的两个数据分组(188字节×2=376字节)分配给5个SD-VTR SB(77字节(有效区)×5=385字节),并且以那种格式进行记录。剩余9字节中,每个SB的一个字节被用于上述专用分组头,如图19A到19C所示。5个SB中每一个的剩余4个字节被用于以结构型式数据来填充,作为可被识别为空位数据的填充字节。或者,还能使用用于其它目的的存储数据空间。图19A说明这样一种情况,其中剩余的4个字节中的2个字节被插入SB。插入方式已被写在上述专用分组头中,从而在重放过程中被插入的部分能被恢复成普通比特流。图19B表示用于特殊重放的数据的SD-VCR SB的例子。将输入比特流分配给SD-VCR SB的方法不限于以上例子。
现在,将对这样一种情况进行描述,其中本发明的输入比特流上的GOP被逐个地找到,并且每个被找到的GOP上的数据被记录到固定数目的磁道上。在NTSC信号(帧频率59.94Hz)被记录到SD-VCR上的情况下,如果磁鼓以150rps(9000rpm)的速率旋转,那么每帧上的数据被分配给10条磁道。这就是,GOP中的帧号乘以10磁道/帧从而成为该固定磁道数。例如,如果一个GOP由12帧组成(随后将通过这种情况的实例进行描述,即GOP具有12帧),相应的磁道数是120。因此,数据处理条件就被建立,从而包括搜索数据在内的总数据就可分配给120条磁道。在数据处理条件建立ROM405中规定了这些条件。图21A至21C表示了数据存储方式。在图21A至21C中,双向箭头指明GOP上的数据区域。
现在,将对这样一种情况进行描述,其中本发明的输入比特流将被以每GOP为一单元进行处理,并且每个GOP上的数据被记录在任意整数条磁道上。如果输入数据的增加量等于或少于通过从磁道上的SB总数中减去磁道上用于搜索数据的SB的数目之差所计算出的数的一半,那么确保用于搜索数据的SB数就要减去如此计算而得的SB数,从而可以防止磁道数的增加。另一方面,如果输入数据增加量大于通过从磁道总SB数中减去磁道上用于搜索数据的SB数所计算得到的数目的一半,那么用于搜索数据的SB数就增加,从而去使用另一条磁道。
当输入数据量减少时,进行同样的操作。这就是,不论增加或减少,用于GOP帧数的记录磁道数通过增加或减少搜索数据量而保持为一个整数。其结果是,磁道内没有无效数据,这样能提高磁带上记录区的使用效率。
关于数据的排列,通过增加或减少用于3倍速率搜索模式数据的记录区来调整总的数据量。图22A和22B表示这种情况的例子。由于用于15倍速率模式的有效重放数据数量较少,所以如果数据量变化,图象质量就受到很大影响,因此,在这个实施例中,即使数据量大幅度变化,也应该通过调整多数用于3倍速率模式和5倍速率模式的数据量来调节数据量。
当实际上准备好的搜索数据量被调整到如上所计算出的搜索数据量时,不需要以精确的方式完成调整。如果实际准备好的搜索数据量处在计算出的值之内,那么它可能有用,并且对于实际操作,能够容许有数十比特那样大的差值。
从上述方案可以很显而易见,在编辑时,是以一个GOP作为一个单元、或者以包括某一个或几个GOP在内的序列作为一个单元来进行记录。这时,作为一个单元的GOP或序列的数据被记录在整数条磁道上。这就增加了对设备机械精度的容限,并使得易于进行控制。
更具体地说,当用于编辑的记录操作从磁道中间开始时,需提高磁头安装的绝对位置的精度,以便精确地调整PG脉冲的绝对位置以及检索信号从而控制记录的定时。而且,为了保持可互换性,需要有更高的精度。然而,即使这种精度被增加到最大程度,也不可能实现完全连续的记录。
而且,由于在编辑点上信号的相位变化,所以从PLL操作的角度看,最好提供前同步区信号(preable)。因此,不可能消除所希望的新数据开始点和新数据实际记录点之间的浪费部分。图23B表示了这种情况。在这个图中的间隙和前同步区是被给出的、仅用于连接性记录的浪费部分。
当GOP的末端处在磁道的中间时,如果用于编辑的记录操作被强制从下一磁道开始,那么就能避免上述问题。但是,除了包括GOP的尾端的SB落在磁道末端的情况之外,这种方法都会增加浪费部分。
如果给GOP单元的普通重放数据分配固定数目的磁道,那么就必须根据普通重放数据量的改变量来改变搜索数据量。这就是说,如果如同在先有技术的例子中所说的那样,普通重放数据量包括30条磁道内的3175个SB,那么,30条磁道上的搜索数据量最多可改变64SB(它大约是输入数据的2%,并且和0.47条磁道相对应)。因此,搜索模式的图象质量会受到很大影响。
在磁道数改变、但保持为整数的情况中,假设GOP中最后搜索数据例如是40SB,并且由于一条磁道上用于视频信号的有效数据量是135SB,则按如下计算得到一个数被作为阈值来建立(135-40)/2=47.5SB在这种情况下,如果,例如普通重放情况下的数据比对于整数条磁道通常的可记录数据量增加了47SB,则搜索数据量被减少47SB,从而防止磁道数增加,并且,如果普通重放时的数据增加48SB则增加一条磁道,并且搜索数据量也增加47SB(135-40-48)。因此,搜索数据量的变化能被限制在47SB之内,搜索模式时的图象质量不会有显著变化,并且观察者不会注意到质量有降低。
当实行这种控制时,如果连续地出现许多GOP,每个GOP包含着增加了(48+n)SB(其中,n=0,1,…47)的数据量(这是对于整数条磁道的通常的可记录数据量的超出量,并且因而每个GOP的搜索数据增加(47-n)SB,则在相应于由用于搜索数据的SB引起的增加的时间的期间内,不可能从VCR输入侧缓冲器内读取用于普通重放的数据,并在缓冲器中建立这些未被检索的数据。发生这种情况是因为增加一条磁道时,输入数据量应该增加,但是,只有搜索数据被记录在该增加磁道的剩余部分,并且只有等到下一个磁道出现时才能将数据记录在下一个GOP上。因此,未被检索的数据在缓冲器中积累,可能引起VCR输入侧缓冲器的溢出。因此,在VCR输入侧缓冲器设有用于监视溢出状态的设备,这样,如果缓冲器中的数据将要溢出,可迫使本装置去减少搜索数据并减少记录磁道数,从而加速缓冲器中数据的检索,即使上述的数据增加量是48SB或更多时也是如此。
如果连续地出现许多GOP,每个GOP包含着增加了1SB到47SB的数据量,(这是对于整数条磁道通常的可记录数据量的超出量),则可以使VCR的输入缓冲器下溢。在这种情况下,操作受到控制,从而与上述情况相反地强行加上一条磁道。
在数据量减少的情况下,则以模拟方式来控制操作。这就是,如果连续地出现许多GOP,每个GOP包含着减少了mSB(其中,m=0,1,…,47)的数据量,并且因此每个GOP增加的搜索数据为mSB,从而不减少磁道数,则装置将受到控制以防止数据溢出。相对地,如果连续地出现许多GOP,每个GOP包含着减少了(48+m)SB的数据量,并且搜索数据被减少(47-m)SB以减少一条记录磁道,则装置将受到控制以防止数据下溢。
而且,当数据增加mSB的情况和数据减少(48+m)SB的情况交替出现时,装置将受到控制以防止下溢。当数据增加(48+m)SB的情况和数据减少mSB的情况交替出现时,装置将受到控制以防止上溢。
因为在实际操作中,在足够长时间内输入的数据速率受到控制而会聚到恒定数据率,因此很少出现连续地跨过许多GOP的类似趋势。但是,如果象场景改变那样的非正常状态发生,上述情况可能局部地发生。
在这种情况下,当所举例子中的值和上面一样时,搜索数据量的最大变化为135-40=95SB
关于输入数据,由于每个GOP的数据量平均会聚于一定值,只要VCR输入缓冲器有足够大的容量,上述问题将不会发生。但是,从费用的角度看,最好是减少缓冲器的容量,因此最好通过比较上述控制电路与缓冲器的费用,从而选择一种较低廉的方法。
尽管在上面的描述中搜索数据量被规定为40SB,但是,也可以使用任何其它值。而且,对每条磁道,这个值可以变化。这就是说,如果搜索数据量根据磁道而不同,可事先在数据处理条件建立ROM405中设定该值,这样就能容易地进行如上的处理。
关于至此所说明的记录操作,将参考具体例子详细说明其中的基本操作(这个例子将不会限制本发明)。
首先,在数据处理条件建立ROM405中事先设定输入比特流上GOP的数据量;一个阈值(根据该数据量来确定该阈值,并且基于该阈值确定磁道数应当增加或减少);一些记录磁道;以及搜索数据量。对于输入数据流,为每个GOP计算出数据量。然后,通过检查用以指示VCR缓冲器状态的标志以确认是否上溢或下溢,并且检索记录磁道数以及搜索数据量,这些都是根据数据处理条件建立ROM405中的阈值来确定的,然后,就进行操作。从输入比特流中准备出所要求的、适当的搜索数据量。用于不同速率模式的数据缓冲器228、229和230按下面方法被用来为不同搜索重放模式准备数据。这就是,被用于准备上述搜索数据的数据将由在可变长度码解码部分226解码的DCT系数的直流分量的系数、以及交流分量组成(当一个DCT块是由8×8象素组成时,有63个交流分量,尽管它们中有许多为“0”)。在DCT系数选择电路227中,从这些数据中选择每种搜索-速率模式所需数目的直流分量和交流分量。在选择时,根据数据处理条件设定ROM405中的设定值来设定各种不同搜索-速率模式的直流分量和交流分量的选择值。之后,实行将数据映象到磁带上。在映象中,用于普通重放的数据和搜索数据被登记在磁带的位置上。如所需的那样延迟输入数据。
参考图12所示的一个例子,其中解释了当数据的大小等于或大于普通重放操作数据的一半时数据便变得有效的情况下,修改每种搜索-速率模式的数据量的方法。图24A和24B表示修改的方法。图24A表示的是每个搜索数据增加5SB的情况,而图24B表示每个搜索数据减少5SB的情况。这些图是根据图14所示的、用于5倍速率模式的磁带结构型式的例子,其中,对于每个搜索数据区修正±5SB(在这个例子中,具有9个记录区域)。
在120条磁道中(GOP将由多达12个帧组成),SB数是9×5×120/30=180SB。对这么大的数据量进行修改。当然,要增加或减少的SB数可根据情况而改变,或者,要被改变的SB数根据每条磁道而变化。
当整个场景变化时,这样大的数据量变化特别易于发生。
在上面的示例性VCR中,由于在3倍速率搜索模式下可找出所有用于3倍速率数据的搜索数据区,因此在如同上述那样当数据量的变化是发生在许多不同分布的搜索-数据区之中、以及在数据量的变化是发生在少数相邻的磁道之中这两种情况之间时,其结果没有不同。
在这个例子(图13)中的15倍速度模式的情况下,由于伺服锁定因而用于15倍速率的搜索数据被排列在5条磁道的区间;如果磁头从某个磁道开始进行15倍速率搜索,磁头通过计数每五条磁道找不出第一和第二出现的磁道上的数据。在某种情况下,例如,对于3倍速率搜索的数据也实行这一操作,如上所述,如果在一个特定磁道上进行搜索数据量的调整,那么,在搜索模式下,被显示图象的质量将根据搜索从哪个磁道上开始而变得不同。
为了在双芯片磁头排列(或在单芯片磁头排列)中使用于一次特定的正向(或反向)搜索重放的数据不被减少,最好是使要发生变化的搜索数据量平均地分配给至少多条磁道。
如果要发生变化的数据量少到只有几个SB,并且因而数据量的变化对搜索的图象的质量产生的影响很小,则可以在任何磁道上集中地进行数据量的改变。
因为,在任何重放模式下进行重放时重放出数据必需按SB级别分类成用于搜索模式的数据、和用于普通重放的数据,所以为此需要有专用分组头。在本发明的实施例中,一个SB(例如,77字节)中的有效数据区的1个字节被分配给专用分组头。因此,SB中的可用数据区是76字节。
图20表示了用于此目的的专用分组头的结构例子。专用分组头的前3个字节被用来指示SB的类型,这就是,普通重放数据、3倍速率搜索数据、5倍速率搜索数据、15倍速率搜索数据、和用户定义数据。接下来的3个比特用于指明SB中的备用数据量。剩余2个比特中,一个被用于指明GOP的开始SB,另一个指明GOP的终止SB。专用分组头并不限于上述结构。这就是说,应当这样来构造分组头,使得可满足输入比特流与SB相对应的方案。
根据在本发明第一实施例的从(1)到(19)中所计算的数据量来对第二实施例进行描述。假定GOP由12个帧组成,在SD-VCR显示出图象的12帧时,SD-VCR将数据写到120条磁道上。
首先,描述GOP数据被写在固定数目的磁道(例如,120条磁道)上的情况。例如,如果输入信号中的GOP的数据量减少100SB,应当只从用于3倍速率搜索模式的数据中减去100SB。这就是说,在这个例子中,从确保用于该模式的292SB中减去用于3倍速率搜索模式的数据而成192SB。因为在这种情况下,用于搜索-模式数据的磁道结构型式具有一个为30条磁道的周期;将30条磁道作为一个单元来考虑,则30条磁道上的数据应减少25SB(100SB除以4)。因此,例如从前10条磁道中的每一条中减去2SB,并且从接下来的5条磁道中的每一条中减去1SB。
在这种情况下,改变的数量既能被分配给和双磁头排列相对应的双向搜索数据、又能分配给和单芯片磁头排列相应的双向搜索数据。因此,参考图25,按一种磁头排列方式在搜索操作时可被检索和使用的数据量将如下进行计算400-(100×10/15)=333SB(20)(当结果包括小数时,将其略去)在这种情况下,由于SB数应除以4,所以会出现有一些数字不可除的情况。考虑这些不可除的情况,控制电路需要变得庞大。为避免这一点,让我们略去除法过程并且为每120条磁道(120磁道对应于一个GOP)考虑进行数据变化处理。然后,把要被减少的数据量分配给60条磁道,这些磁道中只具有用于3倍速率模式的搜索数据区。这就是说,由前20条磁道的每一条上的搜索数据中减去1SB,并且从剩余的40条磁道的每一条的搜索数据中减去2SB。
数据的分配并不局限于上述方法。例如,考虑到120条磁道的情况时,则也可以从包含着搜索数据的前50条磁道中的每一条中减去2SB。或者,也可以从最后几条(例如,3条)磁道中减去100SB。在图22A和22B中示出了数据调整方式。
当要被改变的数据量这样多时,可以通过调整仅用于3倍速率模式的搜索数据而不必调整用于5倍速率模式的搜索数据就能处理此数据的减少情况。但是,随着变化数据量的进一步增加,用5倍速率模式的搜索数据应当并且能够被用来实行对数据量的调整。
下一步,将描述这样一种情况,其中,不固定数目的磁道被用来记录GOP数据,而磁道数按整数条磁道变化。象在上面的例子中那样,假定GOP数据增加到100SB。假定第121条磁道包括40SB的搜索数据,即使所有40SB都被减去,还有60SB的存储量。由于这一数据量欠缺超出上述阈值47.5SB,因而磁道数增加。例如,当增加一条磁道时,剩余的存储量就变成为100-(135-40)=5SB这个数目小于47.5SB,从而不再增加更多的磁道,并且将通过将第121条磁道上的搜索数据减少到35SB来补偿存储量(即5SB)。
在上述情况中,包括搜索数据的GOP数据最终能被记录在整数条(具体地说,121条)磁道上。如果增加量是142SB,用于将要被调整的搜索数据的SB数是142-95=47SB在这种情况下,将增加1条磁道。
参考图25,用于3倍速率模式的搜索数据存在于第109条(相应于No.18)、第110条(相应于No.19)、第112条(相应于No.21)、第115条(相应于No.24)、第116条(相应于No.25)、和第118条(相应于No.27)磁道上。在这6条磁道中,从第109条磁道中减去搜索数据7SB,并且从剩余的5条磁道的每一条中减去8SB。在这种情况下,只调整用于3倍速率模式的数据,从而成功地从用于单芯片磁头排列的数据中和用于双芯片磁头排列的数据中减去基本上相同多的数据。对将要被减少的SB的调整不局限于上述分配。
下面将描述保护例如数据分组头的重要部分的方法。为了保护象数据分组头这样的重要部分以及使能数据分组头被高速搜索,应当保护某一个或几个SB。通过按上述方式自适应地使将要被用于搜索重放的数据量减少几个SB,或通过利用备用SB(例如,SD技术说明中的视频辅助区域)就能做到这一点。所得到的SB被用于记录包含着数据分组头的SB的拷贝。
保护方法中的一种包括从比特流中找出诸如数据分组头这样的重要部分的步骤、将找到的数据分配给一些SB的步骤、以及将SB记录成数据分组头和其它重要部分的备份的步骤。
另一保护方法包括有如下各步骤复制一些包含着象ATV数据分组头这样的重要部分的SB;将被复制的SB按原样分配并记录到被确保用于保护的SB中,以产生一个备份;当包含着ATV数据分组头的原始SB不能被纠错时,用相应的备份SB来替换整个的有错的SB。
特别地,当每个包括188字节的两个ATV数据分组被分配给5个SB时;如果,例如5个SB中的两个包含着数据分组头,则该两个SB应该且能够被按原样记录以产生一个备份。在重放时,如果SB被发现有错并且不能纠正,那么就用作为备份而记录的相应SB来取代整个该SB。
当只包含图象数据的SB有不显著的错误时,图象质量必然稍有变差。但是,即使稍有错误的数据被恢复成将要被输入到ATV解码器中的ATV比特流时,如果数据分组头中无错误,那么装置将不会在操作系统中引起异常情况。除此之外,因为图象数据本身包括异常的标志,并且将标志设置成表示在ATV数据分组头中“出现错误”。
当被录是ATV信号时,要进行保护的数据分组头例如包括适配分组头、PES分组头等。作为其他的重要信息的例子,包括程序说明信息等。当有许多SB需要作备份时,为了达到记录备份数据的目的,可以把要被记录的搜索数据量设定成不大的数据量。
关于链接分组头(link header),因为每个数据分组有一个链接分组头,当整个SB被保留用于备份时,不可能拷贝链接分组头,因为这样要有太多的SB将被备份。因此,当整个SB应被备份时,不记录用于链接分组头的拷贝。因此,当链接分组头不能被纠错时,有三种可能的方法来处理这种情况。即ATV数据分组本身应被放弃;链接分组头中的出错标志应被置位;或者,通过根据相邻ATV数据分组中的链接分组头来猜测PID、连续性标志和量化控制,以便将一种固定结构型式的SYNC以及在要被输出的ATV中不使用的标志附加到如此预测的数据中。在这些方法中,只要不引起系统故障,就可以应用其中任何一种。
为了实现如上的替换,可使用上述5个SB中的剩余4个字节。在记录时,这些备用数据区(1至4字节)被分配给包含着将要被备份的ATV数据分组头的SB并被用于编号。进行计数以便使备份SB和原始SB有相同号码。因此,在重放时,如果不能纠正SB的错误,就用有相同号码的备份SB代替这个SB。
后一种方法能同时备份图象数据和重要数据,并且,此方法和只备份重要部分的方法相比时,从磁带使用效率的角度看是降低了。但是,由于这种方法不影响字节-单元控制和字节-单元处理(这二者在处理ATV比特流中象数据分组头这样的短-长度数据等时都是必需的),因而控制和处理电路能被简化。
本发明可使用除上面实施例所用的之外的其它VCR,所谓的可同时重放的VCR即为其中之一。这种VCR使用双芯片磁头并且能够在数据被记录之后立即重放出数据。在可同时重放的VCR中,一个磁头位于双芯片磁头的向前例(相对于磁鼓的旋转方向是向前),该磁头记录包含数据分组头的SB,在该磁头刚刚完成记录之后,位于双芯片磁头后侧的另一个磁头将重放出这个在先刚刚记录的SB以便检查记录情况。如果VCR检测到SB的丢失情况,该设备就重放这个有问题的SB的正确数据并重新插入SB以将其记录在正确的位置上。
为了实现以上操作,VCR需作为备份而存储将被使用的每个SB,直到该同时重放装置判断出是否发生SB丢失为止。这种方法对于采取措施防止记录中出现丢失是有效的。
下一步,将对搜索数据结构进行描述。我们假定,普通重放数据如上面所描述的那样增加100SB,并且考虑将要被记录的搜索数据量减少100SB的方法。与此同时在这个实施例中可被读出的3倍速率搜索数据被限制在333SB以内(上述的(20))。在第一个实施例中,当3倍速率搜索数据被产生时,2.5字节被分配给5个交流系数。如果这种分配减少到1.2字节,从而总共2.1字节被分配给Y-信号的直流分量和两个色度信号以及交流分量,则3倍速率搜索数据量从395SB(14)减少到332SB(20),这样,就使数据量落在上面指定的333SB(20)的范围之内。这时,剩余的5SB(15)减少到1SB。这个剩余的SB可被用于备份数据分组头。
以除上述搜索数据准备方法之外的任何方法,通过改变比特分配、适当地选择系数量、和选择合适的块,从而可自适当地改变搜索数据量。
现在,描述将视频节目作为被编辑数据插入的情况。在这种情况下,如果要被插入的视频节目的显示时间大约和将要被视频节目替代的磁带上的数据的时间相等,那么可以指望视频节目平均量大约等于将被替代的磁带上的数据的平均量。因此,可以基本上实施上述的对编辑工作有益的插入-记录过程。因为在本发明中可以调整搜索数据量,即使两个数据集合的数据量之间有些小的差异,也可能通过调整搜索数据量精确地将节目数据插入到将要被替代的数据之中。图26A和26B说明插入记录的情况,在图26A和26B中,双向箭头指示GOP上的数据区域。
如在上面的第一实施例中所说明的那样,因为SD-VCR处理的是用于记录的、数据速率为24.94Mbps的数据而ATV比特流的数据速率是19.30Mbps,因而SD-VCR可记录的数据是ATV系统的1.3倍。这就是说,如果所有用于搜索数据的区域都用于记录将要被插入的视频节目,则平均可以记录如同记录普通ATV比特流时的大约1.3倍的数据。但是,如果这样地记录数据,搜索画面将不能被显示。当如图16和18那样进行低比特速率信号的记录时,输出必须作为低比特速率信号来进行传送。因此,数据区不能被完全地消除,但能在一定的范围之内调整数据量。
即使将要被插入的数据量较少,也能在一定程度上通过将缓冲器控制和快进控制相组合来实现短数据的插入以及对其连续重放。例如,当将29分59秒的视频节目插入到30分的区域中时,将在普通重放操作中显示出1秒钟的无用图象。但是,这种操作被加以控制,从而使得与1秒相对应的各磁道被“快进”,而在与快进相应的时间里的显示空白将被缓冲器中的图象数据所填充。可以通过扩大缓冲器容量来增加空白时间,但是,缓冲器容量的增加加大了开销。特别地,如果要使装置能处理1分钟空白,当数据速率是19.3Mbps(是1秒所要求的19.3M比特的60倍)时,缓冲器容量要求1.2G比特,从而造成费用的增加。这种方案有这样的局限性,但是,如果数据量不是非常地不同,观察者能够连续地看到内容,而不会在被插入视频节目的期间以及这之前和之后有不舒服的感觉。
在这种情况下,用户有必要在插入视频节目之前提前在用户区中设定控制规程。将被设定的内容例如包括有多少条磁道是快进的;以及经过多少秒之后数据开始被重放,并且被传送给缓冲器;以及其它所需信息。
在第一实施例中,已经被记录的视频节目和新的、来自其它的源的视频节目通常不能被单个VCR设备连续地记录(需要两个VCR设备),但是通过有效地利用上述方案,可以用一个VCR来实现记录,就象这两个视频节目是被连续地进行记录那样,尽管这里存在着一定的限制性。
尽管是针对这样的一种情况进行了上述所有特征的描述的,这种情况就是将ATV比特流用来准备用于普通重放和用于特殊重放的数据,但是,本发明将不被限于此。这就是说,可以用相似的方法记录及重放通过MPEG 2编码的频带压缩图象数据。
本发明是用于提供一种记录装置,该装置用于记录用于ATV、HDTV等具有宽的带宽的电视信号,近年来,作为不久的将来的高质量、具有宽屏显示的电视装置,它们吸引了广大公众注意。这就是说,本发明将提供这样一种数字VTR,它能处理同时的广播,或者它在记录比特率为17至60Mbps的频带压缩视频节目时,能产生出具有相同的节目内容的相对的低比特率信号(有效抽样被减半、有效行被减半的1.5-5Mbps),并且使用了该相对的低比特率信号作为数据以用于特殊重放。
根据本发明,用于自适应地改变搜索数据量的设备,可使得将整数条磁道分配给GOP从而来简化编辑工作,尽管在采用利用可变长度码的高效编码方案的数字VTR中对整数条磁道的分配曾经是困难的。因此,本发明的装置将从来不从磁道的中间开始进行记录,并且将足够的精度容差提供给设备中的机构以及使用于控制的精度可有足够的容差(该控制作用用来维持可互换性,以使磁带结构型式符合标准),因此,该装置适用于批量生产。
由于用于自适应地改变搜索数据量的该设备能够形成和保护记录区域,所以,可以录制象数据分组头ATV或MPEG 2比特流被保护记录区那样的重要部分,如果在原始的重要数据中出现错误并且不能被纠正,就用备份数据代替出错数据。因此,本发明的装置几乎不会产生系统级别上的错误。
权利要求
1.一种数字记录和重放装置,既能用于记录和重放用于普通重放的相对高的比特率数据,又能用于记录和重放用于特殊重放的相对低的比特率数据,其特征在于,适当地调整要被作为特殊重放数据来进行记录的数据量,从而使用于记录普通重放数据的记录区易于被改变。
2.一种数字记录和重放装置,用于记录和重放用高效编码进行了频带压缩的图象,其特征在于,当既有帧内信息又有帧间信息的数字信号经处理以记录和重放图象时,相对高的比特率和相对低的比特率信号被同时地记录到接近相同的位置上,并且全部或部分的相对低的比特率的信号被用于实现作为视频记录装置不可缺少的功能的特殊重放,从而可自适应地改变用于特殊重放的数据量。
3.根据权利要求2的记录和重放装置,其特征在于,一个用于自适应地改变特殊重放数据量的装置被用于将以一定数目的帧作为一个单元来将图象数据记录在任意整数条磁道上。
4.一种数字记录和重放装置,用于记录和重放用高效编码进行频带压缩的图象,其特征在于,当既有帧内信息又有帧间信息的数字信号经处理以记录和重放图象时,相对高的比特率和相对低的比特率的信号同时地被记录在接近相同的位置上,相对低的比特率信号的全部或部分被用于实现特殊重放。
5.根据权利要求4的数字记录重放装置,其特征在于,根据MPEG方案实现频带压缩,并且图象数据以一个序列作为一个单元被记录到固定数目的磁道上,所述序列包括至少一个GOP作为一个单元,而用于特殊重放的数据量可自适应地变化。
6.根据权利要求2的数字记录和重放装置,其特征在于,其中,当通过在VCR磁带上插入和替换已经被记录的信号来记录不同的视频节目数据时,如果用于新的被插入视频节目的数据量和平均数据量不同,可以自适应地调整用于特殊重放的数据量,从而使得用于新插入的视频节目的数据只被记录在磁带上的规定区域中,并且从该区域被重放。
7.一种数字记录和重放装置,其特征在于,其操作包括步骤接收输入信号;将输入信号分配到多个SYNC块或相似物上,以便将数据记录到VCR上;为了保护例如是被包括在输入信号中的数据分组头那样的重要信息,将包括作为整体的重要信息或只包括例如数据分组头那样的重要部分的SYNC块,记录到事先为备用数据保留的数据区中;并且当重要数据出现任何错误且该错误不能被纠正时,用被记录成备用数据的相应SYNC块代替有错误数据的整个SYNC块,或者用相应的重要部分取代错误数据本身。
8.根据权利要求7的数字记录和重放装置,其特征在于,其中,可在高速操作模式下搜索被复制且记录在备用记录区中的数据分组头。
9.根据权利要求7的记录和重放装置,其特征在于,当既有帧内信息又有帧间信息的数字信号经过处理来记录和重放图象时,相对高的比特率和相对低的比特率信号被同时地记录在接近相同的位置上,相对低的比特率信号的全部或部分被用于完成特殊重放,从而,通过自适应地改变特殊重放的数据量,来建立用于包括重要部分或只有重要部分的SYNC块及相似结构的备用数据的记录区域。
10.一种数字记录和重放装置,包括同时重放磁头;用于在用所述磁头进行记录时检测同时地重放的数据分组头中的误码的检测电路,其特征在于,当所述检测电路在数据分组头中检测到误码时,记录信号中的包含着数据分组头的数据部分被重新插入到被记录信号中,从而使数据能够被正确地记录。
全文摘要
同时记录相同视频节目的两种数字信号的数字记录和重放装置,由高效编码产生的相对高的速率信号或相对低的速率信号被记录在磁带上大致相同的位置,当低比特率信号被普通重放和搜索-重放所共用时,或者当它只被用于搜索-重放时,调整搜索-重放数据量,这样在一帧或一些帧上作为一个单元用于编辑工作的数据能被记录到整数条磁道上。
文档编号H04N5/92GK1133532SQ9510841
公开日1996年10月16日 申请日期1995年7月14日 优先权日1994年7月14日
发明者野上浩昭, 片山浩诚 申请人:夏普公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1