专利名称:同步数据传输方法与配置的制作方法
技术领域:
本发明涉及电信系统中的同步数据传输,尤其涉及业务信道的最大数据率等于终端接口处若干个用户数据率中的某一个的情形。
移动系统一般系指,能使在系统内移动的用户进行个人(private)无线数据传输的种种电信系统。一种典型移动系统是公众陆地移动网(public landmobile network,PLMN)。PLMN包括若干个位于移动网络业务区内的固定无线电站(基站),基站的无线电覆盖区(小区)提供一个均匀的蜂窝网络。基站在小区内提供一个无线电接口(空中接口,air interface),以便移动台与PLMN之间通信。移动台能在网络中移动,并且它们具有通过任何基站接入PLMN的通路,因此PLMN配备有复杂的,用于移动用户的用户数据管理、鉴定和位置管理,用于越区切换(呼叫期间的基站变换)等等。网络亦配备有若干主要的业务,它们支持诸如数据、传真、视频图象等等不同于通常呼叫(话音业务)的信息的传输。这些新业务需要颇为大量的研制工作,并要求各网络中有新的配置。
移动系统的另一个领域包括基于卫星的移动业务。一个卫星系统中,无线电覆盖是借助卫星而不是陆地基站而获得的。卫星位于一个环绕地球的轨道上,并在移动台(或用户终端UT)与陆地站(LES)之间传输无线电信号。卫星的波束在地面上提供覆盖区,即小区。各个卫星的覆盖区被配置以形成连续覆盖,使得移动台在所有时间里处在至少一个卫星的覆盖区内。所需卫星的个数有赖于想要的覆盖。例如,地球表面上的连续覆盖可能需要有10颗卫星。
如同在PLMN中,卫星移动系统中用户移动需要有类似的配置,即移动用户的用户数据管理、鉴定和位置管理,越区切换,等等。卫星系统还应支持类似PLMN的业务。
达到卫星移动系统中的要求的一条途径是使用现有的PLMN配置。原理上,这种变通途径是非常简单的,因为一个卫星系统基本上能与具有非兼容无线电接口的移动系统的基站系统相类比。换句话说,有可能使用常规PLMN基础结构,只是基站系统为卫星系统。这种情形下,相同的网络基础结构在原理上甚至可既含有常规PLMN基站系统又含有卫星“基站系统”。
然而,存在诸多涉及PLMN基础结构与卫星系统适配的实际问题。对申请人来说,一个明显的问题是PLMN业务信道与卫星系统中“无线电接口”的业务信道颇为不同。考察这样一个示例,其中PLMN是一个泛欧数字移动系统GSM(全球移动通信系统),而卫星移动系统是目前正在研制的Inmarsat-P系统。
GSM系统中的业务信道支持2400、4800、7200和9600比特/秒的用户速率上的数据传输。将来,在无线电接口处使用两个或更多信道(多时隙接入)的高速数据业务(HSCSD=High speed circuit switched data,高速电路交换数据)还支持更高的用户速率(14400比特/秒、19600比特/秒,……)。一个业务信道所提供的数据连接是与V.110速率相适配的(V.110-rate-adapted)。V.110连接是这样一种数字传输信道,它原本是为ISDN(综合业务数字网)技术开发的,并与V.24接口相适配。在V.110帧中,除用户数据之外,终端接口状态信息(V.24接口控制信号),比如CT105(RTS=ready to send,备好待发),CT108(DTR=data terminalready,数据终端备好),CT106(CTS=clear to send,清除待发),CT107(DSR=data set ready,数据组备好)以及CT109(CD=data carrierdetect,数据载波检测),也在两个传输方向上传输。进一步地,在多信道透明的HSCSD数据业务中,还必须传递子信道间的同步信息。以上述及的附加信息使无线电接口处的比特率增加得高于真正的用户速率。与2400、4800和9600比特/秒的用户速率对应的无线电接口速率是3600、6000和12000比特/秒。此外,业务信道还使用意在降低传输差错影响的信道编码。
Inmarsat-P卫星系统要求一个业务信道(例如1200、2400、4800比特/秒)能支持高达4800比特/秒的标准数据率,并且几个平行的业务信道能支持超过4800比特/秒(例如9600、14400、19200比特/秒,等等)的标准数据率,这比如是在GSM系统的HSCSD业务中。
Inmarsat-P卫星系统中,一个业务信道在无线电接口处的数据率最大为4800比特/秒,这等于终端接口处4800比特/秒的用户数据率。在使用两个业务信道的数据业务中,无线电接口处的数据率等于终端接口处的9600比特/秒的用户数据率。当不仅用户数据而且以上描述的终端接口状态信息以及可能的子信道间同步信息均将通过无线电接口传输时,则会出现问题。因此,卫星系统在无线电接口处所使用的协议数据单元,即帧结构,应被定义以携载以上述及的控制和同步信息通过无线电接口。一种方式将直接用于GSM系统配置,即一种基于V.110的帧结构,它亦将用于卫星系统的无线电接口处。然而,这将是一个非常复杂的配置,并且它将明显地降低现有的用户数据率。单个业务信道不能支持4800比特/秒的用户数据率,这是因为V.110帧结构和终端接口状态信息将真正的数据率增高得高于4800比特/秒。因此,一个业务信道上的最高的标准用户数据率将是2400比特/秒。出于同样的原因,一个两业务信道数据业务不能支持9600比特/秒的用户速率,但最高的标准用户数据率将是4800比特/秒(或者在某些系统中7200比特/秒)。使用多于两个业务信道的数据业务中亦将发生现有数据率的相应降低。这种配置--其中附加(overhead)信息造成容量显著降低,不是令人满意的。
其它类型的无线电接口比如无线电话系统与PLMN连接时亦可出现类似的问题。
本发明的一个目的是这样一种配置,这种配置支持用户数据、终端接口状态信息以及可能地其它控制或同步信息通过具有与终端接口处用户数据率相等的数据率的透明业务信道的传输。
这是借助这样一种同步数据传输方法实现的,这种方法通过电信系统中的一个业务信道或一组业务信道传输终端接口用户数据和状态信息以及可能地其它控制或同步信息。该方法包括以下步骤在传输端,将终端接口状态信息以及可能地其它控制或同步信息插入到终端接口处所使用的传输协议的诸协议数据单元的冗余部分中,通过所述业务信道或一组业务信道传输含有所述终端接口状态信息以及可能地其它控制或同步信息的诸协议数据单元,在接收端,从诸协议数据单元中提取所述状态信息以及可能地其它控制或同步信息,并将原有的冗余还原给诸协议数据单元。
本发明还涉及这样一种配置,它通过电信系统中的一个业务信道传输终端接口用户数据和状态信息以及可能地其它控制与同步信息。该配置中传输设备(MS、LES)被配置以将终端接口状态信息以及可能地其它控制或同步信息插入到终端接口处所使用的传输协议的诸协议数据单元的冗余部分中,并通过所述业务信道或所述一组业务信道将诸协议数据单元传输至接收设备(MS、LES),接收设备(MS、LES)被配置以从诸协议数据单元中提取所述状态信息以及可能地其它控制与同步信息,并将原有冗余还原给诸协议数据单元。
本发明中,终端接口状态信息以及可能地其它控制或同步信息是在所使用的(诸)传输协议的诸协议数据单元的冗余部分中传过业务信道的。在接收端,从诸协议数据单元中提取状态信息以及可能地其它信息,并将原有冗余还原给诸协议数据单元。结果,附加信息不增加即将传输的比特数,并且业务信道的数据率可与终端接口处的用户数据率相同。在高速速率数据传输中,一个数据连接可包括一组两个或更多个业务信道,使得该组业务信道的总数据率可与终端接口处的用户数据率相同。
本发明基于这样的事实,即当用在PLMN环境比如GSM网络中时,各传输协议在其帧结构中具有冗余比特,这种冗余或者是由于帧结构重复或其它类似原因。
比如,PLMN的诸承载(bearer)业务利用点对点连接,即在两点之间使用电路交换连接。多数传输协议还针对一点对多点连接,并且它们的帧结构含有一个地址域。点对点连接中,该地址域是冗余的。在本发明的一个实施方式中,终端接口状态信息以及可能地其它控制或同步信息是在这样的地址域中传输的。这样的协议包括比如基于HDLC(High Level DataLink,高级数据链路)的协议。
根据GSM建议03.45的同步传真协议使用这样一个HDLC帧,它在二进制编码信令阶段(phase)和纠错传真数据传输阶段中包括一个冗余部分地址域。它还包括其它阶段,其中传输GSM特定帧。这些帧含有重复相同信息的形式的冗余。
如果传真业务利用根据ITU-T T.30的正常传真数据(NFD)模式,则数据含有行结束(End-of-Line,EOL)字符串、传真编码数据以及可能的填充数据以保证一行的最小长度。从传输的观点看,该填充数据可被视为是冗余的。
以下,将参考伴随的附图,利用最佳实施方式描述本发明,附图中
图1是描述根据GSM数据传输建议的配置的框图,图2显示一个V.110帧结构,图3是一般地描述本发明背后问题的框图,该问题涉及与拥有与用户数据率相等的数据率的业务信道,图4是描述Inmarsat-P卫星系统如何作为一个基站系统与GSM的移动系统连接的框图,图5是描述图4系统中根据本发明的一般配置的框图,图6显示一个标准HDLC帧,而图7显示一个根据本发明修改的HDLC帧,图8显示一个根据GSM建议03.45的SYNCH(同步)帧,而图9显示一个根据本发明修改的SYNCH帧,图10显示一个根据GSM建议03.45的STATUS(状态)帧,而图11显示一个根据本发明修改的STATUS帧,图12显示正规传真数据(NFD)模式中根据本发明修改的一个FILL(填充)域。
本发明能用于通过任何拥有与终端接口处的用户数据率相等的数据率的业务信道的数据传输。将以基于GSM的移动系统与作为“基站系统”与之相连的Inmarsat-P卫星系统的协同工作(interwork)为例描述本发明的最佳实施方式。然而,本发明不受限于这些系统。
对于熟练的技术人员,GSM移动系统的结构和操作是众知的,并且它们被定义在ETSI(European Telecommunications Standards Institute)的GSM规范中。同样,亦可参考M.Mouly和M.Pautet所著的“GSMSystem for Mobile Communication(GSM移动通信系统)”(Palaiseau,France,1992,ISBN2-9507190-0-7)。基于GSM的移动系统包括DCS1800(数字通信系统)和美国数字蜂窝系统PCS(个人通信系统)。
图1描述根据数据传输的GSM建议的配置。GSM移动系统的基本结构示于图1。GSM结构包括两个部分一个基站系统BSS和一个网络子系统NSS。BSS和移动台MS通过无线电连接通信。BSS中,每个小区由一个基站BTS(图中未示出)服务。多个基站与这样一个基站控制器BSC(图1中未示出)连接,该基站控制器的功能是控制BTS所使用的射频和信道。各BSS与一个移动业务交换中心MSC连接。一定数量的MSC与其它电信网比如公众交换电话网网络PSTN和ISDN连接。
该GSM系统中,在MS的终端适配功能TAF与移动网络(通常在MSC中)的协同工作功能IWF之间建立起一个数据连接。在GSM网络内出现的数据传输中,该连接与V.110速率相适配,是适配于V.24接口的UDI编码数字全双工连接。这里所描述的V.110连接是这样一个数字传输信道,它原本是为ISDN(综合业务数字网络)技术开发的,它与V.24接口相适配,并且它还提供传输V.24状态(控制信号)的可能。对与V.110速率相适配的连接的CCITT建议被公开于CCITT兰皮书V.110中。对V.24接口的CCITT建议被公开于CCITT兰皮书V.24中。在非透明数据业务中,一个GSM连接还使用无线电链路协议RLP。TAF将连接至MS的数据终端TE与以上述及的GSM V.110数据连接相适配,该数据连接建立在使用一个或几个业务信道(HSCSD)的一个物理连接上。IWF包括这样一个速率适配器,它使GSM V.110数据连接与V.24接口相适配、并与一个数据调制解调器或另一个速率适配器相适配,这取决于该连接是否延伸到PSTN或ISDN。例如,ISDN协议可以是V.110或V.120。ISDN或PSTN中,例如,一个数据连接是建立到另一个TE的。此处,MS与TE之间的V.24接口称为终端接口。一个相对应的终端接口亦位于IWF,并位于ISDN或PSTN内的另一个TE中。例如,各TE之间所用的协议可以是根据ITU-T建议X.25的HDLC协议,或传真传输中根据ITU-T T.30的协议。
GSM业务信道支持2400、4800、7200和9600比特/秒的用户速率的数据传输。将来,在无线电接口处使用两个或更多信道(多时隙接入)的高速数据业务(HSCSD=High speed circuit switched data)还支持更高的用户速率(14400比特/秒、19600比特/秒,……)。在V.110帧中,除用户数据之外,终端接口状态信息(V.24接口控制信号),比如CT105(RTS=ready to send,备好待发),CT108(DTR=data terminal ready,数据终端备好),CT106(CTS=clear to send,清除待发),CT107(DSR=dataset ready,数据组备好)以及CT109(CD=data carrier detect,数据载波检测),亦在两个传输方向上传输。进一步地,在多信道透明HSCSD数据业务中,还必须传递子信道间的同步信息。业务信道采用意在降低传输差错的影响的信道编码。以上述及的信道编码和附加信息使无线电接口处的比特率增加得高于真正的用户速率。与2400、4800和9600比特/秒的用户速率对应的无线电接口速率是3600、6000和12000比特/秒。
用于通过V.110连接传输数据的帧结构示于图2。该帧由80比特组成。字节0含有八个二进制零,而字节5含有一个二进制1,其后跟随7个E比特。字节1至4及6至9在比特位置1上含有一个二进制1,在比特位置8上含有一个状态比特(S或X比特),以及在比特位置2至7上含有6个数据比特(D比特)。这些比特是从左到右、从上到下传输的。因此,一帧包括48比特用户数据,即D1至D48。比特S和X用于以数据传输模式传递与诸数据比特有关的信道控制信息。S1、S3、S6和S8四个状态比特用于将CT108(Data Terminal Ready)从MS传递至IWF,并将CT107状态信号从IWF传递至MS。S4和S9两个状态比特用于将CT105状态信号从MS传输至IWF,并且将CT109状态信号从IWF传递至MS。两个X状态比特用于在适配器之间传输CT106状态信号(Ready for Sending)或传输同步或流控制信息。当终端设备是X.21终端设备时,这些S比特用于传输X.21控制信息。MS包括一个确定的滤波过程,用于接收CT106和CT109状态及X.21指示。
V.110帧中某些控制比特已被如此重新确定,以便传输控制利用几个平行的业务信道的数据传输所需的同步信息。例如,这种多信道数据传输及有关的同步在芬兰专利申请945817中已作描述。因为HSCSD业务中,相同的状态数据实际上是通过几个平行的业务信道以数据传输模式传输的,每个业务信道的各帧包括这样的“额外的”冗余状态比特,它们可被删除而对重复的状态比特个数或状态信号的比特差错率没有任何影响。例如,在两个平行信道的情形下,传输双份的状态比特,而因此一半比特将是冗余的。借助在各帧内传输的信道和帧编号,这些冗余状态比特可供子信道间的同步使用。可采用几种方法选择状态比特达此目的。例如,比特S1、S4和S6可供信道编号使用,而X比特之一可供信道内的1-比特帧编号使用。
应指出的是,以上描述的V.110帧的状态比特仅是作为终端接口状态信息及其它应在V.110帧或任何其它帧内一般地通过业务信道传送的信息的一个示例。对于本发明,除实际所含的用户数据外还将传输何种状态信息或其它可能的控制与同步信息并不是本质的。本发明能更一般地适合于传输任何类型的附加信息。
因此,一个GSM业务信道包括用于传输用户数据之外的所需状态和同步信息的附加容量。如同图3中一般地描述的,当使用一个无线电接口而非GSM无线电接口并且接口的业务信道的数据率等于终端接口处的用户数据率--比如4800比特/秒时,则会出现问题。该业务信道没有能够用于传输4800比特/秒数据以外的其它信息的额外容量。实际中,该业务信道上的数据率将被减小至2400比特/秒。
图4以框图形式显示这样一个系统的实例,其中Inmarsat-P卫星系统作为一基站系统与基于GSM的移动系统连接。Inmarsat卫星系统中,无线电覆盖是由若干个卫星而非设在地面的基站获得的,卫星处在环绕地球的轨道上,并在各MS(或用户终端UT)与各LES之间传输无线电信号。卫星的波束在地面上形成一个覆盖区,即小区。各个卫星的覆盖区被配置以形成连续覆盖,使得移动台在所有时间里位于至少一个卫星的覆盖区内。所需卫星的个数有赖于想要的覆盖。例如,地球表面上连续覆盖可能需要有10个卫星。为明了起见,图4仅显示一个LES、一个卫星SAT以及一个MS。LES以图1中各BS同样的方式连接至GSM网络的MSC。同时,MSC与LES之间的GSM协议与图1中MSC与各BSS之间的协议(GSMV.110)相同。终端接口及其协议(HDLC、T.30)以及固定网络的协议(ISDNV.110/V.120或PSTN 3.1 kHz音频)亦与图1中的相同。差别在于图4中GSM V.110连接并不在MSC与MS之间的整个连接上使用,而是在LES与MS之间的无线电接口使用Inmarsat协议和若干个业务信道。
一个无线电接口由一MS与一LES间的一个双向卫星无线电连接组成。卫星系统中单元SAT、LES以及MS的准确结构或操作或该无线电接口的精确指标与本发明无关。在该实际的卫星系统中--其细节可得自Inmarsat指标,本发明无需更改。对于本发明来说,唯一本质的特征是无线电接口所构成的业务信道的容量。Inmarsat-P系统中一个业务信道的最大数据率为4800比特/秒,这会产生结合图3一般地描述过的问题,即当用户数据率为4800比特/秒时,不能通过业务信道传输诸终端接口状态。
图5一般地描述这样的根据本发明的配置,它无需将用户数据率降低到4800比特/秒以下就能进行终端接口状态信息的传输。
图5一般地显示终端接口的协议数据单元(PDU)的内容,多数协议中有这些内容。首先,PDU包括若干个域,比如START和END,指示PDU的开始和结束。PDU还包括控制数据(CONTROL)和即将传输的真正信息(INFORMATION)。PDU的准确格式依传输协议而变。然而,当各协议被用于PLMN环境比如GSM网络时,终端接口的所有传输协议的帧结构中均存在冗余比特。这些随传输协议不同而变的冗余比特在图5中被一般地表示为域REDUNDANT。
本发明中,终端接口状态信息以及可能地其它控制或同步信息是在信道上所使用的(各)传输协议的诸PDU的冗余部分(REDUNDANT)内传过业务信道的。图5示例中,MS/TAF接收来自终端接口的标准PDU和终端接口状态信息,即V.24控制信号CT105和CT108。MS/TAF通过将终端接口状态信息插入到冗余部分(REDUNDANT)中,用标准的PDU形成即将向无线电接口传输的PDU。在多信道HSCSD业务中,MS/TAF还将与子信道间同步有关的、且已结合图2描述的信息插入PDU的冗余部分(REDUNDANT)。
通过一颗卫星,MS将无线电接口的PDU传输至LES。LES从接到的无线电接口的PDU中提取终端接口状态信息以及可能的子信道间同步信息。可通过以下途径还原PDU的原有冗余a)还原冗余信息,如果它是已知的,b)保持由MS/TAF附加的信息,或c)将其它任意信息插入冗余部分REDUNDANT。LES随后根据本发明将PDU和附加信息插入根据图2的V.110帧。更确切地说,如同结合图2所说明的,LES将PDU的内容、状态比特S1至S9中的终端接口状态信息以及子信道间同步信息比如比特S1、S3和X插入V.110帧的数据比特D1至D48。该V.110帧被转发至MSC。
在从MSC到MS的反传输方向上,该过程相反。在LES中,V.110帧的数据比特D1至D48形成无线电接口的PDU,而来自比特S1至S9和X的终端接口状态信息以及可能的子信道间同步信息被插入PDU的冗余部分(REDUNDANT)。通过无线电接口将该PDU从LES传输至MS/TAF。根据无线电接口的PDU,MS/TAF还原终端接口的原有PDU、终端接口状态信息状态以及可能的同步信息。MS/TAF通过数据线路DATA将PDU转发至TE,而通过状态线路STATUS将状态信息转发至TE。
以下将参看图6至12,描述可根据本发明用于传输附加信息的拥有冗余比特的传输协议的若干示例。
例如,GSM网络业务利用一个点对点连接。这意味着,当用于GSM环境时,多数传输协议在其帧结构中拥有若干冗余比特。
例如,基于HDLC的协议支持一点对多点连接。一点对多点连接要求在帧结构中有一个地址域。在点对点环境比如GSM下,该地址域是冗余的,并且它可被本发明使用。
HDLC是拥有一个图6所示标准帧结构的ITU-TX.25链路层协议。该帧结构可被用作图5所示的终端接口PDU,冗余部分为ADDRESS域。图7显示无线电接口的HDLC PDU,其中根据本发明的附加信息在冗余的ADDRESS域内传输。更确切地,8-比特ADDRESS域中的3比特(例如比特0、1、2)可用于携载终端接口状态信息(从MS到MSC的CT105、108,以及从MSC到MS的CT106、107和109),而5比特(例如比特3至7)可用于携载HSCSD业务中的子信道间同步比特。
移动系统最重要的业务之一是传真业务。GSM系统的传真业务是在GSM建议03.45中确定的,传真业务中,在传真终端(FAX)与MS之间确定了一个特殊的传真适配器。所需的设备配置定义于GSM建议03.45中,但其细节与本发明无关。在图1、3、4和5中,可假定传真终端FAX和传真适配器被包含在TE中,且终端接口是传真适配器与MS之间的一个V.24-接口。
GSM建议03.45的思想是允许ITU-T T.30协议在任何可能的时候透明地通过GSM数据连接。T.30协议仅在它必须避免不同PSTN和GSM系统所造成的问题时才进行处理。透明同步GSM传真协议在二进制编码信令阶段和纠错传真数据传输阶段中使用T.30 HDLC帧。因此有可能利用HDLC帧的冗余地址域,这一点已结合图6和7加以描述。还存在其它传输GSM特定帧的功能阶段SYNC和STATUS。这些帧含有相同信息的重复段形式的冗余。
更确切地,GSM传真业务所使用的协议结构严格基于使用64比特固定长度帧的同步配置。换言之,信息是以64比特帧、顺序地、且在整个呼叫过程中不中断地传过GSM连接的。每个帧的内容有赖于呼叫的模式。
图8显示一个被设计来使能另一端同步的标准SYNC帧。每个同步帧由一个64比特模(pattern)构成,并且SYNC帧以连续的不中断的顺序传输直至下一个模式被输入该呼叫。同步模的重复合有本发明可以利用的冗余。每个第n帧可被用于传输终端接口状态信息和可能的子信道同步信息。比如,n可以是64。图9描述本发明的一个实施方式,其中第n个SYNC帧含有根据本发明的附加信息。64比特帧被划分成8个字节。每个字节中,例如保留3个比特(比如比特0、1和2)用于传输终端接口状态信息,而将5比特(比如比特3至7)留给子信道同步比特。与图5所示的一般情形相比,图8的帧结构形成终端接口PDU,而图9的帧结构形成无线电接口PDU。
图10显示一个含有8个字节的标准STATUS帧。奇数字节含有标识码(IDENT)而偶数字节含有状态特定信息(INFO)。为改善纠错概率,该帧中的每个IDENT字节重复相同的码。本发明可利用这种由重复所造成的冗余。图11显示本发明的一个实施方式,其中一个IDENT字节含有根据本发明的附加信息。例如3比特(比如比特0、1、2)可供终端接口状态信息使用,而且,例如,5比特(比如比特3至7)可供子信道同步信息使用。与图5所示的一般情形相比,图10的帧结构形成终端接口PDU,而图12的帧结构形成无线电接口PDU。
当传真业务利用根据T.30建议的正规数据模式(NFD)时,如图12所示,即将传输的数据包括EOL(End Of Line)符号、传真编码数据DATA以及保证该行的最小长度的可能填充比特FILL。从传输的观点看,这些填充比特可视为冗余,并可为本发明所利用。图12描述如何能将终端接口状态信息和子信道同步信息放置在诸传真编码行的尾部来代替FILL比特。例如,3比特(比特0、1和2)可留给终端接口状态信息,而5比特(比如比特3至7)可留给子信道间同步信息。此情形下,一个正规传真编码行形成图5所示的终端接口PDU,而根据图12的行形成无线电接口PDU。
在NFD模式下长行不含FILL比特。这可导致这样的情形,即仅为根据本发明传输附加信息的目的而必须将若干FILL比特附加到该行上。此情形下,即将通过无线电路径传输的数据量有所增加。然而,因为每当传完一页时,传真终端从数据段变化到信令段,通过在LES和MS中略作缓存便可方便地处理这种情况。
与之有关的附图和说明的目的仅在于描述本发明。本发明的细节可在后附的权利要求书的精神和范围内变化。
权利要求
1.一种同步数据传输的方法,用于在电信系统中通过一个业务信道或一组业务信道传输终端接口用户数据和状态信息以及可能地其它控制或同步信息,其特征在于在传输端,将终端接口状态信息以及可能地其它控制或同步信息插入到终端接口处所使用的传输协议的诸协议数据单元的冗余部分中,通过所述业务信道或一组业务信道传输含有所述终端接口状态信息以及可能地其它控制或同步信息的诸协议数据单元,在接收端,从诸协议数据单元中提取所述状态信息以及可能地其它控制或同步信息并将原有的冗余还原给诸协议数据单元。
2.根据权利要求1的方法,其特征在于在支持点对点传输的电信系统中,将所述状态信息以及可能地其它控制与同步信息插入到支持一点对多点传输的传输协议的一个地址域中。
3.根据权利要求1或2的方法,其特征在于电信系统是一个GSM移动系统或基于该GSM移动系统的移动系统,包括一个含有所述业务信道或一组业务信道的非兼容无线电接口,以及其特征在于将所述状态信息和可能的其它控制与同步信息插入到传真业务的一个同步帧中。
4.根据权利要求1或2的方法,其特征在于电信系统是一个GSM移动系统或基于GSM移动系统的移动系统,包括一个含有所述业务信道或一组业务信道的非兼容无线电接口,以及其特征在于将所述状态信息和可能的其它控制与同步信息插入到传真业务的一个状态帧中。
5.根据权利要求1或2的方法,其特征在于电信系统是一个GSM移动系统或基于GSM移动系统的移动系统,包括一个含有所述业务信道或一组业务信道的非兼容无线电接口,以及其特征在于将所述状态信息和可能的其它控制与同步信息作为填充信息插到一个传真编码行的尾部。
6.根据前述任何一项权利要求的方法,其特征在于所述业务信道是卫星系统的一个业务信道。
7.根据权利要求1的方法,其特征在于该业务信道的最大数据率或该组业务信道的总的最大数据率等于终端接口处的单个用户数据率。
8.一种用于在电信系统通过一个业务信道传输终端接口用户数据和状态信息以及可能地其它控制或同步信息的配置,其特征在于传输设备(MS、LES)被配置以将终端接口状态信息以及可能地其它控制或同步信息插入到终端接口处所使用的传输协议的诸协议数据单元的冗余部分,并通过所述业务信道或一组业务信道将诸协议数据单元传输至接收设备(MS、LES),接收设备(MS、LES)被配置以从诸协议数据单元中提取所述状态信息以及可能地其它控制与同步信息,并将原有冗余还原给诸协议数据单元。
9.根据权利要求8的配置,其特征在于所述电信系统支持点对点传输,并且所述冗余部分由支持一点对多点传输的传输协议的协议数据单元(图6-7)的一个地址域(ADDRESS)组成。
10.根据权利要求8或9的配置,其特征在于电信系统是一个GSM移动系统或基于GSM移动系统的移动系统,包括一个含有所述业务信道或一组业务信道的非兼容无线电接口。
11.根据权利要求10的配置,其特征在于所述非兼容无线电接口包括一个卫星连接。
12.根据权利要求11的配置,其特征在于所述卫星系统至少包括这样一个陆地站(LES),该陆地站作为一个基站系统(BSS)与移动系统的一个移动业务交换中心(MSC)如此连接,使得该移动系统的传输协议和业务信道在该陆地站(LES)与移动业务交换中心(MSC)之间使用,所述无线电接口在该陆地站(LES)与一个移动台(MS)之间经由一个卫星转发器(SAT),并且该无线电接口使用卫星系统的传输协议和业务信道,所述终端接口位于移动台(MS)与终端设备(TE)之间,并且它使用诸标准终端设备协议。
13.根据权利要求12的配置,其特征在于移动台(MS)被配置以将终端接口状态信息以及可能地其它控制或同步信息插入到终端接口处所使用的传输协议的诸协议数据单元的冗余部分中,并通过卫星业务信道的一个业务信道或一组业务信道将诸协议单元传输至陆地站(LES),陆地站(LES)被配置以从所接到的诸协议数据单元中提取所述状态信息以及可能地其它控制或同步信息,并将原有冗余还原给诸协议数据单元,陆地站(LES)被配置以根据移动系统的传输协议将所还原的协议数据单元和所述状态信息以及可能地其它控制与同步信息插入到一个帧中,并将该帧传输至移动业务交换中心(MSC)。
14.根据权利要求12或13的的配置,其特征在于陆地站(LES)被配置以从自移动业务交换中心(MSC)接到的、且符合移动系统的协议的帧中提取终端接口处所使用的传输协议的协议数据单元和终端接口状态信息以及可能地其它控制或同步信息,陆地站(LES)被配置以将所述终端接口状态信息以及可能地其它控制或同步信息插入到所述协议数据单元的冗余部分中,并通过卫星系统的业务信道或一组业务信道将该协议数据单元传输至移动台(MS),移动台(MS)被配置以所接到的诸协议数据单元中提取所述状态信息以及可能地其它控制与同步信息,并将原有冗余还原给诸协议数据单元,移动台(MS)被配置以通过所述终端接口将还原出的协议数据单元和所述状态信息转发至终端设备(TE)。
15.根据权利要求8至14的任何一项的配置,其特征在于所述其它控制与同步信息包括所述一组业务信道之间的同步信息。
16.根据权利要求8的配置,其特征在于该业务信道的最大数据率或该组业务信道的总的最大数据率等于终端接口处的用户数据率。
全文摘要
本发明涉及业务信道的最大数据率等于终端接口处的诸用户数据率之一时的一种同步数据传输。例如,这种情形可出现在一个卫星系统作为一基站系统与一移动系统连接的时候。移动台(MS)将终端接口状态信息(STATUS)插入到终端接口处所使用的传输协议的诸协议数据单元(PDU)的冗余部分(REDUNDANT)中,并通过一个卫星业务信道将诸协议单元传输至一个陆地站(LES)。陆地站(LES)被配置以从从协议数据单元中提取所述状态信息,并将原有冗余还原给诸协议数据单元。
文档编号H04B7/26GK1204429SQ96199053
公开日1999年1月6日 申请日期1996年11月13日 优先权日1996年11月13日
发明者朱哈·拉萨宁 申请人:诺基亚电信公司