高频可变增益放大器装置和无线通信终端的制作方法

文档序号:7573977阅读:188来源:国知局
专利名称:高频可变增益放大器装置和无线通信终端的制作方法
技术领域
本发明涉及高频可变增益放大器装置和适合在例如无绳电话和便携电话等中使用的无线通信终端。
对于诸如便携电话这样的无线通信终端,当至相对站的距离较近时,为了使传输功率的使用经济、防止相对站的高频放大器出现饱和和减小对其它站的干扰,需要就传输而言进行传输功率控制。尤其在“码分多址(以下称为“CDMA”)”方法中(该方法是近来已处于发展前沿的一种蜂窝多连接方法),已实行在宽控制频带范围内进行高精度的传输功率控制,以保持线路容量。
另一方面,在接收机电路中,进行增益控制,以便抑制因至相对站距离的变化或定相的变化的影响造成的接收信号电平的起伏和防止因高电平输入信号造成的频率受控放大器的饱和。
现在参看表示作为无绳接收设备的一个例子的便携电话的结构的

图1描述一个实例。
在图1中,发送和接收信号的天线11与天线共享电路12的端口12a连接。该天线共享电路12设有传输侧和接收侧端口12t和12r,预定特性的带通滤波器(图中示未出)连接在天线和传输侧端口12a及12t之间以及天线侧和接收侧端口12a及12r之间。
天线共享电路12的接收端口12r的高频信号通过接收器20的低噪声高频放大器21传送给混频器22。本振23的本振信号传送给混频器22。低噪声高频放大器21的高频信号然后被变换为中频信号。该中频信号通过中频放大器24传送给解调器25和接收功率检测器26。
接收功率检测器26的输出作为负反馈提供给中频放大器24和低噪声高频放大器21,以便这些电路的增益被自动地控制。解调器25的输出提供给基带信号处理器31,进行预定的信号处理,从而接收信息被作为音频信号等进行重放。
被重放的接收信息包括来自例如基站的表示传输功率的信息,该指示信息被微计算机30接收。
发送信息、例如音频信号等在基带信号处理器31中进行预定处理,基带信号处理器31的输出信号提供给发射器40的调制器41。调制器41的输出通过中频放大器42传送给混频器43。
本振23的本振信号传送给混频器43。中频放大器42的中频信号被变换为高频信号,并通过驱动放大器44和高频功率放大器45提供给天线共享电路12的传输端口12t。
传输功率控制器46的传输功率控制信号提供给中频放大器42、驱动放大器44和高频功率放大器45,以控制这些电路的增益。该传输功率控制信号是根据接收功率检测器26的接收信号功率检测信息和微计算机30的传输功率指示信息来产生的。
以上描述了传输功率控制的方式,即根据传输功率控制信息对电源提供给高频功率放大器的直流功率进行控制,以便在低电平传输输出时提高该高频功率放大器的效率。
相反地,对于本接收电路的高频放大器,这种控制方式还必须能够实现以下功能,即对于高电平输入信号也能够获得所需要的接收特性,并且,在输入信号为低电平时,从电源提供给高频放大器的直流功率便因而可通过根据接收信号所进行的电平控制而减小。
便携通信终端通常长时间处于等待接收状态。如果能够减少此段时间内接收侧的高频放大器的电流消耗,就能够显著减少功耗,因为虽然与传输侧的高频功率放大器节省的量相比这种节省量是小的,但这种工作状态的持续时间较长。
对于相关的高频可变增益放大器,例如通过根据放大器的输入电平(传输时的传输功率控制信息和接收电路的接收信号电平)控制组成放大器的场效应晶体管的栅极偏压或漏极偏压,就能够减小漏极的漏极电流。由此改变放大器的增益和减少消耗的功率。
但是,在相关技术中,由于半导体工艺的变化,需要调整电压值和范围。于是获得稳定的大的增益控制宽度是困难的。
为了解决这些问题,日本专利申请JP-7-248697(1995年8月31日申请)公开了能够获得稳定的大的增益控制宽度和能够实现功耗减少的可变增益放大器,这种可变增益放大器具有不同增益的多条传输通道。利用高频切换开关切换至这些通道中的一条并选择之,可切断向该放大器的其它传输通道的电源供给。
图2表示上述可变增益放大器的一个例子。在本实例的可变增益放大器50中,存在包括具有预定增益G51的高频放大器51的传输通道和具有0dB增益的导线52的传输通道,该高频放大器51以例如场效应晶体管(在本说明书中称为FET)作为有源元件。在这两条传输通道之间进行切换,以便被高频切换开关电路53和54进行选择。根据高频切换开关电路53和54的切换状态,利用传输通道中的一条从输出端To获取输入端Ti的高频信号。
此外,通过馈电开关55提供高频放大器51的电源电压Vdd。
在所述例子中,接收信号电平控制器60根据上述传输功率控制信息或接收信号电平对高频切换开关电路53和54以及馈电开关55进行控制,使它们协同操作。当高频放大器51不工作时,把高频信号传送给导线51,借助于馈电开关55从而暂停向高频放大器51馈电,避免高频放大器51不必要的功耗。
在这种情况下,控制器60控制高频切换开关电路53、54和馈电开关55的定时,避免使输出端To得不到信号。这是因为不希望在切换至0dB增益的导线52的传输通道情况下,在先把馈电开关55切换至端子n一侧之后切换高频切换开关电路53和54时使输出端To没有输入的缘故。
图2实例中的高频切换开关电路53和54各如图3所示由4个FET、即FET Qa至Qd构成。第一和第二FET Qa至Qb的源极和漏极分别串接在一公共端Tc和第一和第二端Ta和Tb之间。第三和第四FET Qc和Qd的源极和漏极连接在公共端Tc和地之间。
于是,例如当控制用的直流电压[-Vg]作用于FET Qa和Qd的栅极,和控制用的直流电压
v作用于FET Qb和FET Qc的栅极时,第一和第三FET Qa和Qc导通,第二和第四FET Qb和Qd截止,所以在公共端Tc和第二端Tb之间形成了信号传输通路。
此外,如果使作用于FET Qa至Qd的每一个的栅极的控制电压与上述控制电压相反,则FET Qa至Qd的通断状态就反过来,在公共端Tc和第一端Ta之间形成了信号传输通路。
在图2的例子中,控制切换高频切换开关电路53、54和馈电开关55的定时是很麻烦的。此外,由于组成高频切换开关电路53和54的FET Qa至Qd中的FET Qa和Qb的缘故,该高频切换开关电路53和54(LS53+LS54)存在插入损耗,因此存在这一部分使高频放大器51的增益G51降低的问题。
还有,由于高频切换开关电路53和54由4个FET Qa至Qd组成,所以电路尺寸变大,成本增高,相对于便携通信终端严格所需的紧凑和低成本而言,这是一个突出的问题。
为了克服上述问题,本发明的目的是提供高频可变增益放大器装置和无线通信终端,该无线通信终端具有尺寸小、结构简单的增益控制电路,能够获得相当稳定的增益控制并减小了功耗。
为了实现上述目的,根据本发明,高频可变增益放大器装置包括晶体管放大器和旁路开关。晶体管放大器被提供以高频信号。旁路开关连接在晶体管放大器的输入端和输出端之间,并且控制旁路通路的形成。旁路开关根据一个指示切断晶体管放大器装置的电源供给的馈电控制信号的输入而形成旁路通路。旁路开关根据一个指示向晶体管放大器供电的馈电控制信号的输入而断开旁路通路。
在馈电通路内可以包括一馈电开关,它用于把电源电压馈送给晶体管放大器,以便能够按照该馈电开关的输出对旁路开关进行控制。
此外,为了实现上述目的,高频可变增益放大器装置包括晶体管放大器、馈电开关、旁路开关、第一开关控制器和第二开关控制器。该晶体管放大器被提供以高频信号。馈电开关设置在晶体管放大器的馈电通路内。旁路开关连接在晶体管放大器的输入端和输出端之间,用以控制旁路通路的形成。第一开关控制器控制馈电开关的切换操作,第二开关控制器控制旁路开关的切换操作。馈电开关和旁路开关由第一和第二开关控制器控制。
这种高频可变增益放大器装置还可以包括在晶体管放大器输出侧的匹配电路,一个与旁路开关的输出端的连接点设置在匹配电路内。
上述本发明高频可变增益放大器可设置在无线通信终端的传输信号输出侧或传输信号接收侧。在本发明的高频可变增益放大器设置在无线通信终端的传输信号接收侧的情况下,可以根据接收信号的电平来控制馈电开关的切换操作。
在本发明中,利用设置在旁路通路中间的旁路开关和在晶体管电路的馈电通路内的馈电开关的通断操作来完成晶体管放大器内的传输通路和旁路通路之间的切换。设置在旁路通路中间的旁路开关不是如在图2所示实例中使用的选择开关,从而使结构简单。晶体管放大器只有一个馈电开关,以控制向其供电的电源,其输入和输出侧都不与开关连接。因此不如图2所示的例子那样,没有插入损耗。
仅通过控制旁路开关和馈电开关切换的定时就足以实现切换。这样就方便了控制切换时的定时控制。
图1是表示相关无线通信终端的示范性结构的方框图;图2是表示已有高频可变增益放大器装置的示范性结构的方框图;图3是表示图2已有实例的高频切换开关电路的结构的方框图;图4是表示本发明高频可变增益放大器装置第一实施例的基本结构;图5是本发明第一实施例的具体结构的电路图;图6是表示本发明第二实施例的结构的电路图;图7是表示本发明第二实施例的改进结构的电路图;图8是表示本发明第三实施例的结构的电路图。
第一实施例以下参看图4至8描述本发明的高频可变增益放大器装置的实施例。在此描述可应用于以上参看图1描述的无线通信终端的传输侧的驱动放大器44和高频功率放大器45或接收侧的低噪声高频放大器21的高频可变增益放大器装置的一个例子。
本发明第一实施例的基本结构如图4所示。
图4的可变增益放大器100包括高频放大器101和控制该高频放大器101的信号旁路通道的接通和断开的高频开关电路102。
用例如FET作为有源元件的高频放大器101连接在输入端Ti和输出端To之间。由例如FET组成的高频开关电路102则连接在导线103的中部,该导线103连接在高频放大器101的输入端和输出端之间。
包括由例如多个FET组成的馈电开关的切换开关105连接在传送电源电压Vdd的导线和高频放大器101的电源线之间。在这种情况下,该切换开关105的输入端a这一侧与传送电源电压Vdd的导线连接,该切换开关105的输入端g这一侧接地。该切换开关105的输出端与高频开关电路102的切换控制端连接。
切换开关105响应上述传输功率控制信息或接收信号电平进行工作,并由馈电控制器301进行控制。
如图4所示,在馈电控制器301的控制下,当切换开关105在输入端a这一侧连接时,电源电压Vdd就通过切换开关105提供给高频放大器101,使该高频放大器101进入工作状态。
在此同时,通过切换开关105的电源电压Vdd还作为控制信号提供给高频开关电路102,使该高频开关电路102不工作。通过导线103连接输入端Ti和输出端To的连接线于是断开。
在这种状态下,输出端To处的高频信号输出的电平就比输入端Ti处的输入高频信号的电平高了G101,G101是高频放大器101的增益。
相反地,当切换开关105切换成为与图4所示状态相反的状态时,就切断于电源电压Vdd的供给,高频放大器101的工作被暂停,通过切换开关105的地电位作为控制信号而被提供,高频开关电路102工作,输入端Ti和输出端To通过导线103连接。
在这种状态下,输出端To处的高频输出的电平就比输入端Ti处的高频信号输入的电平低了Ls,Ls是高频开关电路102的插入损耗和输入端Ti的失配损耗之和。
可变增益放大器100的增益控制宽度于是由于切换开关105进行切换的缘故而变成G101+|LS102|,高频放大器101的增益于是变得更大。
在本第一实施例中,控制的加入使得高频开关电路102响应用于高频放大器101的馈电控制的切换开关105的切换来接通或断开信号旁路通道。因此,一旦暂停该高频放大器101的操作,就暂停了向该高频放大器101的馈电。因此避免了功耗浪费并能够显著地稳定增益控制范围。
如下所描述的,本第一实施例的高频开关电路102可以具有单个FET或多个串接的FET的简单结构。于是与上述图3的高频切换开关电路53和54相比,能够显著减小尺寸和成本。
本发明第一实施例的具体结构如图5所示。图5中相应于图4部分的部分具有相同的标号。
在图5中,可变增益放大器100由三级单元放大器110、120和130以及-FET 102Q组成,该FET 102Q作为控制这些单元放大器110至130的信号旁路通道的接通和断开的高频开关电路。
电容Ci、Ca、Cb和Co以及单元放大器110、120和130交替地顺序连接。每一个单元放大器110、120和130分别包括FET 111、121和131,这些FET每一个的源极接地,每一个单元放大器的结构都相同。
输入端Ti的高频信号通过输入侧匹配电路112和电容Ci提供给第一个单元放大器110的FET 111的栅极,预定的栅极偏压Vgg经电阻113提供。
FET 111的漏极与匹配电路115连接,还通过漏极偏压供给电路116的高频扼流线圈117与切换开关105连接。
如上所述,切换开关105的输入端a这一侧与传送电源电压Vdd的导线连接,而输入端g这一侧接地。馈电控制器301则响应传输功率控制信息或接收信号电平对切换进行控制。
通过输出侧的匹配电路115获得的单元放大器110的高频输出通过匹配电容Ca提供给随后级的单元放大器120。
按照与第一级的单元放大器110相同的方式,单元放大器110的高频信号通过输入侧匹配电路122和匹配电容Ca提供给随后级单元放大器110的FET 121的栅极,预定的栅极偏压Vgg经电阻123提供。
FET 121的漏极与匹配电路125连接,还通过漏极偏压供给电路126的高频扼流线圈127与切换开关105连接。
通过输出侧的匹配电路125获得的单元放大器120的高频输出通过结电容Cb提供给最后级的单元放大器130。
按照与第一级和随后级的单元放大器110和120相同的方式,单元放大器120的高频信号通过输入侧匹配电路132和结电容Cb提供给最后单元放大器130的FET 131的栅极,预定的栅极偏压Vqq经电阻133提供。
FET 131的漏极与匹配电路135连接,还通过漏极偏压供给电路136的高频扼流线圈137与切换开关105连接。
然后经由电容Co在输出端To处从输出侧的匹配电路135中获得单元放大器130的高频输出。
如上所述,耗尽型FET 102Q用作本第一实施例的高频开关电路102。该FET 102Q的漏极通过隔直电容103c与输入端Ti连接,其源极与最后级的单元放大器130的FET 131的漏极连接。其栅极通过电阻106接地。
匹配电路112和115等可以具有公知的恰当结构。
为了防止振荡,在漏极偏压供给电路116处还连接了与高频扼流线圈117并联的串接的电阻和电容(图中未示出)。
在图5中,由于电阻113、123和133的作用是提供隔离,所以还可以使用足够大的电感。此外,可以用分布式恒定导线来代替高频扼流线圈117、127和137。
以下说明图5第一实施例的操作。
当切换开关105处于图5所示连接状态时,漏极偏压Vdd在馈电控制器301的控制下通过漏极偏压供给电路116、126和136提供,单元放大器110,120和130进入操作状态。
与此同时,漏极偏压Vdd提供给其栅极接地的FET 102Q的源极,电压[-Vdd]施加在FET 102Q的栅极和源极之间。
该FET 102Q的夹断电压Vpf由下式确定Vpf>-Vdd在切换开关105处于图示连接状态情况下,FET 102Q的漏极/源极结“断开”,输入端Ti和输出端To之间利用导线103和104形成的连接成为开路。
在这一状态下,输出端To处的高频信号输出的电平比输入端Ti处的高频信号输入的电平高了单元放大器110、120和130的总增益G110+G120+G130。
相反地,当切换开关105切换为与图示状态相反的状态时,漏极偏压Vdd的供给就被中断,单元放大器110至130的操作被暂停。
与此同时,FET 102Q的源极通过切换开关105和高频扼流线圈137接地,
V的电压施加在FET 102Q的栅极和源极之间。于是FET102Q的漏极/源极结就“接通”,输入端Ti和输出端To通过导线103和104连接。
在这一状态下,如果输入端Ti这一侧的失配损耗可被忽略,则输出端To处的高频信号输出的电平就比输入端Ti处的高频信号输入的电平只低了FET 102Q的插入损耗Ls。
于是,通过切换切换开关105,可变增益放大器100A的增益控制宽度成为G110+G120+G130+Ls102Q,这比单元放大器110、120和130的总增益要大。
如上所述,在这一实施例中,FET 102Q响应向单元放大器110至130提供控制的切换开关105的切换来控制信号旁路通道的接通和断开。于是一旦暂停单元放大器110至130的操作,就暂停了向这些单元放大器110至130的馈电。这样就避免了功耗的浪费和能够显著地稳定增益控制范围。
本实施例的高频开关电路102可以具有单个FET或多个串接的FET的简单结构。因此,与上述图3的高频切换开关电路53和54相比,能够显著地减小尺寸和成本。
此外,由于作为旁路开关的FET 102Q可自动地被接通和断开来控制作为馈电开关电路的切换开关105的切换,所以图2的开关的复杂的定时控制就不再需要。第二实施例以下参看图6和图7描述适用于作为上述传输电路的功率放大器的本发明的高频可变增益放大器装置的第二实施例。
图6表示本发明第二实施例的电路结构。图6中相应于图5部分的部分具有相同的标号或标号的最后两位数字相同。
在图6中,可变增益放大器4500包括两级单元放大器4510和4520以及作为控制单元放大器4510和4520的信号旁路通道的接通和断开的高频开关电路的两个FET 4502a和4502b。
单元放大器4510和4520包括FET 4511和4521,它们的源极都接地,并具有相同的结构。单元放大器4510和4520与电容Ci、Cc和Co交替地顺序连接在输入端Ti和输出端To之间。
输入端Ti的高频信号通过输入侧匹配电路4512和电容Ci提供给第一个单元放大器4510的FET 4511的栅极,预定的栅极偏压Vgg经电阻4513提供。
FET 4511的漏极与匹配电路4515连接,还通过漏极偏压供给电路4516的高频扼流线圈4517与切换开关4505连接。
如同以上实施例那样,该切换开关4505的输入端a这一侧与电源电压线Vdd连接,而输入端g这一侧接地。切换控制则由馈电控制器301根据上述传输功率控制信息来实现。
利用在输出侧的匹配电路4515获得的单元放大器4510的高频输出通过结电容Cc提供给随后级的单元放大器4520。
按照与第一级的单元放大器4510相同的方式,单元放大器4510的高频信号通过匹配电路4522和输入侧的电容Cc提供给单元放大器4520的FET 4521的栅极,预定的栅极偏压Vgg经电阻4523提供。
FET 4521的漏极与匹配电路4525连接,还通过漏极偏压供给电路4526的高频扼流线圈4527与切换开关4505连接。
利用输出侧的匹配电路4525获得的单元放大器4520的高频输出通过电容Co从输出端To处获得。
在图6的第二实施例中,由于两个扩散型FET 4502a和4502b被用作高频旁路开关电路,所以FET 4502a的源极和FET 4502b的漏极串联连接,这两个晶体管于是插在导线4503的中部。
FET 4502a的漏极则通过隔直电容4503c与输入端Ti连接,而FET4502b的源极与单元放大器4520的FET 4521的漏极连接。FET 4502a和4502b的栅极通过电阻4506a和4506b接地。
根据操作频率和用途等的不同,最后级的单元放大器4520的输出侧的匹配电路4525可以采用各种电路结构,这种电路结构的一个例子如图7所示。在图7的例子中,如果匹配电路4525内某一点的电位等于漏极电位,该点就能够与FET 4502b的源极连接。
通过以这种方式在匹配电路4525内设置连接点,就能够在高频开关电路的FET 4502a和4502b都导通时调整从输出端To观看的阻抗。通过调整至最合适的阻抗,就能够抑制因负载波动造成的与输出端To连接的电路的特性的波动。
除了说明匹配电路4525的详细结构外,图7与图6完全相同,因此省略对其余部分的描述。
以下描述图6的第二实施例的操作。
当传输输出根据上述传输功率控制信息而被变成高电平时,切换开关4505就在馈电控制器301的控制下变成图示的连接状态,漏极偏压Vdd通过漏极偏压供给电路4516和4526来提供,两个单元放大器4510和4520都进入操作状态。
与此同时,单元放大器4520的漏极偏压Vdd提供给FET 4502b的源极,该FET 4502b的栅极接地。于是电压[-Vdd]施加在FET 4502b的栅极/源极之间。
该FET 4502b的夹断电压Vpf由下式确定Vpf>-Vdd在切换开关4505按图示状态连接的情况下,FET 4502b的漏源结是“断开”的,与其串接的FET 4502a的漏源结也是“断开”的,通过隔直电容4503c和导线4503连接输入端Ti和输出端To的连线被断开。
在这种状态下,输出端To处的高频信号输出的电平比输入端Ti处的高频信号输入只高了这两个单元放大器4510和4520的增益G4510+G4520(dB)。
相反地,当传输输出降低时,切换开关4505就变成与图示状态相反的状态,漏极偏压Vdd的供给被切断,两个单元放大器4510和4520的操作被暂停。
与此同时,FET 4502b的源极通过切换开关4505和高频扼流线圈4527接地。FET 4502b的漏极/源极结因
V电压作用在其栅极和源极之间而“接通”。
由于FET 4502b的源极/漏极结接通,所以FET 4502b的漏极/源极结也因
V电压作用在FET 4502a的栅极和漏极之间而接通,并且通过导线4503和4504在输入端Ti和输出端To之间形成连接。
在这种状态下,如果忽略输入端Ti这一侧的失配损耗,则输出端To处的高频信号输出的电平就比输入端Ti处的高频信号输入的电平只低了FET 4502a和4502b的插入损耗Ls4502a+Ls4502b。
因此,通过切换切换开关4505,可变增益放大器4500的增益控制宽度就变成G4510+G4520+|Ls4502a+Ls4502b|,这比单元放大器4510和4520的总增益G4510+G4520宽。
例如,在2GHz的频带下,两级单元放大器可获得25dB的总增益。此外,通过两个“导通”的开关FET的信号通道的损耗约是3dB,包括了输入侧的失配损耗。
如上所述,在本第二实施例中,FET 4502a和FET 4502b响应对单元放大器4510和4520进行馈电控制的切换开关4505的切换来控制信号旁路通道的接通和断开。因此,一旦暂停单元放大器4510和4520的操作,就暂停了向这些单元放大器4510和4520的馈电。于是避免了无谓的功耗,并能够获得稳定得多的增益控制宽度。
特别是,由于传输的功率放大器的处理能力很大,所以能够有效地减小功耗。
此外,本实施例的开关能够具有两个串接的FET 4502a和4502b的简单结构。与上述图3的高频切换开关电路53和54相比,能够显著减小尺寸和成本。
本实施例的高频开关是串接的两个FET 4502a和4502b,于是可在“断开”状态下使该开关的隔离变得很大。第三实施例以下参看图8描述可用作接收装置的放大器的起始级的本发明的高频可变增益放大器装置的第三实施例。
图8表示本发明第三实施例的电路结构。图8中相应于图5部分的部分具有相同的标号或标号的最后两位数字相同。
在图8中,可变增益放大器2100包括两级单元放大器2110和2120以及两个FET 2102a和2102b,这两个FET作为高频偏压开关,用于控制作为这两个单元放大器2110和2120的信号旁路通道的导线2103的接通和断开。
单元放大器2110和2120包括FET 2111和2121,它们的源极都接地并具有相同的结构。单元放大器2110和2120交替地与电容Ci、Cc和Co顺序连接,插在输入端Ti和输出端To之间。
输入端Ti的高频信号通过输入侧匹配电路2112和电容器Ci提供给第一单元放大器2110的FET 2111的栅极,预定的栅极偏压Vgg经电阻2113提供。
FET 2111的漏极与匹配电路2115连接,还通过漏极偏压供给电路2116的高频扼流线圈2117与切换开关2105连接。
与以上实施例相同,该切换开关2105的输入端a这一侧与电源电压线Vdd连接,输入端g这一侧接地。切换控制则由馈电控制器301根据上述传输功率控制信息来执行。
利用在输出侧的匹配电路2115获得的单元放大器2110的高频输出通过结电容Cc提供给随后级的单元放大器2120。
按照与第一级的单元放大器2110相同的方式,单元放大器2110的高频信号通过匹配电路2122和输入侧的电容Cc提供给单元放大器2120的FET 2121的栅极,预定的栅极偏压Vgg经电阻2123提供。
FET 2121的漏极与匹配电路2125连接,还通过漏极偏压供给电路2126的高频扼流线圈2127与切换开关2105连接。
利用输出侧的匹配电路2125获得的单元放大器2120的高频输出通过电容Co从输出端To处获得。
在本第三实施例中,与图6的实施例一样,由于两个扩散型FET2102a和2102b被用作高频旁路开关电路,所以FET 2102a的源极和FET2102b的漏极连接在一起,以便以串联方式被使用。
在图8的第三实施例中,FET 2102a的源极通过隔直电容2103c与输入端Ti连接,通过高频扼流线圈2107接地。余下的FET 2102b的漏极则通过隔直电容2104c与最后级的单元放大器2120的漏极连接。
此外,在图8的第三实施例中,根据上述接收电平通过电阻2106a和2106b把切换控制器302的预定控制信号S302提供给并联的FET2102a和FET 2102b的栅极。
通过利用上述结构,图8的第三实施例与图6的第二实施例一样,FET 2102a的源极的连接端决不限于被提供了漏极偏压Vdd的部分(例如单元放大器2120)并可在恰当范围内选择。此外,FET 2102a和2102b决不限于图6的耗尽型,还可以是增强型的。
以下描述图8第三实施例的操作。
在本第三实施例中,当接收信号的电平是低的时,切换开关2105在馈电控制器301的控制下变成图示的连接状态,切换控制器302的控制信号S302的直流电平比FET 2102a和FET 2102b的夹断电压Vpf低了[Vgg]。
然后通过切换开关2105和漏极偏压供给电路2116和2126向这两个单元放大器2110和2120提供漏极偏压Vdd,使它们进入操作状态。
于是FET 2102a的漏极/源极结变成“断开”,与FET 2102a并联的FET 2102b的漏极/源极结也变成断开,使经由隔直电容2103c、导线2103和2104以及隔直电容2104c连接输入端Ti和输出端To的连线断开。
在这一状态下,输出端To处的高频信号输出的电平比输入端Ti处的高频信号输入的电平高了两个单元放大器2110和2120的增益G2110+G2120。
相反地,当接收信号的电平是高的时,切换开关2105就切换为与图示状态相反的状态,切换控制器302的控制信号S302的直流电平切换至地电位。
然后切断漏极偏压的供给,两个单元放大器2110和2120停止操作。
此外,栅极和源极的电位相同,使FET 2102a的漏极和源极之间成为“导通”状态。由此使与该FET串连的FET 2102b的栅极和源极的电位相同,使FET 2102b的漏极和源极之间成为“导通”状态。因此输入端Ti和输出端To通过隔直电容2103c、导线2103和2104以及隔直电容2104c连接在一起。
在这一状态下,如果输入端Ti一侧的失配损耗可被忽略,则输出端To处的高频信号输出的电平就比输入端Ti处的高频信号输入的电平只低了FET 2102a和FET 2102b的输入损耗Ls2102a+Ls2102b。
因切换开关2105的切换而得到的可变增益放大器2100的增益控制范围变成G2110+G2120+|Ls2102a+Ls2102b|,这比单元放大器2110和2120的总增益G2110+G2120要宽。
如上所述,在馈电控制器301和切换控制器302的控制下,FET2102a和FET 2102b根据对单元放大器2110和2120进行馈电控制的切换开关2105的切换来控制信号旁路通道的接通和断开。一旦暂停单元放大器2110和2120的操作,就暂停了这单元放大器2110和2120的馈电,所以就避免了功耗的浪费,并显著增大了稳定的增益控制范围。
本第三实施例的高频开关具有两个串联的FET 2102a和2102b的简单结构。与上述图3的高频切换开关电路53和54相比,能够显著减小尺寸和成本。
本第三实施例的高频开关是串接的两个FET 2102a和2102b,可在“断开”状态下使隔离变得足够大。
在以上每一实施例中,把FET用作放大器的有源元件和在高频开关中使用了FET,但本发明不受此限制,还可以使用双极晶体管。
如上所述,根据本发明,使用简单的结构对每一级都可获得稳定的增益控制范围;可减小功耗和可减小在增益控制中使用的电路的尺寸。
不再需要对馈电开关和偏压开关的切换的定时进行控制,于是使控制更容易。
权利要求
1.一种高频可变增益放大器装置,包括被供给以高频信号的晶体管放大器装置;以及旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成,所述旁路通道由所述旁路开关装置根据指示阻止向所述晶体管放大器装置供电的馈电控制信号的输入来形成,所述旁路通道由所述旁路开关装置根据指示向所述晶体管放大器装置供电的馈电控制信号的输入来断开。
2.权利要求1的高频可变增益放大器,其特征在于,包括在馈电通道内的馈电开关装置,向所述晶体管放大器装置馈送电源电压,所述旁路开关装置根据所述馈电开关装置的输出来控制。
3.高频可变增益放大器装置,包括被供给以高频信号的晶体管放大器装置;位于所述晶体管放大器装置的电源馈电通道内的馈电开关装置;旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成;控制所述馈电开关装置的切换操作的第一开关控制装置;以及控制所述旁路开关装置的切换操作的第二开关控制装置,所述馈电开关装置和所述旁路开关装置由所述第一和第二开关控制装置来控制。
4.权利要求1的高频可变增益放大器装置,其特征在于,还包括在所述晶体管放大器装置的输出侧的匹配装置,在所述匹配装置内设有与所述旁路开关装置的输出端连接的连接点。
5.一种包括在传输信号输出侧的高频可变增益放大器装置的无线通信终端,所述高频可变增益放大器装置包括被供给以高频信号的晶体管放大器装置;以及旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成,所述旁路通道由所述旁路开关装置根据指示阻止向所述晶体管放大器装置供电的馈电控制信号的输入来形成,所述旁路通道由所述旁路开关装置根据指示向所述晶体管放大器装置供电的馈电控制信号的输入来断开。
6.权利要求5的无线通信终端,其特征在于,其中所述高频可变增益放大器装置包括在馈电通道内的馈电开关装置,用于向所述晶体管放大器装置馈送电源电压,所述旁路开关装置根据所述馈电开关装置的输出来控制。
7.一种包括在传输信号输出侧的高频可变增益放大器装置的无线通信终端,所述高频可变增益放大器装置包括被供给以高频信号的晶体管放大器装置;位于所述晶体管放大器装置的电源馈电通道内的馈电开关装置;旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成;控制所述馈电开关装置的切换操作的第一开关控制装置;以及控制所述旁路开关装置的切换操作的第二开关控制装置,所述馈电开关装置和所述旁路开关装置由所述第一和第二开关控制装置来控制。
8.一种包括在传输信号接收侧的高频可变增益放大器装置的无线通信终端,所述高频可变增益放大器装置包括被供给以高频信号的晶体管放大器装置;以及旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成,所述旁路通道由所述旁路开关装置根据指示阻止向所述晶体管放大器装置供电的馈电控制信号的输入来形成,所述旁路通道由所述旁路开关装置根据指示向所述晶体管放大器装置供电的馈电控制信号的输入来断开。
9.权利要求8的无线通信终端,其特征在于,其中所述高频可变增益放大器装置包括在馈电通道内的馈电开关装置,用于向所述晶体管放大器装置馈送电源电压,所述旁路开关装置根据所述馈电开关装置的输出来控制。
10.一种包括在传输信号接收侧的高频可变增益放大器装置的无线通信终端,所述高频可变增益放大器装置包括被供给以高频信号的晶体管放大器装置;位于所述晶体管放大器装置的电源馈电通道内的馈电开关装置;旁路开关装置,连接在所述晶体管放大器装置的输入端和输出端之间,用于控制旁路通道的形成;控制所述馈电开关装置的切换操作的第一开关控制装置;以及控制所述旁路开关装置的切换操作的第二开关控制装置,所述馈电开关装置和所述旁路开关装置由所述第一和第二开关控制装置来控制。
11.权利要求8的无线通信终端,其特征在于,其中所述馈电开关装置的所述切换操作被根据接收信号的电平来控制。
全文摘要
高频可变增益放大器包括多级晶体管放大器、控制电源电压的供给和切断的切换开关电路、及位于连接输入端和输出端的旁路通道的中部的栅极接地的场效应晶体管开关电路。该场效应晶体管开关的源极与最后级的晶体管放大器电路的场效应晶体管的漏极直接电流连接。当通过切换开关电路把电源电压供给每一晶体管放大器时,场效应晶体管开关被“截止”,当不供给电源电压时,场效应晶体管开关“导通”。
文档编号H04N1/00GK1193844SQ97129738
公开日1998年9月23日 申请日期1997年12月9日 优先权日1996年12月9日
发明者阿部雅美, 大芝克幸 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1