一种基于多边法的三维坐标测量系统的布局优化算法

文档序号:10616605阅读:981来源:国知局
一种基于多边法的三维坐标测量系统的布局优化算法
【专利摘要】本发明公开了一种基于多边法的三维坐标测量系统的布局优化算法,其特征是以多边法坐标测量系统的测量基站坐标作为决策变量,以待测点几何精度因子的函数作为优化目标,从只使用三台测量基站开始,经过若干次循环迭代,给出满足待测点测量精度要求的优化布局即构建系统需要的最少测量基站台数以及测量基站的安装位置。本发明能优化多边法三维坐标测量系统的布局,从而降低系统的构建成本,提高系统的测量效益。
【专利说明】
-种基于多边法的H维坐标测量系统的布局优化算法
技术领域
[0001] 本发明设及=维坐标测量技术领域,特别是设及一种多边法大空间=维坐标测量 系统的布局优化算法。
【背景技术】
[0002] 基于多边法原理的S维坐标测量系统由至少S台测量基站组成。其中,测量基站 一般包含二维正交旋转模块及安装在旋转模块上的绝对测距模块,并且二维正交旋转轴线 的交点被设定为绝对测距模块的测距值零点。在测量基站二维正交旋转轴线的交点坐标已 知的条件下,使测量基站分别瞄准待测点并测距,然后根据测距值计算出待测点的坐标,运 便是多边法=维坐标测量系统的基本工作流程。
[0003] -般来说,随着使用的测量基站数量增多,多边法=维坐标测量系统的测量精度 会得到提高,但提高效果和测量基站与待测点的相对位置有关。因此,如何根据待测点的分 布情况及测量精度要求来确定系统布局即测量基站的数量和安装位置,是构建多边法=维 坐标测量系统时必须解决的问题之一。而在进行大空间立维坐标测量作业时,待测点的位 置往往较为分散、不规则,并且测量精度要求也不尽一致等因素又使上述问题变得更加复 杂。
[0004] 现有技术中,仅有在测量基站数量已定的情况下,针对使单点测量精度最优而展 开的讨论和研究,还未有相关针对多待测点且测量精度要求不一致的情况下系统布局优化 问题的研究方案。

【发明内容】

[0005] 本发明的目的是为克服现有技术中的不足,提供一种待测点位置分散、分布不规 则及测量精度要求不一致的条件下的基于多边法的=维坐标测量系统的布局优化算法,W 期能根据待测点的位置及要求的测量精度给出优化布局,从而在满足待测点测量精度要求 的前提下,使用最少的测量基站来构建测量系统,降低系统的构建成本,进而实现系统布局 效益的最大化。
[0006] 本发明为解决技术问题采取如下技术方案:
[0007] 本发明一种基于多边法的=维坐标测量系统的布局优化算法,所述=维坐标测量 系统中至少包含=台测量基站;其特点是,所述布局优化算法是按如下步骤进行:
[000引步骤1:将测量基站记为{Ml,M2,…,Mi,…,MmhM康示第i台测量基站;将所述第i台 测量基站Mi的空间坐标记为(XMi,YMi,ZMi); XMi表示第i台测量基站Mi的横坐标;YMi表示第i台 测量基站Mi的纵坐标;ZMi表示第i台测量基站Mi的竖坐标;令XMiG [XMd, XMu] ,YMiG [yMd, YMu], ZMiG [ZMd, ZMu] ;XMd和XMu分别表示横坐标XMi取值的下限和上限;YMd和YMu分别表示纵坐标YMi 取值的下限和上限;ZMd和ZMu分别表示竖坐标ZMi取值的下限和上限;1《i《m; m为不小于3的 正整数;
[0009] 将所有测量基站的测距精度记为〇*^;
[001 0]设定待测点为IPl,P2,…,Pj,…,Pn} ; P康示第j个待测点,将所述第j个待测点Pj的 概略坐标记为(墙,诚,鸣);将所述第j个待测点P埋求的测量精度记为为正 整数;
[001 U 步骤2 :定义迭代计数变量为i t,设定最大迭代次数为Nmax,且Nmax为正整数;初始化 m = 3;
[001^ 步骤3:初始化it = 0;
[001;3]步骤4:随机产生维数为9行3乂111列的初始布局矩阵,记为〔=[化02;...仰;...; Cq],且Ck表示初始布局矩阵C的第k个行向量;所述第k个行向量对应着坐标测量系统的第k 个布局;且Ck 二[(XMlk , YMlk , ZMlk XMik , YMik , ZMik) XMmk , YMmk , ZMmk )],( XMik , YMik , ZMik)表示第k个布局下的第i台测量基站Mi的空间坐标;且XMik G [XMd, XMu] ,YMikG [YMd,yMu], ZMik E [ ZMd , ZMu] , k= 1,2. . . q; q为正整数;
[0014] 步骤5:将初始布局矩阵C复制W次后形成扩展布局矩阵(/,且是维数为qXw行3 Xm列的矩阵;W为正整数;
[0015] 步骤6:对扩展布局矩阵进行随机操作后得到随机布局矩阵C";
[0016] 步骤7:若it>0成立,则把随机布局矩阵C"的第一个行向量替换为CO;否则转步骤 8;
[0017]步骤8:计算随机布局矩阵C"的误差指数向量,记为E=[ei;e2; . . .es; . . . ;eq.w],且 es表示随机布局矩阵C"中第S个布局的误差指数,s = l,2, . . .,qXw;
[0018] 步骤9:筛选优秀布局;
[0019] 步骤9.1:将随机布局矩阵C"中的元素 W行为单位,按误差指数由小到大重新排 序,得到排序后的随机布局矩阵C"/;
[0020] 步骤9.2:将所述排序后的随机布局矩阵C"/中第一个行向量保存为向量CO;
[0021] 步骤9.3:将所述排序后的随机布局矩阵C"/中前q个行向量赋值给初始布局矩阵 C;
[0022] 步骤10:若向量CO对应的误差指数小于零,则将向量CO作为优化后的布局;否则转 步骤11;
[0023] 步骤11 :将i t+1赋值给i t,若i t > Nmax,则转步骤1 2 ;否则转步骤5 ;
[0024] 步骤12:将m+1赋值给m,转步骤3。
[0025] 本发明所述的基于多边法的=维坐标测量系统的布局优化算法的特点也在于,
[00%] 所述步骤6是按如下过程进行:
[0027]步骤6.1:定义布局计数变量S,初始化S = I;
[002引步骤6.2:随机选择一个正整数t,t G [ 1,3 Xm];
[0029] 步骤6.3:随机选择一个正整数U,并对U进行模2运算,得到运算结果U;
[0030] 步骤6.4:若U=I,则利用式(1)对布局矩阵中的第S行第t列元素 (s,t)进行更 新,从而获得更新后的第S行第t列元素 C"(s,t),并形成随机布局矩阵C":
[0031] C"(s,t)=C'(s,t) + (Vu-C'(s,t)Kl-r(i-s/(q.w))2) (I)
[0032] 否则,利用式(2)对布局矩阵中的第S行第t列元素 (s,t)进行更新,从而获得 更新后的第S行第t列元素 C"(s,t),并形成随机布局矩阵C":
[0033] C"(s,t)=C'(s,t)-(C'(s,t)-vd)(l-r(i-s/(q.w))2) (2)
[0034]式(I)和式(2)中,随机布局矩阵C"的维数是qXw行3Xm列,C/(s,t)表示布局矩阵 中第S行第t列元素,Vu和Vd分别表示第S行第t列元素C"(s,t)的取值上限和下限;
[003引且当t = l ,4,…,1+3Q-1),, l+3(m-l)时,令Vu = XMu、vd = XMd;
[0036] 当t = 2,5,…,2+3(i-l),,化3(m-l)时,令Vu = yMu、vd = yMd;
[0037] 当t = 3,6,…,3Xi,…,3Xm时,令Vu = ZMu、vd = ZMd;:r为区间[0,l]内的随机值;
[0038] 步骤6.5将S+1赋值给S,并判断s>qXw是否成立,若成立,则执行步骤7;否则,返 回步骤6.2。
[0039] 所述步骤8按如下过程进行:
[0040] 步骤8.1:初始化布局计数变量S = 1;
[0041 ]步骤8.2:初始化待测点计数变量j = 1;
[0042] 步骤8.3:利用式(3)计算随机布局矩阵C"中第S个布局下的第j个待测点門的理论 测量精度曰Si:
[0043] 巧
[0044] 表示待测点的几何精度因子,traceO表示求矩阵的迹, 且矩阵A通过式(4)获得:
[0045
(4)
[0046] 式(4)中4表示第i台测量基站Mi与第j个待测点P撕距离,并通过式(5)获得:
[0047]
尚;
[004引步骤8.4:将^'+1赋值给^',若^'>11,则转到步骤8.5;否则返回步骤8.3;
[0049] 步骤8.5:取&= max(防9.: 作为随机布局矩阵C"中第S个布局的误差指数,其 中max O表示取元素的最大值;
[0050] 步骤8.6:将S+1赋值给S,若8 > q X W,则转到步骤9;否则返回步骤8.2。
[0051] 与已有技术相比,本发明的有益效果体现在:
[0052] 1、本发明针对基于多边法的=维坐标测量系统的布局优化需求,W待测点几何精 度因子的函数作为优化目标,通过在给定的测量基站空间坐标取值范围内进行若干次特定 形式的迭代捜索,给出了系统的优化布局,从而在满足了待测点测量精度要求的前提下,使 用最少的测量基站来构建测量系统,进而降低了系统的构建成本,提高了系统的测量效益;
[0053] 2、本发明在选取优化布局时W误差指数即所有待测点的理论测量精度与要求的 测量精度之差的最大值作为评价标准,能够使得到的优化布局满足每一个待测点的测量精 度要求,从而使多边法的=维坐标测量系统的测量精度稳定可靠;
[0054] 3、本发明从构建系统的测量基站数量为=台开始捜索优化布局,在当前数量的测 量基站无法满足待测点测量精度要求的条件下,才增加测量基站的台数,因此能使得最终 得到的布局需要的测量基站数量最少;
[0055] 4、本发明在捜索优化过程中,用前一代布局中误差指数最小的若干组作为初始布 局,保证了算法向使布局效果优化的方向进行捜索;
[0056] 5、本发明在选取优化布局时,将每一代的最优布局保留下来,并使其参与到下一 代布局的优化筛选中,从而加快了算法的收敛速度。
【附图说明】
[0057] 图1为本发明的算法流程图。
【具体实施方式】
[005引本实施例中,=维坐标测量系统中至少包含=台测量基站;一种基于多边法的= 维坐标测量系统的布局优化算法是W多边法大空间坐标测量系统测量基站的坐标作为决 策变量,W待测点几何精度因子的函数作为优化目标,从只使用=台测量基站开始,经过若 干次循环迭代,给出满足待测点测量精度要求的优化布局即构建系统需要的最少测量基站 台数W及测量基站的安装位置,具体的说,如图1所示,布局优化算法是按如下步骤进行:
[0059] 步骤1:将测量基站记为…,Mi,…,MmhMi表示第i台测量基站;可W但不限 于W测量基站Mi为原点,W从测量基站Mi指向测量基站M2的方向为横坐标轴,W竖直向上作 为竖坐标正方向,建立右手空间直角坐标系o-xyz;将第i台测量基站Mi在坐标系o-xyz下的 空间坐标记为(XMi,YMi,ZMi); XMi表示第i台测量基站Mi在坐标系o-xyz下的横坐标;YMi第i台 测量基站Mi在坐标系o-xyz下的纵坐标;ZMi表示第i台测量基站Mi在坐标系o-xyz下的竖坐 标;令XMiE [ XMd, XMu] ,YMiE [yMd,yMu] ,ZMiE [ ZMd, ZMu] ; XMd 和XMu 分别表示横坐标XMi 取值的下限 和上限;YMd和YMu分别表示纵坐标YMi取值的下限和上限;ZMd和ZMu分别表示竖坐标ZMi取值的 下限和上限;测量基站的坐标取值区间由实际测量任务下,允许的测量基站安装区域决定; 1234567 将所有测量基站的测距精度记为(A 2
[0061 ]设定待测点为{Pl,P2,'。,Pj,。',Pn} ;Pj表示第j个待测点,在坐标系O-巧Z下将第j 个待测点Pj的概略坐标记为将第j个待测点Pj的测量精度记为4;待测点的概 略坐标可通过粗略测量等方式获得,其测量精度要求则是工件设计时就已确定的; n; 3 步骤2 :定义迭代计数变量为i t,设定最大迭代次数为Nmax,且Nmax为正整数,一般来 说最大迭代次数取50次即可;初始化m = 3; 4 步骤3:初始化it = 0; 5 步骤4:随机产生维数为q行3 Xm列的初始布局矩阵,记为C= ki;C2; ... ;ck; ; Cq],且Ck表示初始布局矩阵C的第k个行向量;第k个行向量对应着坐标测量系统的第k个布 局;且Ck二[(XMlk, YMlk , ZMlO (XMik , YMik , ZMiO (XMmk, YMmk , ZMmk) ], (XMik , YMik , ZMik)表 示第k个布局下的第i台测量基站Mi的空间坐标;且XMikE [XMd, XMu] ,YMikG [yMd,yMu] ,ZMikG [ZMd, ZMu],k= 1,2. . . q; q为正整数,可设走为 100; 6 步骤5:将初始布局矩阵C复制W次后形成扩展布局矩阵(/,且是维数为q X W行3 X m列的矩阵;W为正整数,可设定为5; 7 步骤6:对扩展布局矩阵进行随机操作后得到随机布局矩阵C";
[0067] 步骤6.1:定义布局计数变量S,初始化S = I;
[0068] 步骤6.2:随机选择一个正整数t,t G [ 1,3 Xm];
[0069] 步骤6.3:随机选择一个正整数U,并对U进行模2运算,得到运算结果U;
[0070] 步骤6.4:若U=I,则利用式(1)对布局矩阵中的第S行第t列元素(s,t)进行更 新,从而获得更新后的第S行第t列元素C"(s,t),并形成随机布局矩阵C":
[0071] C"(s,t)=C'(s,t) + (Vu-C'(s,t)Kl-r(i-s/(q.w))2) (I)
[0072] 否则,利用式(2)对布局矩阵中的第S行第t列元素(s,t)进行更新,从而获得 更新后的第S行第t列元素C"(s,t),并形成随机布局矩阵C":
[0073] C"(s,t)=C'(s,t)-(C'(s,t)-vd)(l-r(i-s/(q.w))2) (2)
[0074] 式(1)和式(2)中,随机布局矩阵C"的维数是qXw行3Xm列,C/(s,t)表示布局矩阵 中第S行第t列元素,Vu和Vd分别表示第S行第t列元素C"(s,t)的取值上限和下限;
[0075] 且当t = l,4,…,1+3Q-1),???,l+3(m-l)时,C"(s,t)索引的元素对应着测量基站 的横坐标,令Vu = XMu、Vd = XMd ;
[0076] 当t = 2,5,…,2+3Q-1),…,2+3(m-l)时,C"(s,t)索引的元素对应着测量基站的 纵坐标,令Vu = YMu、Vd = YMd;
[0077] 当t = 3,6,…,3Xi,…,3Xm时,C"(s,t)索引的元素对应着测量基站的竖坐标,令 Vu = ZMu、Vd = ZMd; r为区间[0,1]内的随机值;
[0078] 步骤6.5将S+1赋值给S,并判断s>qXw是否成立,若成立,则执行步骤7;否则,返 回步骤6.2。
[0079] 步骤7:若it>0成立,则把随机布局矩阵C"的第一个行向量替换为CO;否则转步骤 8;
[0080] 步骤8:计算随机布局矩阵C"的误差指数向量,记为E=[ei;e2; . . .es; . . . ;eq.w],且 es表示随机布局矩阵C"中第S个布局的误差指数,s = l,2, . . .,qXw;
[0081] 步骤8.1:初始化布局计数变量S = I;
[0082] 步骤8.2:初始化待测点计数变量j = 1;
[0083] 步骤8.3:利用式(3)计算随机布局矩阵C"中第S个布局下的第j个待测点門的理论 测量精度Osi:
[0084]
(3)
[0085] 式(3)中,^traceiiA^A)-' )表示待测点的几何精度因子,trace 〇表示求矩阵的迹, 且矩阵A通过式(4)获得:
[0086]
(4): 1 式(4)中《^表示第i台测量基站Mi与第j个待测点P撕距离,并通过式(5)获得:
[008引

[0089] 步骤8.4:将^'+1赋值给^',若^'>11,则转到步骤8.5;否则返回步骤8.3;
[0090] 步骤8.5:取e, = max(打-Cr二])作为随机布局矩阵C"中第S个布局的误差指数,其 中max O表示取元素的最大值;
[0091] 步骤8.6:将S+1赋值给S,若8 > q X W,则转到步骤9;否则返回步骤8.2。
[0092] 步骤9:筛选优秀布局;
[0093] 步骤9.1:将随机布局矩阵C"中的元素W行为单位,按误差指数由小到大重新排 序,得到排序后的随机布局矩阵C"/;
[0094] 步骤9.2:将排序后的随机布局矩阵C"/中第一个行向量保存为向量CO;
[00M]步骤9.3:将排序后的随机布局矩阵C"/中前q个行向量赋值给初始布局矩阵C;
[0096] 步骤10:若向量CO对应的误差指数小于零,即向量CO对应的布局满足所有待测点的 测量精度要求,则将向量CO作为优化后的布局,运就是算法给出的最终结果;否则转步骤 11;
[0097] 步骤11:将it+1赋值给it,若it^Nmax,即用当前数量的测量基站组建多边法=维 坐标测量系统,不能满足待测点的测量精度要求,则转步骤12;否则转步骤5;
[009引步骤12:将m+1赋值给m,转步骤3。
【主权项】
1. 一种基于多边法的Ξ维坐标测量系统的布局优化算法,所述Ξ维坐标测量系统中至 少包含Ξ台测量基站;其特征在于,所述布局优化算法是按如下步骤进行: 步骤1:将测量基站记为{11,12,一,11,一,1。}地表示第1台测量基站;将所述第1台测量 基站Mi的空间坐标记为(XMi,yMi, ZMi); XMi表不第i台测量基站Mi的横坐标;yMi表不第i台测量 基站Mi的纵坐标;ZMi表不第i台测量基站Mi的竖坐标;令XMiG [XMd,XMu],yMiG [yMd,yMu],ZMiG [ZMd,ZMu] ;XMd和XMu分别表不横坐标XMi取值的下限和上限;yMd和yMu分别表不纵坐标yMi取值 的下限和上限;ZMd和ZMu分别表不竖坐标ZMi取值的下限和上限;为不小于3的正整 数; 将所有测量基站的测距精度记为cA 设定待测点为化,P2,···,門,…,Pn};P康示第j个待测点,将所述第j个待测点門的概略 坐标记为(為,诚,哉);将所述第j个待测点P速求的测量精度记为為;l《j《n;n为正整 数; 步骤2 :定义迭代计数变量为it,设定最大迭代次数为Nmax,且Nmax为正整数;初始化m = 3; 步骤3:初始化it = 0; 步骤4:随机产生维数为q行3Xm列的初始布局矩阵,记为C=ki;C2; . . . ;ck; . . . ;cq],且 ck表示初始布局矩阵C的第k个行向量;所述第k个行向量对应着坐标测量系统的第k个布 局;且Ck二[(XMlk, yMlk , ZMlO , . . . , (XMik , yMik , ZMiO , . . . , (XMmk, yMmk , ZMmk) ] , (XMik , yMik , ZMik)表 示第k个布局下的第i台测量基站Mi的空间坐标;且XMikE [xMd,XMu],yMike [yMd,yMu],ZMike [ZMd, ZMu],k二 1,2. . . q; q为正整数; 步骤5:将初始布局矩阵C复制w次后形成扩展布局矩阵(/,且(/是维数为qXw行3 Xm列 的矩阵;W为正整数; 步骤6:对扩展布局矩阵进行随机操作后得到随机布局矩阵C"; 步骤7:若it >0成立,则把随机布局矩阵C"的第一个行向量替换为C0;否则转步骤8; 步骤8:计算随机布局矩阵C"的误差指数向量,记为E=[ei;e2; . . .es; . . . ;eq.w],且es表 示随机布局矩阵C"中第s个布局的误差指数,s = l,2, . . .,qXw; 步骤9:筛选优秀布局; 步骤9.1:将随机布局矩阵C"中的元素 W行为单位,按误差指数由小到大重新排序,得 到排序后的随机布局矩阵C"/ ; 步骤9.2:将所述排序后的随机布局矩阵C"/中第一个行向量保存为向量C0; 步骤9.3:将所述排序后的随机布局矩阵C"/中前q个行向量赋值给初始布局矩阵C; 步骤10:若向量C0对应的误差指数小于零,则将向量C0作为优化后的布局;否则转步骤 11; 步骤11:将it+1赋值给it,若it^Nmax,则转步骤12;否则转步骤5; 步骤12:将m+1赋值给m,转步骤3。2. 根据权利要求1所述的基于多边法的Ξ维坐标测量系统的布局优化算法,其特征是, 所述步骤6是按如下过程进行: 步骤6.1:定义布局计数变量S,初始化S = 1; 步骤6.2:随机选择一个正整数t,t e [ 1,3 Xm]; 步骤6.3:随机选择一个正整数u,并对u进行模2运算,得到运算结果U; 步骤6.4:若U=l,则利用式(1)对布局矩阵中的第S行第t列元素 C/(s,t)进行更新, 从而获得更新后的第S行第t列元素 C"(s,t),并形成随机布局矩阵C": C"(s,t)=C' (s,t) + (Vu-C (s,t))(l-r(i-s/(q.w))2) (1) 否则,利用式(2)对布局矩阵(/中的第s行第t列元素(/ (s,t)进行更新,从而获得更新 后的第S行第t列元素 C" (S,t),并形成随机布局矩阵C": C"(s,t)=C' (s,t)-(C (s,t)-vd)(l-r(i-s/(q.w))2) (2) 式(1)和式(2)中,随机布局矩阵C"的维数是qXw行3Xm列,C/(s,t)表示布局矩阵(/中 第S行第t列元素,Vu和Vd分别表示第S行第t列元素 C"(s,t)的取值上限和下限; 且当t = l,4,... ,l+3(i-l),l+3(m-l)时,令Vu = XMu、vd = XMd; 当t = 2,5,…,2+3(i-l),...,化3(m-l)时,令Vu = yMu、vd = yMd; 当t = 3,6,··· ,3Xi,…,3Xm时,令 Vu = ZMu、vd = ZMd;r 为区间[0,1]内的随机值; 步骤6.5将S+1赋值给S,并判断s>qXw是否成立,若成立,则执行步骤7;否则,返回步 骤 6.2。3.根据权利要求1所述的基于多边法的Ξ维坐标测量系统的布局优化算法,其特征是, 所述步骤8按如下过程进行: 步骤8.1:初始化布局计数变量S = 1; 步骤8.2:初始化待测点计数变量j = 1; 步骤8.3:利用式(3)计算随机布局矩阵C"中第S个布局下的第j个待测点門的理论测量 精度曰sj:巧 式(3)中,?少^-1;)表示待测点的几何精度因子,traceO表示求矩阵的迹,且矩 阵A通过式(4)获得:式(4)中4表示第i台测量基站Ml与第j个待测点P撕距离,并通过式(5)获得:步骤8.4:将^'+1赋值给^',若^'>11,则转到步骤8.5;否则返回步骤8.3; 步骤8.5:取^·; = max([o--苗,])作为随机布局矩阵(:"中第8个布局的误差指数,其中max 0表示取元素的最大值; 步骤8.6:将S+1赋值给S,若8 >q X W,则转到步骤9;否则返回步骤8.2。
【文档编号】G06F17/15GK105979530SQ201610311056
【公开日】2016年9月28日
【申请日】2016年5月10日
【发明人】余晓芬, 张红英, 赵达
【申请人】合肥工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1