专利名称:纳米结构及其制造方法
相关申请的交叉引用本申请要求2002年7月8日提交的美国临时申请60/393,835和2003年4月4日提交的美国临时申请60/459,982的优先权,且它们的全部内容结合在此作为参考。
发明
背景技术:
领域本发明总体上涉及本质上为一维形式的结构,该结构的宽度或直径为纳米尺寸,它们一般被称为纳米晶须、纳米棒、纳米线、纳米管等;为便于说明,此种结构将被称为“一维纳米元件”。本发明更具体地但不限于涉及纳米晶须以及形成纳米晶须的方法。
现有技术简述利用所谓的VLS(气-液-固)机理在衬底(基片)上形成晶须的基本工艺是众所周知的。衬底上的催化材料(例如通常为金)的颗粒在特定气体氛围中被加热,以形成熔融体。在熔融体下面形成柱状物,该熔融体在该柱状物的顶部上升。因此,便得到所需材料的晶须,其中固化颗粒熔融体位于顶部—参见“Growth of Whiskers by the Vapour-Liquid-SolidMechanism”,Givargizov,Current Topics in Materials Science,卷1,79-145页,North Holland Publishing Company,1978。这种晶须的尺寸在微米范围内。
国际专利申请WO 01/84238在图15和16中公开了一种形成纳米晶须的方法,其中来自气溶胶的纳米尺寸的颗粒沉积在一衬底上,这些颗粒被用来作为生成晶丝或纳米晶须的籽晶(籽晶)。为便于说明,术语纳米晶须意在表示直径为纳米尺寸的一维纳米元件,该元件采用VLS机理制成。
通常,纳米结构是具有至少两个小于约1μm(即纳米尺寸)的维度的装置。一般地,具有厚度小于1μm的一层或多层的层状结构或堆垛材料并不被视为纳米结构,尽管如下所述,纳米结构可能用在这种层的制备中。因此,术语纳米结构包括具有两个小于约1μm的维度的自立或孤立结构,其具有不同于较大结构的功能和效用,并且通常通过与用于制备略大一些即微米量级结构的现有工序不同的方法加工。因此,尽管没有用特定的数字尺寸界限来定义纳米结构量级的精确边界,该术语已经意味着本领域的技术人员所公认的这种量级。在许多情况下,表征纳米结构的维度尺寸的上限大约为500nm。
当纳米元件的直径小于一定的值例如50nm时,则会出现量子局限,即电子只能沿着该纳米元件的长度方向运动;而对于直径面(径向平面),电子则占据量子力学本征态。
半导体纳米晶须的电学和光学性质基本上由它们的结晶结构、形状和尺寸决定。具体而言,晶须宽度的微小变化可能激起由量子局限效应导致的能态分裂中的巨大变化。因此,可自由选择晶须的宽度是很重要的,同样重要的是,对于伸长的晶须长度,其宽度可保持恒定。如果要使晶须技术与当前的半导体器件技术的结合成为可能,就必须要求上述这一点,并且还要求有将晶须定位于衬底上的选定位置处的可能。已经有若干个实验对GaAs晶须的生长进行了研究,其中最重要的是Hiruma等人所报道的。在有机金属化学气相沉积-MOCVD-生长系统中,他们在III-V族衬底上生长了III-V族纳米晶须-参见K.Hiruma,M.Yazawa,K.Haraguchi,K.Ogawa,T.Katsuyama,M.Koguchi,和H.Kakibayashi,J.Appl.Phys.74,3162,1993;K.Hiruma,M.Yazawa,T.Katsuyama,K.Ogawa,K.Haraguchi,M.Koguchi,和H.Kakibayashi,J.Appl.Phys.77,447,1995;E.I.Givargizov,J.Cryst.Growth 31,20,1975;X.F.Duan,J.F.Wang,和C.M.Lieber,Appl.Phys.Lett.76,1116,2000;K.Hiruma,H.Murakoshi,M.Yazawa,K.Ogawa,S.Fukuhara,M.Shirai,和T.Katsuyama,IEICE Trans.Electron.E77C,1420,1994;K.Hiruma等,“Self-organised growth onGaAs/InAs heterostructure nanocylinders by organometallic vapor phaseepitaxy”,J.Crystal growth 163,(1996),226-231。它们的方法在于对薄的Au膜进行退火,从而形成籽晶颗粒。以这种方式,他们得到了均匀的晶须宽度分布,其平均尺寸可通过Au层的厚度以及此层转变成纳米颗粒的方式来控制。利用此技术,很难分别对尺寸和表面覆盖度((surfacecoverage)进行控制,事实上也不可能得到低的覆盖度。由于晶须宽度也依赖于生长温度,甚至还存在着Au颗粒的平衡尺寸与温度有关的迹象,因此,膜厚度与晶须厚度之间的关联并不是直接的。作者还从扫描隧道显微镜尖端观察到,沉积的Au的尺寸与所生成的晶须宽度之间具有强关联。对于由Lieber等人生长的自由伸展的Si晶须-参见Y.Cui,L.J.Lauhon,M.S.Gudiksen,J.F.Wang,和C.M.Lieber,Appl.Phys,Lett.78,2214,2001,也表现出了清晰的颗粒-晶须尺寸关联。
如果要将晶须用作电子器件,就必须存在明确定义的沿着晶须长度的电学结,为了实现这一点,已经做了大量工作,例如参见Hiruma et al.,“Growth and Characterisation of Nanometer-Scale GaAs,AlGaAs andGaAs/InAs Wires”,IEICE Trans.Electron.,Vol.E77-C,No.9,September1994,pp 1420-1424。但是,还需要很大的改进。
对于碳纳米管(CNTs)也已经做了大量的工作。尽管有所进步,但由于缺乏对CNT的导电类型的控制而且不能按所控制的方式形成一维异质结构,研究工作遇到了阻碍。人们对随机形成的界面,如CNT的金属性部分与半导体性部分之间的纽结[Yao et al.,Nature,1999,402,273]、在半导体CNT中具有掺杂(pn)结[Derycke et al.,Nano Letters,2001,1,453.]以及CNT与半导体(Si和SiC)纳米晶须之间的转变[Hu et al.,Nature,1999,399,48.]进行了识别和研究。
在发展的一个分支中,从二十世纪八十年代晚期开始,就由德克萨斯州实验室的Randall、Reed以及合作者作为倡导者进行了采用自顶而下的方法(top-down method)来制作一维装置的尝试[M.A.Reed et al.,Phys.Rev.Lett.60,535(1988).]。他们的自顶而下的方法目前仍然代表着量子装置领域的最先进工艺技术,其基于定义了两个势垒和中央量子阱的多层的外延生长。然后,采用电子束蚀刻来定义边缘限定图案,从而与金属层的蒸发一起形成顶部接点。接着,采用剥离工艺将对电子束敏感的抗蚀剂从表面除去,并由反应式离子蚀刻将所有围绕着预期形成的细柱的材料除去。最后,利用聚酰亚胺层经由衬底并从其顶部使该装置被接触。在对利用此自底而上技术(bottom-up technique)制作的器件的研究中,观察到了100-200nm直径的柱,然而,其电学特征和最佳比值约为1.1∶1的峰-谷电流却相当令人失望。最近,报道了用于实现低维共振隧穿装置的另一方法,其利用了由应力导致的自组合量子点的形成(I.E.Itskevich etal.,Phys.Rev.B 54,16401(1996);M.Narihiro,G.Yusa,Y.Nakamura,T.Noda,H.Sakaki,Appl.Phys.Lett.70,105(1996);M.Borgstrom et al.,Appl.Phys.Lett.78,3232(2001).)。
发明内容
本发明包括一种制作纳米晶须、一维半导体纳米晶体的方法,其中,晶须的部分(segments)具有不同的组分,例如砷化铟晶须包含磷化铟部分,其中生长条件使得形成突变界面(不连续界面)和厚度为几个单层至几百个纳米的异质结构势垒,因此产生了电子可沿着其运动的一维形貌。在优选的化学束外延(CBE)方法中,通过将激励原子供给到籽晶颗粒(seed particle)与衬底的共晶熔融体(eutectic melt)中控制组分的迅速转变,该激励原子被作为分子束供给到超高真空室中。不同组分之间的迅速转换经由一个程序来实现,该程序中,生长被中断或至少减弱到可忽略的程度,并且重新建立起生长的过饱和条件;至少,组分和过饱和的变化改变得比任何可察觉到的生长均快。对于晶须材料中的突变,通过晶须沿径向向外膨胀或至少通过晶面中靠近结的原子的侧位移来调适(accommodate)源于晶格失配的应力和应变。
此外,本发明包括一种技术,以用于合成在结晶衬底上外延生长的选定尺寸的纳米晶须。采用选定尺寸的金气溶胶颗粒作为催化剂,其可使表面覆盖度完全独立于晶须直径而变化。晶须为棒状,并具有与催化剂籽晶尺寸相关的介于10与50nm之间的均匀直径。通过利用气溶胶颗粒的纳米操作,各纳米晶须可按照被控制的方式以nm量级的精度在衬底上的特定位置处成核。本发明的方法通过选择纳米颗粒来增强对晶须的宽度控制。该纳米颗粒可以是衬底上的气溶胶或液体合金,对它的制备可从形成于衬底上的金矩形开始,该金矩形在熔化时形成精确的直径球。可使用其它材料来代替金作为籽晶颗粒,例如镓。
在许多应用中,均希望具有直径基本恒定的纳米晶须,同时,在晶须的形成过程中,通过选择性改变例如Ga的第III族材料的扩散常数(扩散系数),可改变晶须的形状和其它特征。这可以按如下方式完成·降低该工艺的温度-这产生向着其自由端逐渐变细的晶须;·增加第V族材料的压力;
·增加第V族材料和第III族材料的压力。
更具体地说,本发明提供一种形成纳米晶须的方法,其包括在衬底上沉积籽晶颗粒,并将该籽晶颗粒暴露于处于温度和压力控制条件下的材料中,以形成具有该籽晶颗粒的熔融体,因此该籽晶颗粒熔融体在一柱上爬升,从而形成纳米晶须,该纳米晶须的柱具有纳米尺寸的直径;其中,在柱的生长过程中,选择性地改变所述材料的组分,以不连续地改变该柱沿着其长度的区域处的材料组分,同时维持着外延生长,从而形成沿着其长度具有至少第一和第二半导体部分长度的柱,该第一半导体部分的材料具有不同于第二半导体部分的材料的带隙。
通过将事先设计的不同半导体材料部分自底而上组合在III/V族纳米晶须中,人们已经得到了功能性的一维(1D)共振隧穿二极管和其它器件以及结构。利用单晶成形,也已经将包括纳米晶须的电子或光子器件制成为异质结构,其中纳米晶须的长度部分由不同材料构成,以在不同带隙材料之间的晶须中产生明确定义的结(well defined junction),从而产生具有所需功能的器件。
因此,概括地说,本发明提供一种异质结构电子或光子器件,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,为了使器件可执行所需的功能,该柱沿着其长度具有多个不同材料组分的长度部分,在沿着纳米晶须的柱延伸预定长度的相邻部分之间具有预定的径向边界,从而在该边界处给出所需的带隙变化。
在一概括方面,本发明提供一种电子或光子器件,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱沿着其长度至少包括不同材料的第一和第二长度部分,在该第一和第二部分之间具有突变(不连续)的外延组分边界,其中,该边界处的晶格失配通过边界处的纳米晶须的径向向外膨胀调适。
在另一概括方面,本发明提供一种电子或光子器件,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱沿着其长度至少包括不同材料的第一和第二长度部分,在该第一和第二部分之间具有突变外延径向材料边界,其中,该第一和第二部分的不同材料组分之间的转变发生在不超过8个径向晶面的轴向距离上。优选的是,该第一和第二部分的组分之间的转变发生在不超过6个晶面、更优选不超过5个晶面、更优选不超过4个晶面、更优选不超过3个晶面、更优选不超过2个晶面以及最优选不超过1个晶面的轴向距离上。
另一方面,本发明还提供一种电子或光子器件,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱沿着其长度至少包括不同材料的第一和第二长度部分,该第一部分具有A1-xBx形式的化学计量组分,该第二部分具有A1-yBy形式的化学计量组分,这里A和B为选定物质,x和y为变量,其中,位于第一和第二部分之间的外延组分边界包括在预定数量的径向晶面上从变量x至变量y的预定逐渐变化。在一类似实施例中,本发明的纳米晶须的第一和第二部分的组分可分别用分子式A1-xBxC和A1-yByC表示,其中A和B代表一族、例如周期表中的第III族的元素,C代表另一族、例如周期表中的第V族的元素。变量x和y可取0与1之间的值,并代表该范围内的不同数字。因此,由化合物半导体制成这种纳米晶须,沿着其长度的组分可以改变,从而结合成异质结。这种化合物半导体的一个例子是AlxGa1-xAs。本发明的纳米晶须可构造成具有例如两个长度部分,第一部分具有组分Al1-xGaxAs,其中变量x为0与1之间的给定值,第二部分具有组分Al1-yGayAs,其中变量y为不同于x的值的另一值。这两部分之间为一界面,该界面中,组分从第一部分的组分连续变化至第二部分的组分,即,变量x的值连续变化且通常是单调地变化至变量y的值。因此,该界面构成一异质结。正如将在下面进行的更具体解释,通过调节晶须生长的条件,可使该转变发生在预定数量的径向晶面上。而且,可周期性地调节该生长条件,以沿着纳米晶须的长度形成多个这样的异质结。
本发明控制纳米晶须的直径使其沿着该纳米晶须的长度基本上为恒量,或者具有限定的变化,如被控制的锥形。这就为纳米晶须保证了精确的电学参量,该被控制的锥形等同于沿着该纳米晶须长度产生一电压梯度。直径可足够小,从而使该纳米晶须展现出量子局限效应。尽管对直径进行了精确控制,该直径还是会有微小变化,其源于处理方法,特别是源于为了调节外延结构中的晶格失配使组分边界处的纳米晶须沿径向向外鼓起。而且,由于晶格尺寸的不同,一部分的直径与不同材料的另一部分的直径会略有不同。
根据本发明,纳米晶须的直径优选不大于约500nm,更优选不大于约100nm,并更优选不大于约50nm。而且,本发明的纳米晶须的直径可优选在不大于约20nm、不大于约10nm,或不大于约5nm的范围内。
纳米晶须的精确形成使得能够制作依赖于量子局限效应的装置,尤其是共振隧穿二极管。因此,已经发展出了RTD,其中,发射极、集电极和中央量子点由InAs制成,势垒材料由InP制成。在低温下观察到了峰-谷比高达50∶1的理想共振隧穿行为。
在一特别方面,本发明提供一种共振隧穿二极管,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,以展现出量子局限效应,沿着其长度,该柱包括分别形成发射极和集电极的第一和第二半导体长度部分;位于第一和第二半导体部分之间的第三和第四长度部分,它们的材料具有不同于第一和第二半导体部分的材料的带隙;具有不同于第三和第四部分的材料的带隙的第五半导体材料中央长度部分,其处于第三和第四部分之间并形成量子阱。
由纳米晶须制成的电子或光子器件所伴随引发的问题是如何对该纳米晶须作出高效的电接点。
一种方法是通过机械刮除工艺将纳米晶须从其衬底上取下,并将该纳米晶须置于另一衬底上,此纳米晶须沿着长度方向的侧边位于该衬底上。然后在该纳米晶须的端部上形成金属焊盘(metallised bond pad),或者也可操作纳米晶须,以使其位于预制的接触垫上。
或者,在一种可能更适合于批量生产的方法中,使纳米晶须留在衬底上,其底端形成于电接点上。一旦形成,该纳米晶须便被封装入树脂或玻璃态物质中,然后在封装表面上形成与纳米晶须的自由端相接触的接触垫。为了有助于这一点,向着形成纳米晶须的一端的催化颗粒熔融体可具有注入其中的额外的导电物质,以改善与焊盘的电接触。
更为具体的器件在附属权利要求中进行阐明,并在下面进行解释。特别是,它们包括异质双极性晶体管、发光二极管和光电探测器。
由于发光二极管可构造得具有可从覆盖紫外线、可见光和红外区波长的连续范围中任意选择的发射波长,因此,它非常适用于本发明。
本发明提供一种发光二极管,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,从而展现出量子局限效应,该柱沿着其长度依次包括第一、第二和第三半导体长度部分,该三部分分别包括发射极、量子阱激活部分和集电极,所述第二部分具有不同于第一和第三部分的带隙,并形成发光二极管的激活区。
发光二极管的一个特殊应用是发射单个光子。这可用于多种应用,特别是用于量子密码学中,其中,根据量子理论,对光子流的未经授权的中途拦截将不可避免地导致对该光子的破坏或更改,从而造成被传输信号的毁坏-见P.Michler,A.Imamoglu,M.D.Mason,P.J.Carson,G.F.Strouse,S.K.Buratto,Nature 406,968(2000);C.Santori,M.Pelton,G.Solomon,Y.Dale,Y.Yamamoto,Phys.Rev.Lett.86,1502(2001)。
本发明提供一种单光子光源,其包括一维纳米器件,该器件沿着其长度布置有一定体积的光学活性材料,该材料足够小,以形成量子阱,在该量子阱的任一侧上形成有隧穿势垒,因此在使用时,该量子阱可一次发射一个光子。
根据本发明的另一形式的光源被设计为超出远红外的太赫辐射。以美国朗讯技术公司的Capasso及其合作者为先锋,人们在超晶格方面做了大量的工作。他们的‘量子级联’激光利用了InGaAs/InAlAs/InP异质结构中亚带内的光子发射,并实现了在高达17微米的波长处的室温(脉冲模式)运转。例如,见IEEE Spectrum,July 2002,pages 23,24,“UsingUnusable Frequencies”.和F.Capasso,C.Gmachl,D.L.Sivco,and A.Y.Cho,“Quantum cascade lasers”,Physics Today,May 2000,pp.34-39。
本发明提供一种太赫辐射源,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱包括与多层第二带隙材料相互交替插入的多层第一带隙半导体,从而形成超晶格,其尺寸使得电子能够以一波矢运动,从而发出太赫辐射。
在根据本发明的器件、结构和工艺中,可形成从衬底延伸出来的基本上相互平行的大量纳米晶须的阵列。形成这种阵列有多种方法,例如在衬底上布置气溶胶颗粒阵列,以提供催化籽晶颗粒;利用胶状溶液在衬底上沉积颗粒,或者通过纳米压印蚀刻(NIL)工艺(或通过任何其它蚀刻工艺,例如电子束蚀刻、紫外光蚀刻或X射线蚀刻)在衬底上形成预定形状(矩形或其它形状)和厚度的区域阵列,当受热时,这种阵列形成所需体积的球,从而使纳米晶须的生长过程得以进行。
这种阵列可用作光子晶体、由大量光电探测器组成的太阳能电池、场致发射显示器(FED)、以及用于将红外图像转换成可见光图像的转换器,所有这些将在下面进行解释。其进一步的应用在于偏振滤光片。
在本发明的工艺中,大量纳米晶须的阵列可用来在诸如硅等较便宜物质的晶片衬底上生成外延材料层。现有技术中长期存在的问题是昂贵的III-V族材料的单晶晶片的形成,利用这些材料可形成芯片。对于在硅晶片衬底上形成单晶层已经做了大量的研究-例如,见WO 02/01648。然而,还需要进一步的改进。
根据本发明,提供在其上生长覆盖材料(mask material)的硅衬底或其它物质的衬底,该覆盖材料对外延生长有抵触作用,其例如为诸如SiO2或Si3N4等介电材料。例如,通过NIL工艺在该覆盖材料中形成纳米尺寸的孔阵列,并且将催化籽晶-形成材料布置在这些孔中。另外,也可以在衬底上沉积籽晶-形成材料区域的阵列,然后在该衬底和籽晶颗粒区域上沉积覆盖材料层。加热使得该籽晶颗粒区域熔化,从而产生籽晶颗粒,然后激发所需III-V族和其它材料的纳米晶须的生长。在纳米晶须生长以后,利用该晶须作为成核中心,所需材料的生长继续进行,直到形成该材料的一个单一连续层。该材料是单晶外延的。优选的是,在一个便利的时机中将在纳米晶须端部熔化的籽晶颗粒除去,以避免污染外延层。
在一种变型中,在纳米晶须形成之前,采用籽晶颗粒熔融体作为成核点,以激发外延层的大量生长,而在籽晶颗粒下面的生长则仍然处于液相状态。
在另一种变型中,在硅衬底的上表面中形成微型V形凹槽,例如,在<100>衬底上进行<111>蚀刻。籽晶颗粒形成区域形成在V形凹槽的表面上,因此,纳米晶须与衬底成角度地生长,并在凹槽处互相交叉。这使得外延层可从纳米成核中心更高效地生长。而且,避免了在具有不同生长相的畴区之间的晶粒边界,其一直是现有技术的工艺所具有的问题。
因此,另一方面,本发明还提供一种方法,其用于在不同材料的衬底上形成所需材料的外延层,该方法包括在衬底上形成多个籽晶颗粒材料区域的排列;在该籽晶颗粒区域周围形成覆盖材料层;从该籽晶颗粒区域生长所述的所需材料的纳米晶须;以及采用该纳米晶须作为生长点,继续生长所述的所需材料,从而形成延伸在所述衬底上的所需材料的外延层。
根据本发明的另一方面,还发展了用于形成沿<100>方向延伸的III-V族材料的纳米晶须的工艺,其与通常沿着<111>方向的纳米晶须不同。这有着十分重要的应用,尤其是对于氮化物材料,由于这种材料在闪锌矿结构和纤维锌矿结构之间交替变化,其倾向于沿着<111>方向生长,但具有许多堆跺层错。
本发明提供一种形成纳米晶须的方法,其包括提供衬底;在其上表面上形成多个籽晶颗粒的排列;从所述籽晶颗粒生长纳米晶须,该纳米晶须最初沿着<111>方向从衬底延伸;以及在所述晶须中形成短的势垒材料部分,以将晶须的生长方向改变为<100>方向。
另一方面,本发明还提供了一种形成纳米晶须的方法,其包括提供衬底;在其上表面上形成多个籽晶颗粒的排列;从所述的籽晶颗粒生长纳米晶须,该纳米晶须最初沿着<111>方向从衬底延伸;以及改变所述纳米晶须的生长条件,以将它们的生长方向改变为<100>方向。
本发明还涉及结合在MEMS装置-微型机械装置中的一维纳米元件。
一方面,衬底(例如硅衬底)具有形成于其一个表面上的电接点区的矩阵。在每个接点区上,例如从金催化剂颗粒形成一个或多个纳米晶须,它们从衬底表面直立起来。因此,每个晶须或晶须组可通过电信号而独立寻址。这种结构可接触神经末梢或者眼睛视网膜中的神经末梢,并且可激活该电极,从而为神经提供修复或人造功能。因此,例如当应用于眼睛的视网膜中时,该结构可克服一定的失明问题。
另一方面,提供了可作为神经电极或在其它应用中起作用的纳米晶须,其中,该晶须由硅或者可被氧化的金属形成,该晶须被氧化,从而沿着其长度形成氧化层。位于该晶须端部、包括金或其它不能被氧化的材料的颗粒熔融体保持不被氧化,因而可用于形成电接点。这种布置可提供比沿着其长度具有暴露的导电材料的纳米晶须更精确的电学特性,而且这种纳米晶须可用作神经电极或用作在其中该纳米晶须的电容起重要作用的装置。此外,也可采用其它材料作为外层,例如较高带隙的外壳,例如当晶须由砷化镓制成时,该外层可以是磷化镓。
纳米结构的一个重要应用在于微型机械悬臂梁(cantilever beam),其中固定于一端的梁伸入空中,并且可受到外力(例如电力、重力、外界物体的力或者化学力)作用,从而使悬臂弯曲。例如可通过该结构的电容变化来检测所述弯曲。
另一方面,本发明提供一个或多个纳米晶须,该纳米晶须可以按照本发明的上述方面沿着其长度被氧化或不被氧化,以提供悬臂或者形成为一排或平行梁的悬臂的阵列。这种布置可提供与以前采用蚀刻工艺形成该梁的布置相同量级的敏感度或比其更敏感。
此种悬臂的一个应用在于用带有涂层的材料形成晶须,该涂层对一定的有机分子或生物分子敏感,因此,当分子在接触悬臂梁时会进行一定的化学反应。这就在该悬臂梁上产生一定的应力并导致该梁弯曲,该弯曲可通过光学或电学监控而检测到。
在另一特别方面,纳米晶须形成于一向上突起至一基本绝缘材料层的孔中衬底上。该绝缘层的上表面具有形成于其上的导电材料。从衬底开始,该导电性材料基本上与其上具有导电籽晶颗粒熔融体的纳米晶须的顶端等高。通过导电材料的适当激活,可使得晶须以一定的本征频率(例如该本征频率在千兆赫范围内)在孔内进行机械振动。在一个振动周期内,一个单电子经由籽晶颗粒熔融体从导电材料的一侧转移到另一侧。这就产生了一电流标准发生器,其中通过导电材料的电流I等于振动频率f与一个电子的电荷e的乘积I=f·e。
如果使晶须敏感得可吸引一定种类的分子,则沉积到晶须上的分子将会改变该晶须的惰性特征并从而改变其振动的本征频率。因此,这可以通过导电材料的电激活来检测。此技术可用来以很高的精度计算分子的重量。
下面参考附图仅通过举例的方式描述本发明的优选实施例。附图中图1是根据本发明用于形成纳米晶须的制备技术的示意图(a)在GaAs衬底上沉积选定尺寸的Au气溶胶颗粒;(b)用于定位晶须的颗粒的AFM操作;(c)合金化,以从表面形成Au与Ga之间的共晶熔融体或共熔体;(d)GaAs晶须生长。
图2(a)从10nmAu气溶胶颗生长而成的GaAs纳米晶须的TEM显微图;(b)具有从40nmAu气溶胶颗生长而成的GaAs晶须的GaAs<111>B衬底的SEM显微图;(c)从Au簇生长而成的GaAs晶须的400kV高分辨电子显微镜图像,其中的插图给出的是放大了的晶须部分。
图3是用于实施本发明方法的装置的示意图。
图4是根据本发明一实施例采用晶格间距的交互空间分析而得到的InAs纳米晶须的组分分布,该晶须包含若干个InP异质结构(a)直径为40nm的晶须的高分辨TEM图像;(b)图(a)中图像的功率谱;(c)采用与split 200反射的InP部分最接近的信息的反傅立叶变换,InP(明亮部分)分别位于宽度约为25、8和1.5nm的三个带中;(d)分别在200反射的InP部分和InAs部分上采用相同的覆盖物的重叠图像。
图5是对InAs纳米晶须中InP异质结构的分析(a)直径为40nm的InAs纳米晶须中的InP势垒(100,25,8和1.5nm)的TEM图像;(b)8nm势垒区的放大,示出了结晶完整性和单层水平的界面突变;(c)模拟InAs/InP异质结构的带结构图,其包括(左边)与InAs的欧姆接触的理想形式;(d)同质InAs晶须的欧姆式I-V依赖关系,与从包含80nm的InP势垒的InAs晶须中可见的强烈非线性I-V行为形成对比;(e)示出了对穿过InP势垒(偏压10mV)的热离子激发的测量的阿列纽斯(Arrhenius)图,产生了0.57eV的势垒高度。
图6是为了在本发明的共振隧穿二极管中进行使用而对不同厚度的单势垒的传输机制的评估(A)生长衬底上的晶须的SEM图像(比例尺代表1μm);(B)一被两个合金化欧姆接点接触的InAs/InP纳米晶须(比例尺代表2μm);(C)InAs晶须的TEM图像,该晶须具有垂直于晶须长轴的8nm InP段;(D)三种不同势垒情况的电流-电压特征。
图7是高分辨TEM图像(A)用来形成本发明第一实施例的沿着<111>方向生长并具有两个InP势垒的InAs晶须的TEM图像(比例尺代表8nm);(B)图(A)中的方框区域的一维合成轮廓。势垒的宽度约为5.5nm(16个晶格间距),界面锐度为1-3个晶格间距的量级,由图像衬比中的变化判断得出。
图8是形成本发明一实施例的共振隧穿二极管(RTD)(A)具有清晰可见的双势垒的晶须的顶端的TEM图像,在此情形下的势垒厚度约为5nm(比例尺代表30nm);(B)用所指出的发射极区域(左)中的特征电子态进行研究的装置的能带图原理;(C)图(A)和(B)中所示的同一装置的电流-电压数据,其在特征上表现为尖锐的峰值,反映了共振隧穿进入基态E1z,电压宽度约为5mV。该宽度可转化成约为2meV的转变能量宽度,对应于电子隧穿的发射极中的阴影部分能带的宽度。该装置的特征显示在插图中,其提供了用于增大电压和减小电压的共振峰的放大示图。
图9是根据本发明的共振隧穿二极管的优选实施例的示意图;图10是包括宽带隙绝缘部分的本发明另一实施例的示意图;图11是包括异质双极晶体管(HBT)的本发明另一实施例的示意图;图12是与HBT结构相关的HBT的带隙图;图13示出了带隙随着三元化合物组分的变化而改变的示图;图14A和14B示出了多种半导体化合物的带隙与晶格尺寸的关系图;图15是包括发光二极管和激光器的本发明一实施例的示意图;图16是包括应用激光检测所需元素的单个分子的本发明另一实施例的示意图;图17是包括在NIL过程中应用激光器阵列使光致抗蚀剂(光刻胶)形成图案的本发明另一实施例的示意图;图18A是包括光电探测器的本发明另一实施例的示意图,图18B和18C是其变型;图19A是包括太阳能电池的本发明另一实施例的示意性示图,图19B是其变型;图20是包括太赫辐射的辐射源的本发明另一实施例的示意性示图;图21A-C是解释包括光子晶体的本发明一实施例的示意图,图21D其用于形成3-D光子晶体的变型;图22A-G是用于沿着衬底外延生长形成一材料层的本发明另一实施例的示意图,其中,晶格之间相互不匹配;
图23A-C是解释沿着衬底外延生长形成一材料层的本发明另一实施例的示意图,其中,晶格之间相互不匹配;图24A-B是解释本发明用于形成不同于通常的<111>方向而是沿着<100>方向延伸的晶须的本发明另一实施例的示意图;图25A-B是包括场致发射显示器(fed)的本发明另一实施例的示意图,其中,显示器的单个器件为纳米晶须并且独立地址;图26是包括用于将红外区的图像向上转变至可见光区的布局的本发明另一实施例的示意图;图27是包括用于红外辐射的天线的本发明另一实施例的示意图;图28是包括用于自旋电子学应用的铁磁性晶须的又一布局的示意图;图29是包括用于植入神经中的可选择性地确定地址的电极阵列的本发明另一实施例的示意图;图30是包括具有沿着其长度被氧化的外表面的晶须的本发明另一实施例的示意图;图31是包括从衬底上直立并形成悬臂布局的一排晶须的另一实施例的示意图;图32是包括排列成用于振荡并提供对重量和频率的精确测量的晶须的本发明另一实施例的示意图;以及图33是包括扫描隧道显微镜的尖端的本发明另一实施例的示意图。
具体实施例方式
下面描述根据本发明制备纳米晶须的方法。此方法可适用于制备将在下面进行描述的共振隧穿二极管以及其它电子和/或光子器。
晶须为具有高度各向异性的结构,其由熔化金属滴在空间上进行催化,该金属滴通常在无意中被引入到晶体表面成为杂质。由于金能够与如Si、Ga和In等半导体材料或成分形成共晶合金,因此往往选择金作为催化剂或籽晶颗粒。这些共晶合金的熔点低于Si和III-V族材料的通常生长温度。熔化的金属滴用来作为微型液相外延系统,在这里,激励子以蒸汽的形式或者在此种情形下以真空中的分子束进入其中。该生长通常被称为气-液-固生长。半导体纳米晶须的电学和光学性质基本上由它们的结晶结构、形状和尺寸决定。具体而言,晶须宽度的微小变化会激起由量子局限效应所引起的能态分离中的巨大变化。因此,可自由选择晶须的宽度是很重要的,同样重要的是,对于伸长的晶须长度,其宽度能保持为恒量。与将晶须定位于衬底上的选定位置处的可能性一起,有必要将晶须技术与当前的半导体器件技术结合起来。
根据本发明,已经发展了用于合成在结晶衬底上外延生长的选定尺寸的纳米晶须的技术。在如下所述的技术中采用的化学束外延装置示意性地显示在图3中。
化学束外延生长(CBE)将如分子束外延(MBE)的束外延技术和使用类似于有机金属化学气相沉积(MOCVD)的化学源结合起来。在MOCVD或相关的激光镀膜技术中,反应室中的压力通常大于10mbar,且气体反应物是粘滞的,即意味着它们具有相对较高的流阻。化学物质通过扩散到达衬底表面。CBE使压力减小到低于10-4mbar,因此扩散物的平均自由程变得比源的入口与衬底之间的距离长。传输变得没有碰撞而且以分子束的形式出现。在CBE系统中气体扩散的排除表明在衬底表面处的流动中的快速反应,这使得可生长出原子方式的突变界面。
如图3所示,CBE装置由UHV(超高真空)生长室1001组成,其中,样品1021安装在与加热器1061相连的金属样品架1041上。在生长室的周围具有一充满液氮的被称为低温套(cryoshroud)的环1081。该低温套将未撞击衬底表面或从衬底表面解吸出来的核素抽走。这防止了正在生长的表面层受到污染并减小记忆效应。还安装有真空泵1101。
CBE的源1121处于液相,它们装在相对于生长室为过压状态的瓶子内。该源通常为TMGa,TEGa,TMIn,TBAs,TBP。瓶子保存在恒温池内,且通过控制液体源的温度调节液体上方蒸汽的局部压力。然后,该蒸汽通过管道集成1141进入生长室内,并输送至正好位于生长室前面的该管道的端部处的源注射器1161。该源注射器用来将气源注射进生长室1001,并用来产生稳定和均匀强度的分子束。来自有机金属化合物TMIn(三甲基铟)、TMGa(三甲基镓)或TEGa(三乙基镓)的第III族材料通过低温注射器注入,以避免生长核素的凝聚。它们将在衬底表面处分解。第V族材料通过有机金属化合物TBAs(叔丁基砷)或TBP(叔丁基磷)提供。与第III族材料的分解不同,第V族材料将在注入生长室1001之前于高温下在注射器1161中分解。这些注射器1161被称为裂化池而且其温度保持在900℃左右。源束直接撞击在加热过的衬底表面上。分子从衬底表面获得足够的热能,从而完全分离出其三个烷基而将基本的第III族原子留在该表面上,或者分子以未离解或部分离解的形态进行解吸。这两个过程中的哪一个起支配作用依赖于衬底的温度和分子到达衬底表面的比率。生长率在较高温度时将被供给所限制,在较低温度下则会被将堵塞位置的烷基解吸所限制。
该化学束外延方法使得在纳米晶须内形成异质结,它是突变的,即存在着在几个原子层上从一种材料向另一种材料的快速过渡。
为便于说明,“原子尺度的突变异质结”的含义是指在两个或更少原子单层上从一种材料到另一种材料的过渡,其中,在该两个单层一侧的一种材料至少为90%的纯度,在该两个单层另一侧的另一种材料至少为90%的纯度。这种“原子尺度的突变异质结”是充分突变或不连续的,从而使得在具有一系列异质结和相关量子阱的电学器件中可构成定义量子阱的异质结。
为便于说明,“尖锐异质结”的含义是指在五个或更少原子单层上从一种材料到另一种材料的过渡,其中,在该五个单层一侧的一种材料至少为90%的纯度,在该五个单层另一侧的另一种材料至少为90%的纯度。这种“尖锐异质结”是充分尖锐的,从而允许制造在一纳米元件中具有一个或一系列异质结的电子器件,其中该异质结需要准确定义。这种“尖锐异质结”对于依赖量子效应的许多器件也是充分尖锐的。
作为说明,在用于本发明的纳米晶须中的化合物AB中,其中A代表第一族的一个或多个选定元素,B代表第二族的一个或多个选定元素,预先确定第一族选定元素和第二族选定元素的总比例,从而组成能够提供所需特性的半导体化合物。当各族选定元素的总比例至少为其预定比例的90%时,便认为该化合物AB具有90%的纯度。
例1图1和图3显示了从几个III-V族材料生长的预定尺寸的晶须,具体而言,即宽度在10和50nm之间的GaAs晶须。早期报道的外延生长的纳米晶须倾向于为锥形,其从底部到顶部逐渐变细,与此相对照,这些GaAs晶须可生长成具有均匀直径的棒状。采用选定尺寸的金气溶胶颗粒作为催化剂,因此,表面覆盖度可以独立于晶须尺寸而变化。
晶须宽度通常略微大于籽晶颗粒的直径。这主要源于两个因素第一,金颗粒与来自衬底的Ga也可能还有As相结合,这使得颗粒成长;第二,当颗粒熔化时,液帽的底部直径将由合金与衬底表面之间的润湿角确定。简单假设给出高达50%的依赖于温度和颗粒直径的展宽,并引入颗粒直径与晶须宽度之间的可逆关系。
采用GaAs<111>B衬底10,在1∶10的HCL∶H2O中蚀刻,以在气溶胶沉积之前除去任何自然氧化层和表面杂质。在位于具有高纯度N2气氛的手套式操作箱14之内的本地构造的气溶胶设备中制成选定尺寸的金颗粒12。利用蒸发/浓缩方法,在管炉16中约1750℃的温度下生成这些颗粒,并由附图标记18处的紫外光进行充电。通过微分型迁移率分析仪DMA 20选择这些颗粒的尺寸。通过平衡它们的空气阻力与它们在电场中的迁移率,该DMA对这些充电的气溶胶颗粒的尺寸进行分类。在尺寸分类以后,为了使颗粒致密并呈球形,将颗粒加热到600℃。该设置使得气溶胶流动具有窄的尺寸分布,其标准偏差小于平均颗粒直径的5%。通过电场E,将仍然处于充电状态的颗粒沉积到衬底10上。采用在10和50nm范围内的选定尺寸的气溶胶颗粒生长晶须。
在气溶胶沉积以后,将一些样品转移到AFM Topometrix探测器24,该探测器也位于手套式操作箱之内,并连接至气溶胶制备装置。因此,在沉积和处理阶段,这些样品暴露在仅仅为sub-ppm量级的H2O和O2中。通过AFM针尖,选择特殊的颗粒12并按预定的形态或排列方式放置,从而完全控制对各个籽晶颗粒的定位。
然后,将GaAs衬底10与布置或沉积的Au气溶胶颗粒12一起转移到化学束外延(CBE)室。在CBE结构中,在真空/分子束条件下开始GaAs的生长,在此情况中,有机金属源为三乙基镓TEG和叔丁基砷TBA。将TBA热预裂成主要为As2分子,而TEG通常在碰撞到衬底表面上以后分裂。该生长一般在轻微的As2过压下进行,这意味着Ga的流动决定了生长率。在即将生长之前,衬底被加热器加热至600℃保持5分钟,并暴露在As2束下。在此步骤中,Au滴可与GaAs成分形成合金,因此,Au颗粒从衬底吸收一些Ga。Au/Ga合金在339℃形成。然而,此步骤也用作去氧化步骤,其将任何新的自然氧化物层除去,该氧化层源于向手套式操作箱系统的输送和来自手套式操作箱系统的输送。通常预期该氧化物在590℃时蒸发,尽管不一定绝对如此。可通过反射高能电子衍射RHEED分析该氧化物的挥发性。随着迁移的成功,在低于500℃的温度下已经可以看到指示出结晶、重组表面的条纹衍射花样。然而,通常,该氧化物在直至590℃、有时高达630℃还保持稳定。晶须在衬底温度介于500和560℃之间、TEG压力为0.5mbar以及TBA压力为2.0mbar的情况下进行生长。生长以后,通过扫描电镜SEM和透射电镜TEM研究样品。
所得到的晶须为棒状,尽管它们的长度略有不同,但在尺寸上还是相当一致的。尺寸均一性明显依赖于表面氧化物的挥发性。利用RHEED可以看出,对于具有硬氧化物的样品,其尺寸均一性下降。因此,为了得到可重复结果,优选采用无氧环境。在所述生长温度下,不管颗粒的尺寸如何,均没有观察到晶须逐渐变细的现象。但是,对于低于500℃生长的晶须,很明显具有逐渐变细的迹象。依赖于温度,棒状或锥形晶须的生长可由在平行于晶须长轴的表面上没有或者具有未催化生长来解释。此取向的最简单表面是<110>晶面。在接近于这些实验中所用到的常规CBE生长条件下,<110>晶面是迁移表面。然而,在较低温度下,Ga的扩散系数减小,这便激发了<110>晶面上的生长。在MOCVD生长中,Ga的迁移长度甚至更小,这便解释了先前工作者们得到的典型锥形晶须。
在图2a中,示出了由10nm颗粒生长而成的一束10+2nm宽度的晶须的TEM图像。晶须的相对较低的密度由图2b中的SEM图像说明,该图像为具有从40nmAu气溶胶颗粒生长而成的GaAs晶须的GaAs<111>B衬底的图像。在图2c中,高分辨TEM显微图像示出了一个单一的40nm宽的晶须。正如其它组所发现的,其生长方向垂直于密排面,即立方闪锌矿结构的(111)面。也可观察到孪晶缺陷和堆垛层错,其中晶须在立方结构和六角结构之间交替。除了最靠近Au催化剂的始终是闪锌矿Z的那部分以外,晶须的大部分具有反常的纤维锌矿结构W。SF=堆垛层错,T=孪晶面。在核心处图像衬比的变化源于六角横截面。
在下面根据图4-6进行描述的方法中采用了此生长方法,用于形成具有不同组分晶须部分的晶须。该方法通过含有InP部分的InAs晶须进行解释。
例2晶须的生长条件使得可以形成突变界面和厚度从几个单层至几百个纳米的异质结构势垒,从而形成电子沿着其运动的一维形貌。高分辨透射电镜图解了结晶完整性、界面质量以及晶格常数的变化,并从高于InP势垒的电子热激发所导致的电流推导出0.6eV的导带移位。
在此方法中,按照上述方式,利用用于催化诱导生长的金纳米颗粒以气-液-固生长模式生长出III-V族晶须。生长在图3所示的专门设计用于化学束外延(CBE)的超高真空室100中进行。组分的迅速转变通过将激励原子(precursor atom)供给到共晶熔融体中进行控制,该激励原子作为分子束供给到超高真空室内。经由一程序得到在不同组分之间(例如InAs和InP之间)的迅速转换,在该程序中,关掉铟源(TMIn)而中断生长,紧接着改变第III族源。最后,当铟源再次注入生长室时,作为重新开始生长的先决条件的过饱和条件重新建立起来。
对于界面的不连续或突变,图4示出了含有几个InP异质结构势垒的InAs晶须的TEM分析。图4a中示出了用400kV HRTEM(点分辨率为0.16nm)记录下来的三个最高势垒的高分辨图像。图4b示出了该HRTEM图像的非二次功率谱(nonquadratic power spectrum),表明生长方向沿着立方晶格的
方向。该反射图显示出由于InAs与InP之间晶格常数的差异而造成的轻微分裂。图4c示出了反傅立叶变换,其采用了源于InP晶格的200反射部分的软边缘掩膜。将一相应掩膜放置于反射InAs部分上。如图4d所示,该两个图像被重叠在一起。
图5a示出了InAs/InP晶须的TEM图像。在图5b中,放大了的5nm势垒显示出原子完整性和异质结构界面的突变。与100nm厚的InP势垒并排着给出的是对预期被沿着晶须运动的电子所经历的异质结构1D能量形貌的1D泊松模拟(忽略只有约10meV贡献的边缘量子化)的结果(图5c),其给出了导带(n型材料中电子进行运动的区域)中的预期0.6eV的带移位(q1/4B)。此类似于障碍赛的势结构与同质InAs晶须中的电子所遇到的情形极为不同,在该情形中,预期并真正观察到了欧姆行为(即,电流I对电压V的线性依赖关系)(如图5d所示的曲线)。该线性行为与所示的含有80nm厚InP势垒的InAs晶须的I-V测量曲线形成鲜明对比。观察到了强烈的非线性行为,且用来诱导电流通过晶须所需的偏压超过了1V。随着偏压的增大,由于电子必须隧穿过的有效势垒变窄,该场致隧道电流急剧上升。为了测定1D晶须中理想异质结构带图是否有效,对电子经由热离子激发而克服InP势垒引起的电流对温度的依赖关系进行测量。该结果如图5e所示,其中,将电流(除以T2)的对数作为以阿列纽斯形式的温度倒数的函数,其是在尽量减小了能带弯曲效应和上述隧穿过程的小偏压(V)10mV处测得的。从与实验数据点相符的线的斜率中可推出有效势垒高度q1/4B为0.57eV,其与模拟符合得很好。
该用于实现1D晶须内的异质结构的方法的附加优点是,作为结合高度失配材料的有利条件,其由通过邻近晶须几何结构中开放侧面进行的有效应力释放所提供。比较而言,在无论是岛状生长还是失配位错出现之前,在如InAs和InP等具有不同晶格常数的材料之间的转变中仅会外延生长出很少的几个原子层,从而防止了理想异质界面的形成。
共振隧穿二极管和异质双极晶体管至少在优选实施例中,本发明还包括功能性1D(一维)共振隧穿二极管(RTD),其通过将设定的不同半导体材料部分自底而上组合在III/V族纳米线(纳米丝)中的方式得到。按照顺序,这种RTD包括发射极部分、第一势垒部分、量子阱部分、第二势垒部分以及集电极部分。正如本领域的技术人员所熟知的,将RTD中的势垒部分做得足够薄,从而使得在满足隧穿的条件下电荷载流子可进行大量的量子隧穿。在根据本发明的RTD中,被制成纳米线形式的纳米晶须可以做得足够薄,从而使得其中央量子阱在有效意义上为量子点。在一具体例子中,发射极、集电极和中央量子点可由InAs制成,势垒材料可由InP制成。在一例子中,观察到了峰谷比高达50∶1的优异共振隧穿行为。
根据本发明,1D异质结构装置利用半导体纳米晶须制成。如在上述例子1和例子2中详细描述,该晶须通过气-液-固生长模式生长,由Au气溶胶颗粒控制其尺寸并作为其籽晶。生长在超高真空条件下的化学束外延室中进行,其中,Au颗粒与反应物之间的共晶熔融体的过饱和起着作为晶须生长的驱动力的作用。
经由下列转换次序可实现将异质结构部分结合到晶须中(已在前面作了充分说明)关闭第III族源束,以停止生长,紧接着改变第V族源。一旦将第III族源再引入室内,过饱和重新建立起来且生长继续进行。在下面描述的例子中,使用的材料系统为InAs用作发射极、集电极和量子点,InP用作势垒材料。选择气溶胶颗粒,以使最终的晶须直径为40-50nm。为了制作以单个纳米晶须作为活性元件的接触电子装置,将晶须从生长衬底转移到覆盖有SiO2的硅晶片(硅晶圆)上,在该晶片上,通过透射电镜(TEM)格栅掩膜利用Au金属蒸发限定出大焊盘。图6B中示出了纳米线装置的扫描电镜(SEM)图像,其展示出电子束蚀刻系统中的对准能力,从而允许以优于100nm的精度将金属电极定位在纳米线上。图6D示出了一组单势垒装置的电流-电压(I-V)特性,其中InP势垒的厚度从80nm变小直至为零。较厚的InP部分可作为电子输运的理想隧穿势垒,其只允许高于此势垒的热激发(测量为约0.6eV(23))或者隧穿,当向样品施加一大的偏压时势垒有效地变薄,从而使得该隧穿成为可能。从图6D中可以看出,几乎没有电流流过厚的InP势垒。在含有较薄的单势垒的样品(图2c)中,可发生量子隧穿,且电子可穿透厚度小于约10nm的势垒。在零势垒厚度的极端情况下,一直降温到至少4.2K,其I-V特性均呈极好的线性。为了检验结晶质量并评估异质界面的突变性,进行高分辨TEM研究。图7A中示出放大了的<111>InAs纳米晶须中的5.5nm厚的InP势垒,其中可以清晰地看到(111)晶面。根据图7A中的区域的合成图,可确定界面的锐度为1-3个晶格间距。较亮的带中的晶格边缘之间的平均间距为0.344nm,很好地对应于InP的d111=0.338nm。图7B是图7A中框定区域的一维合成图。从图像衬比的跳跃判断,势垒的宽度约为5.5nm(16个晶格间距),界面锐度为1-3个晶格间距的量级。由于界面周围的弯曲和应力对比,导致背底不是线性的。InP与InAs之间晶格间距的差为3.4%,这与晶格失配的理论值(3.3%)符合得很好。
由于异质界面必须足够突变以制作高质量的量子装置,因此,可构想双势垒共振隧穿装置。选择约为5nm的势垒厚度。在图8A中可看到,形成于40nm宽的纳米晶须中的这种双势垒装置结构的TEM图像。在15nm厚的InAs量子点的任一侧上,势垒厚度大约为5nm。在该TEM图像下面(图8B)示出了该装置的预期能带图,其纵向限制(z方向)由量子点的长度决定,横向限制(垂直方向)则依赖于晶须的直径。对于此装置,只有最低的横向量子化能级被占据(5meV量级的分裂),具有所示出的费米能,并决定了最高被占据并填满了电子的纵向能态。在两个InP势垒之间示出了中央量子点的完全量子化能级,其在横向量子化能级上与发射极区域中示意性给出的次序相同,但是在量子点中的纵向量子化能态与基态的近似量子化能量E1z=40meV之间具有较大的分裂(为100meV的量级)。在施加零偏压时,由于点与发射极之间的能量量子化差别导致发射极中没有电子态与中央点中的任何态相互并列,因此电流应该为零。随着偏压的增大,点中的态会移向较低能量,只要最低的点-态与费米能级并列,电流便立即开始增大(这里,假定费米能级位于发射极中两个最低态之间)。当点-态降到第一发射极能态的能级以下时,电流又降为零,从而导致特征性的负微分电阻。
该一维DBRT装置的电学性质如图8C所示,正如对此装置所预期的,其显示了几乎理想的I-V特征。该I-V迹线表明在约70mV的偏压以下没有电流,对应于电子一定能穿透两个势垒加中央的InAs部分从而从发射极运动至集电极的偏压条件。在I-V特征中可以看出,在约80mV偏压处具有一尖锐的峰,其半高宽偏压约为5mV(该值可转化为约1-2meV的共振能量锐度)。该80mV峰的峰-谷比极高,约为50∶1,并且在所研究的不同样品中均能看到。在该深谷以后,对于约100mV的偏压,电流再次增加,在其上升斜线上观察到一些未决的肩状特征。注意,增加偏压的I-V迹线与减小偏压的I-V迹线是一致的,这表明该装置的特征是高度可逆的并表现出可忽略的回滞效应。此外,在反偏压极性中类似地出现该80mV现象。在这种情况下,该峰只有轻微移动(5mV),表明该装置结构具有高对称性。因此,这些结果报道了对半导体纳米线中的单异质结构势垒的材料和势垒性质的研究,该研究上至厚势垒(其中只有高于势垒的热激发是可能的)、下至单势垒厚度(其中隧穿过势垒占有主要地位)。
通过这种方法制备了一维双势垒共振隧穿装置,其具有高质量的装置性能,能量锐度约为1meV,峰-谷电流比为50∶1。
下面参照图9,示出了共振隧穿二极管的一优选实施例,其具有伸展在相隔2微米的集电极接点42与发射极接点44之间的纳米晶须40。该晶须的第一InAs部分46和第二InAs部分48分别与接点42、44电接触。InP势垒部分50,52将InAs中央量子点或量子阱部54与发射极和集电极部隔开。该部54的长度约为30nm。为了得到适当的量子局限,将根据带隙势垒高度等选择精确尺寸。
该二极管以RTD的传统方式工作;至于对工作原理的解释,例如见参考文献Ferry and Goldnick,Transport in Nanostructures,CUP 1999,pp94以及下列说明。
在图9的RTD中,部分50,52可按图10所示的方式用宽带隙绝缘材料代替。图10显示出了具有绝缘部分的实施例。通过上述工艺生长出锗晶须100,其具有短的硅部分102。通过晶须沿径向向外膨胀调适晶格失配。通过加热氧化该硅点,从而在锗晶须内提供大的二氧化硅隔片104。这具有极稳定的大带隙偏移。可采用铝来代替硅。此实施例可用于图9中的实施例所示的隧穿效应的例子。
关于制作图9中实施例的与集电极部分和发射极部分相接触的电接点,其可由不同的方式完成。如图9所示,晶须可跨过大的金属化焊盘放置。此外,纳米晶须也可放置在衬底上,其位置由适当的扫描方法确认,然后,通过金属处理工艺在该晶须的端部形成焊盘。另外,还可使纳米晶须维持从衬底延伸出去的状态,其底部在衬底处与电接点接触,以将晶须封装入树脂或玻璃态物质中,然后在该封装上形成电极,以与晶须的顶端电接触。该后一种方法更适合于与其它电学器件和电路的结合。
下面参照图11-14给出了本发明的一实施例,其包括异质结双极性晶体管(异质双极性晶体管;HBT),它与常规的双极性晶体管的区别在于,在该晶体管中使用了不同带隙的材料。例如,纳米晶须110可具有一GaP发射极部分112,其连接至p型掺杂Si基极部分114,该p型掺杂Si再连接至n型掺杂Si集电极部分116。金属电极118分别接触部分112、114和116。图12示出了该HBT的带隙图。由于发射极的相对较宽的带隙,从基极流向发射极的少量电流被抑制。基极与集电极之间的损耗区的特征在于,掺杂逐渐从p型转变为n型。或者,基极和集电极也可由三重或四重材料制成,作为化学计量组分,该组分在大量晶面(例如100至1000个晶面)上逐渐变化,以提供所需的损耗区域。图13示出了三重混合物AlxGa1-xAs的能量带隙随组分的变化。
图14示出了多种III-V族材料的带隙能和晶格参数的变化。可以理解,利用根据本发明的形成纳米晶须的方法能够形成具有很大不同晶格参数的材料的异质外延结,例如GaN/AlP,其晶格失配通过晶须沿径向的膨胀(凸出)调适。
光子器件图15示意性地示出了能够进行单光子发射的极小LED。单光子发射对于例如量子照相或检测分子核素的独立分子是十分重要的。晶须150具有位于由砷化铟制成的内部区域156的任一侧的阳极和阴极外部区域152,该阳极和阴极外部区域152由磷化铟制成,从而限定出一量子阱。区域152分别连接至形成为金属区158的阳极和阴极电接点。对于平面型装置而言,由于对晶格匹配和释放失配应力的要求,只有某些波长是可能的;与之对照,本实施例很重要的一点在于,由于晶格失配通过晶须沿径向向外膨胀得以调适,用于制成二极管的材料可以是任何所需的组分,以得到所需波长的发射(见上面所讨论的图14)。因此,LED的波长是充分可变的。由于该材料可以是化学计量组分,其波长可在从1.5eV至0.35eV的范围中连续变化。一维结构比现有技术的层状结构需要更少的处理,并且由自组工艺制成,其整个结构位于电接点之间。如果需要激光结构,Fabry Perot(FP)解理面159形成为以适当的间距隔开。或者,区域159形成为包括超晶格的镜面。该超晶格可形成为交替排列的InP/InAs序列,正如本领域的技术人员所熟知的,该序列仅在几个晶面的部分上交替。
LED、激光器和其它微腔结构通常用氮化镓(GaN)制成。氮化物具有一些特别是光学方面的优点,同时,氮化物也具有缺点首先,它们中充满位错;其次,缺少合适的衬底(蓝宝石是一种普遍使用的衬底)。晶须可由无缺陷的氮化物制成,并且没有与衬底的晶格匹配问题。常规的FP激光器可用尺寸小于300nm、优选为100nm量级的图15所示的结构制成。该结构为自下而上结构(bottom up structure),非常适合于读取和写入DVD。氮化物体系非常适合于晶须生长。
光源发射区156可制成小至约20nm3。这代表了点光源的极端例子,并且,正如图16示意性指出的,可用来局部激发独立生物细胞160。由于光源与物体之间的物理间距是波长的分数,光源156提供近场162(以指数形式衰减),该近场激发细胞160。其可用于DNA排序中,而且,如图所示,源156可安装在玻璃毛细管166的凹槽164中。该细胞作为流体混合物的一部分沿着毛细管流动,并流过源156。
参照图17,其示出了适用于纳米压印蚀刻技术(NIL)的本发明的实施例,其中,用于提供点光源的晶须156的阵列170可分别由电压源172寻址。该阵列安装于可在抗蚀材料176表面上方运动的托架174上。该托架以20nm的步幅运动,在每一步幅中,为了用近场光照亮材料176并在抗蚀材料176中产生所需的可显影图案,选择性地向晶须156施加电压。
参照图18A,示出了根据本发明的一光电探测器。例如,纳米晶须180可在金属接触垫182之间延伸。通常具有10KΩ至100KΩ的高接触电阻,其源于垫182与晶须180之间的很小接触面积。该晶须可包括n型掺杂的磷化铟部分184、p型掺杂的磷化铟部分186以及它们之间的p-n结188,该结可以是不连续的或延伸越过多个晶面。这种布置适于探测1.3微米或1.55微米波长的光。如图14所示,可采用任何所需的成分“匹配”,因此,可改变材料,以探测从1.55微米或更小的任何波长。或者,可使用PIN或肖特基二极管结构。如图18B所示,PIN结构具有位于两个半导体部184和186之间的本征半导体材料部分188。晶须以参照图10所述方式构造。如图18C所示,肖特基二极管结构具有形成为金属接点的基极部分189,晶须从该接点处延伸出去;该接点与晶须之间的界面形成肖特基二极管。辐射探测的频率下限处于电磁频谱的太赫区。
参照图19A,其示出了图18的光电探测器结构的太阳能电池应用。在p型掺杂衬底193上形成了数百万晶须190,它们各具有p型掺杂部191和n型掺杂部192。晶须通过利用例如由气溶胶沉积在衬底193上的金或其它纳米颗粒的生长形成。晶须可封装入塑料194中,并在其上表面上具有透明的氧化锡电极196,该电极接触晶须的自由端,从而使电流能沿着晶须的长度流动。由于每个晶须都是100%可靠的,此结构在捕获光的方面极其高效。总效率在35与50%之间,并且可用于多带隙太阳能电池。相比之下,在300℃下生长的多孔硅的效率约为10%,结晶硅的效率约为15%,适于空间应用的特殊用途III-V族太阳能电池在400℃下生长并具有高达25%的效率。适于空间应用的Grtzel太阳能电池具有与适当的染料一起喷涂在太阳能发电板上的二氧化钛纳米颗粒,此种太阳能电池具有高达8%的效率。
参照图19B所示的变型,将太阳能电池阵列的每个晶须修改为附图标记197所示的形式,沿着其长度具有不同材料的不同部分198。选择这些材料,从而使p-n结吸收不同波长的光。沿着晶须在其位置处晶须对特殊波长的光更敏感的点依赖于太阳能电池的精确结构和该结构内的诸如反射和折射等因素。
由于生长条件很便宜,而且只需要非常少量的昂贵材料,因此图19A-B的实施例很便宜。在另一替换结构中,晶须可以是硅(它最便宜)或锗。晶须的长度为1或2微米。通过沿着其部分长度对该该晶须进行掺杂,或者如图18C所示在晶须的底部形成肖特基势垒,从而得到PN结。
参照图20,其示出了一实施例,它是很长波长的红外辐射源,例如处于太赫频率的辐射源。磷化铟纳米晶须200具有一系列非常薄的、被磷化铟隔离条纹204分隔开的砷化铟条纹202。这些条纹通过上述过程生长而成。每个条纹202,204为几个晶面宽,且这些条纹形成超晶格206。通过向电极接点208施加电压,电子运动穿过超晶格。该超晶格产生一系列量子阱带隙(势阱),该势阱按照布洛赫理论给出导带,其具有电子波数或动量k的允许区域一即对应于太赫频率的允许区域,从而产生太赫发射。
图21A-21D给出了作为光子晶体实施的本发明的一实施例。光子晶体是众所周知的一例如见待审申请WO 01/77726。在形成光子晶体的主要现有技术的方法中,涉及到按照预定的点阵图案在衬底上蚀刻气孔。此实施例的构思是使用布图技术在衬底上定义点阵图案,但不是蚀刻孔,而是生长纳米晶须,以定义该晶体。这具有许多优点,其中一个优点在于蚀刻技术不如生长晶须的自下而上技术那样可靠(蚀刻会损害衬底表面)。因此,晶须技术更精确,其质量更高并且简单,也由于需要更少的工艺步骤因而很经济。
如图21A所示,衬底210具有相距300nm、约为300nm2的正方形金片212的三角形点阵图案,这些片通过电子束蚀刻、UV蚀刻或纳米印刷蚀刻(NIL)工艺形成。该衬底在金沉积之前被初始制备为一无氧化物污染的清洁衬底。加热该衬底,以熔化金矩形,从而使它们形成直径约为100nm的球214,如图21B所示,然后进行退火。然后,通过例子1所述的工艺生长约100nm宽的晶须216,从而形成光子晶体,如图21C所示。
根据本发明,可以通过晶须的形成来定义三维光子晶体。这可按照图21D所示通过用一系列不同材料部分217,218制成每个晶须来完成,例如,根据例子2的方法,通过诸如InAs/GaAs等III-V族材料或诸如Ge/Si等第IV材料的交替序列,从而在沿着每个晶须的间隔处提供具有适宜折射率的部分,以形成光子带隙。
III-V族材料的单晶层参照图22A-22G,其示出了用于在衬底上生长所需材料的外延层的本发明的一实施例。如图22A和B所示,硅或砷化镓衬底220在其上表面形成金、铟或镓矩形222,这些矩形在NIL工艺中或按照例子1所述通过压印223定位在衬底上。外延覆盖沉积物224(几个纳米宽的介电材料,例如二氧化硅或氮化硅)形成在衬底220上并围绕在矩形222的周围。施加热量,以对矩形进行退火,从而将其变成球226,如图22C所示。如图22D所示,生长成以InP或GaAs作为例子的晶须228。或者,采用碳基材料作为沉积物224(当通过退火形成球时,介电材料进行解吸,该碳基材料将颗粒稳定)。将球作为用于体生长、即一层所需材料生长的籽晶开端。该介电层防止了衬底与晶体层之间的原子结合和晶格失配效应。如图22E所示,晶须与InP或GaAs的体层229一起生长。从晶须至层的生长条件存在着逐渐的变化。因此,晶须上会有成核而不产生缺陷。有一些小的成核台阶且未出现应力效应而导致位错。其中,衬底是III-V族材料,很重要的优点是。在衬底上形成晶格失配层而不产生失配位错。
如图22F所示,在一种变型中,根据例子1的方法,从气溶胶将金球226沉积到衬底表面上。在球上形成外延覆盖沉积物224。然后,如图22D所示,生长得到晶须。
在根据本发明的进一步发展中可以得知,如图23A所示,由于对于砷化镓(闪锌矿晶格)而言,砷原子位于棱锥的顶点,镓离子位于棱锥的底部,因此晶须倾向于优先沿着<111>B方向生长。图23B给出了本发明的一优选实施例,其中,硅衬底230具有锯齿状表面,该表面上具有蚀刻成暴露出<111>面的显微尺寸的V形凹槽232。金颗粒234沉积在V形凹槽的表面上。根据实施例1生长而成并如图23C以幻象形式示出的GaAs晶须236将垂直于锯齿的壁延伸。这些晶须为GaAs层238的体生长提供成核点。从晶须至层的生长条件存在着逐渐的变化。因此,在砷化镓上存在着成核而不产生缺陷。没有出现导致产生位错的任何小的成核台阶和应力效应。沿与衬底成一角度的<111>方向的晶须方向迫使外延生长沿着特定的方向进行,并消除了一度很困扰的反相畴问题。因此,提供了一种将III-V族化合物结合到硅(或其它第IV族)衬底上的方式,并且比现有方法更便宜一见例如已公开的PCT专利申请WO 02/01648。
与图19的太阳能电池应用相关,带有V形凹槽的衬底的另一优点在于该锯齿状衬底提供对入射光的多次反射,因此增加了光子捕获的概率。
下面参照图24描述用于控制晶须取向的优选实施例。通常,如上所述,III-V族化合物的晶须沿着<111>B方向生长。其中的问题是,该晶须或多或少地在六角(纤维锌矿)(图24A)与立方(闪锌矿)(图23A)结构之间随机改变。这便导致许多堆垛层错。堆垛层错特别是对于光学性质、而且对于电学特性来说始终是一问题。通过改变生长条件向晶须施加应力,可将晶须的生长方向改为<100>方向,其形成立方晶格结构(闪锌矿),而不会具有堆垛层错。
在图24B中,具有<100>表面的硅衬底240具有生长于其上的例如InP的晶须242。该晶须开始在244处沿着<111>方向生长,而在初始生长后不久,通过提高生长速率并升高CBE装置内的温度和压力而迅速改变工作条件,因此该晶须在246处沿着<100>方向继续生长。方向发生改变的点248是<110>晶面。转变处的晶须保持其外延结晶本质。部分246中的晶体结构是六角密排结构,这显著地减少了堆垛层错的问题。
在另一种生长方法中,例如InAs等宽带隙材料的矮的势垒部分在点248处生长,这与改变晶须的后续取向具有相同的效果。
因此,本实施例特别适用于氮化物、例如GaN的生长,其优选生长为六角晶格并特别易于产生堆垛层错。通过“迫使”氮化物晶体以立方结构生长,从而减少了堆垛层错。而且,在根据例子2制成的具有沿着晶须的不同材料部分的结构中,可发展出用于氮化镓激光器的多腔结构。氮化物系统非常适合于晶须生长。氮化物的问题是它们充满位错而且缺少合适的衬底。晶须可由无缺陷的氮化物制成,且不存在晶格匹配问题。常规的FP激光器可用长度小于300nm、处于100nm量级的纳米晶须制成。其为自底而上结构,非常适合于读取和写入DVD。
现在参照图25中示出的实施例,该实施例涉及场致发射尖端或Spindt阴极。它们用于场致发射显示器(FED)中,且已经提出了许多方法来制作这种显示器。图25a所示的一种现有技术的方案包括具有表面252的硅衬底250,该表面利用激光烧蚀等形成图案,从而形成微型或纳米尖端253。荧光屏254设置成邻近尖端,该尖端与屏之间的电压在该尖端处产生极高的场强,其使得电流流入屏中,从而导致从该屏发出可见光辐射。
图25B中示出了包括FED的本发明的一实施例,其中,显示器的元件是可独立寻址的。蚀刻的接触金属区256形成在硅衬底250上。通过例子1所述的方法,将金籽晶颗粒258置于每个金属区上。为了生长Si晶须259、其中每个晶须从相应的金属区延伸出去,采用这些金颗粒作为晶须生长的籽晶。如图所示,形成一个显示器元件的单个晶须或一组纳米晶须可从相应的金属区延伸出去。除了可以独立寻址以外,本实施例还具有一优点,即对比于现有技术的方法,例如碳纳米管(CNT),该FED是100%可靠的。
图26示出了红外至可见光的上转换的实施例。波长为1.55或2.5μm的红外辐射的图像260照射在砷化镓衬底262的底面上-该衬底是具有相对较大带隙的材料,其不会与该辐射相互作用。衬底的另一侧具有砷化铟突起晶须264,该晶须按照例子1所述方式生长,并具有相对较小的带隙,这将导致对辐射的光子的吸收。然而,与图25相比,晶须264不是可独立寻址的。在该晶须端部与邻近的荧光屏266之间施加大约20-50V的电压,并从砷化铟晶须产生电子。砷化铟具有相当于3微米的带隙,因此会响应波长短于3微米的辐射而产生电子。作为替换,也可采用磷化镓,但是它具有可见光带隙。所发射的电子导致荧光从荧光屏发射出可见光268,并且将所述图像上转换至可见光波长的图像。可增加所施加的电压,以使其足以引发雪崩效应。
图27示出了本发明的一实施例,其中,400nm长的GaAs晶须270(根据例子1制成)从硅衬底274上的金属接点区272延伸出去。该尺寸为1.55微米辐射的四分之一波长,因此该晶须为1.55微米辐射提供λ/4共振天线。接点区272提供一接地面。该天线可设置成能接收自由空间中的辐射276;或者,其还可设置成邻近石英纤维联接件278的端部,以探测第三光学窗口中的辐射。
图28示出了用于自旋电子学领域中的本发明的一实施例。自旋电子学为这样一技术领域,其中,电子装置的特性依赖于电子自旋在该装置中的输运-例如,见Scientific American,June 2002,pp 52-59,“Spintronics”,David D.Awschalom,et al.。在图28中,通过例子1中的工艺制成的诸如砷化镓锰(半磁性)或砷化锰(铁磁性)等磁性或半磁性材料的晶须280形成于Si衬底281上。在施加的电压V下,自旋极化电子283从晶须的顶端发射出来,该晶须与位于衬底286上的电接点284电接触。该自旋极化电子283被用于读写安装在衬底286上的磁存储装置288。
在本发明的进一步发展中,克服了这样一问题,即对于铁磁性,通常存在着约为10-15nm的铁磁畴宽度下限,在该下限以下,铁磁性转变成超-顺磁性。然而,根据例子1中的方法,当结合在一晶须中时,由于一维体系中对称性排列的可能性减小,使得材料的离子更难于具有一种以上的取向,因此可减小畴直径。该晶须的材料可以是铁、钴、锰或它们的合金。
现在参照图29,示出了本发明的另一实施例,其包括具有电极阵列的衬底,该电极阵列用于植于神经中,以修复神经功能,例如眼睛的视网膜。这些电极是可独立寻址的。蚀刻的接触金属区350形成在硅衬底352上。通过上述方法,将金籽晶颗粒354定位在每个金属区上。采用这些金颗粒作为晶须生长的籽晶,以为了生长硅晶须358,其中每个晶须都从相应的金属区延伸出去。如图所示,形成一个电极元件的单个晶须或一组纳米晶须从相应的金属区延伸出去。除了可独立寻址以外,本实施例还具有一优点,即该电极是100%可靠的。
现在参照图30,其示出了包括通过上述方法形成的纳米晶须360的另一实施例。该晶须由硅制成,并在其一端处具有金颗粒熔融体362。在形成晶须以后,将该晶须暴露在适当温度的大气中,以使得硅氧化。这便形成了围绕着晶须并沿着其长度延伸的二氧化硅外壳364。金颗粒熔融体362保持未氧化状态。因此,这提供了非常适合于图29所示的电极组合的结构,其中,电极具有非常精确的电特性。所述硅材料可用任何其它可被氧化的材料代替。
作为替换,晶须360也可暴露在合适材料的氛围中,以形成可替代氧化层364的高带隙材料。
现在参照图31,其示出了包括硅基底件370的本发明的另一实施例。该基底件可以是平面衬底或者仅仅是棒。无论在哪种情况下,从棒或衬底的一个边缘表面形成一排纳米晶须372。这些纳米晶须被规则地隔开并凸出到空间中。这些纳米晶须可具有形成于其上的涂层,以吸引特定的分子结构。无论在哪种情况下,可采用该悬臂梁排列,以作为用于测量分子种类等的悬臂排列的任一众所周知的应用。
参照图32,其示出了包括分子检测装置的本发明的另一实施例。例如氮化硅的衬底380具有形成于其上的绝缘层382,并具有导电表面384,例如金。孔386形成于层382,384之内,纳米晶须388形成于该孔内。
由于孔形成在绝缘层382中而且随后沉积金层384,这基本上由自组工艺完成。因此,导致金沉积在孔的底部,如389处所示,而且通过加热形成金颗粒熔融体,该熔融体使得能够在适当的条件下形成纳米晶须。在已完成的纳米晶须中,该金颗粒熔融体389位于该纳米晶须的顶部。该纳米晶须的高度使颗粒熔融体389与金表面层384至少基本上处于同一平面上。
纳米晶须的自然弹性意味着其具有在垂直于其长度方向上从一侧到另一侧的振动的特征频率。颗粒熔融体389的振动可通过产生于导电层384中的电压或电流信号检测。因此,这提供了一种检测纳米晶须388的振动频率的方式。
通过利用所施加的电压对导电材料进行适当激活,可使得晶须以一定的本征频率在孔内进行机械振动,例如该本征频率在千兆赫范围内。这是因为,从所涉及的低维度和小电流来看,在一个振动周期内,一个单电子经由籽晶颗粒熔融体从导电材料的一侧迁移到另一侧。这便产生了一电流标准发生器,其中通过导电材料的电流I等于振动频率f与一个电子的电荷e的乘积I=f·e。因此,产生了已知的参考信号,其可用于适当的环境中。
另外,颗粒熔融体389可被涂覆有受体物质,从而允许特定的分子种类被吸附到颗粒熔融体389的表面上。这将会导致纳米晶须的特征频率发生变化。此频率的变化可以被检测出来,其还提供了一种用于计算吸附在熔融体389的表面上的分子种类的重量的手段。
图33示出了扫描隧道电镜(STM)的尖端,其包括InP纳米晶须392,该纳米晶须形成于硅的柔性梁394的端部上。梁394通过蚀刻从衬底或棒中形成。
权利要求
1.一种纳米晶须,包括具有纳米尺寸直径的柱,该柱沿着其长度至少包括不同结晶材料的第一和第二长度部分,在该第一和第二部分之间具有组分边界,其中所述柱的直径使得由组分边界处的晶格失配所导致的晶格应变基本上通过向外的原子侧位移得以调适,其中该第一和第二部分结晶材料之间的组分边界在不超过8个径向晶面的轴向间距上延伸。
2.如权利要求1所述的纳米晶须,其特征在于,所述柱的直径沿着该柱的长度基本上恒定。
3.如权利要求1所述的纳米晶须,其特征在于,所述纳米晶须呈锥形,以使得其直径沿着所述柱的长度以被控制的方式变化。
4.如权利要求1所述的纳米晶须,其特征在于,所述柱的直径使该纳米晶须展现出量子局限效应。
5.如权利要求1所述的纳米晶须,其特征在于,所述纳米晶须还包括位于其一端的催化颗粒。
6.如权利要求1所述的纳米晶须,其特征在于,所述第一和第二部分的结晶材料之间的组分边界在不超过7个径向晶面的轴向间距上延伸。
7.如权利要求1所述的纳米晶须,其特征在于,所述第一和第二部分的材料为半导体III-V族材料。
8.一种阵列,其包括多个如权利要求1所述的纳米晶须,且各晶须相互平行延伸。
9.一种纳米晶须,包括具有纳米尺寸直径的柱,该该柱沿着其长度至少包括不同结晶材料的第一和第二长度部分,该第一部分具有A1-xBxC形式的化学计量组分,该第二部分具有A1-yByC形式的化学计量组分,其中A、B和C为选定元素,x和y为在0与1之间范围内的不同数字,其中,位于第一和第二部分之间的组分边界表现为在预定数量的径向晶面上从变量x至变量y的变化。
10.如权利要求9所述的纳米晶须,其特征在于,所述柱的直径沿着该柱为恒量。
11.如权利要求9所述的纳米晶须,其特征在于,所述纳米晶须呈锥形,从而使得其直径沿着所述柱的长度以被控制的方式变化。
12.如权利要求9所述的纳米晶须,其特征在于,所述柱的直径使纳米晶须展现出量子局限效应。
13.如权利要求9所述的纳米晶须,其特征在于,所述纳米晶须还包括位于其一端的催化颗粒。
14.如权利要求9所述的纳米晶须,其特征在于,组分边界处的晶格失配基本上通过向外的原子侧位移得以调适。
15.如权利要求9所述的纳米晶须,其特征在于,所述第一和第二部分的材料为半导体III-V族材料。
16.一种阵列,其包括多个如权利要求9所述的纳米晶须,且各晶须相互平行延伸。
17.一种纳米晶须,包括具有纳米尺寸直径的柱,该柱沿着其长度至少包括不同结晶材料的第一和第二长度部分,在该第一和第二部分之间具有径向材料边界,所述材料边界由出现在不超过8个径向晶面的轴向间距之内的所述不同结晶材料之间的转变确定。
18.如权利要求17所述的纳米晶须,其特征在于,所述柱的直径沿着该柱为恒量。
19.如权利要求17所述的纳米晶须,其特征在于,所述纳米晶须呈锥形,以提供沿着所述柱的长度以被控制的方式变化的直径。
20.如权利要求17所述的纳米晶须,其特征在于,所述纳米晶须的直径使该纳米晶须展现出量子局限效应。
21.如权利要求17所述的纳米晶须,其特征在于,所述纳米晶须还包括位于其一端的催化颗粒。
22.如权利要求17所述的纳米晶须,其特征在于,第一和第二部分结晶材料之间的组分边界在1-3个晶面的轴向间距上延伸。
23.如权利要求17所述的纳米晶须,其特征在于,所述第一和第二部分的材料为半导体III-V族材料。
24.一种阵列,包括多个如权利要求1所述的纳米晶须,且各晶须相互平行延伸。
25.一种异质结构纳米晶须,包括具有纳米尺寸直径的柱,该柱沿着其长度具有多个不同材料组分的长度部分,在相邻部分之间具有预定的组分边界,所述组分边界在该纳米晶须柱的预定长度上延伸,并在该边界处产生预定的带隙变化。
26.一种共振隧穿二极管,其包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,从而展现出量子局限效应,该柱沿着其长度依次包括发射极部分、第一势垒部分、量子阱部分、第二势垒部分和集电极部分,每个所述势垒部分的带隙大于相邻部分的带隙,且具有这样的长度,以使电荷载流子可在所述发射极部分与所述量子阱部分之间以及所述量子阱部分与所述集电极部分之间隧穿。
27.如权利要求26所述的共振隧穿二极管,其特征在于,所述势垒部分由绝缘宽带隙材料组成。
28.如权利要求26所述的共振隧穿二极管,其特征在于,所述发射极部分、势垒部分、量子阱部分以及集电极部分由半导体材料组成。
29.如权利要求28所述的共振隧穿二极管,其特征在于,所述发射极部分、量子阱部分以及集电极部分由砷化铟制成,所述势垒部分由磷化铟制成。
30.如权利要求26所述的共振隧穿二极管,其特征在于,所述柱的直径沿该柱的长度基本上为恒量。
31.如权利要求26所述的共振隧穿二极管,其特征在于,所述纳米晶须呈锥形,以使得所述柱的直径沿着该柱的长度以被控制的方式变化。
32.一种异质双极性晶体管,包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱沿着其长度依次包括发射极、基极和集电极半导体部分,每个所述半导体部分具有带隙,其中,发射极半导体部分的带隙大于基极和集电极半导体部分的带隙,且基极和集电极半导体部分以相反的类型进行掺杂,以提供位于它们之间的p-n结。
33.如权利要求32所述的异质双极性晶体管,其特征在于,所述位于基极与集电极半导体部分之间的p-n结包括缓变化学计量组分。
34.一种单光子光源,包括一维纳米元件,该纳米元件沿着其长度布置有用于形成量子阱的大量光学活性材料,隧穿势垒形成于该量子阱的任一侧,从而在使用时该量子阱可一次发射一个光子。
35.一种发光二极管,包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,从而展现出量子局限效应,该柱沿着其长度依次包括第一、第二和第三半导体长度部分,该三个部分分别包括发射极、量子阱激活部分和集电极,所述第二半导体长度部分具有不同于第一和第三半导体长度部分的带隙,并形成发光二极管的激活区。
36.如权利要求35所述的发光二极管,其特征在于,包括激光器,并包括位于所述第一和第二部分中的反射镜面。
37.如权利要求36所述的发光二极管,其特征在于,所述反射镜面由所述纳米晶须中的超晶格形成,每个超晶格由不同带隙材料的交替序列形成。
38.一种用于生物材料的近场选择激发的结构,该结构包括发光二极管,该发光二极管包括一维纳米元件,该纳米元件沿着其长度布置有大量光学活性材料,这些材料足够小,以形成量子阱,隧穿势垒形成于该量子阱的任一侧,以用于发出电磁辐射;以及定位装置,其用于将生物材料定位于该二极管附近,以由该二极管发出的近场辐射激发该生物材料。
39.一种用于在纳米压印蚀刻工艺中在光致抗蚀剂层上形成图案的装置,该装置包括一托架,该托架可在一光致抗蚀剂表面上方移动并携带有发光二极管阵列,所述阵列的每个发光二极管包括一维纳米元件,该纳米元件沿着其长度布置有大量光学活性材料,这些材料足够小,以形成量子阱,隧穿势垒形成于该量子阱的任一侧,这些纳米元件并排设置但可以有选择地进行激发,从而在所述光致抗蚀剂表面上形成所需图案。
40.一种光电探测器,包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱沿着其长度包括第一和第二部分,该两部分具有用于形成p-n结的界面。
41.一种光电探测器,包括纳米晶须,该纳米晶须具有纳米尺寸直径的柱,该柱包括第一p型掺杂半导体长度部分、第二n型掺杂半导体长度部分以及位于所述第一和第二半导体部分之间的第三本征半导体长度部分,以形成PIN二极管。
42.一种太阳能电池,包括导电衬底;多个从所述衬底延伸的纳米晶须,每个纳米晶须包含具有纳米尺寸直径的柱,该柱包括第一p型掺杂半导体长度部分和第二n型掺杂半导体长度部分,所述第一和第二半导体部分之间具有用于形成p-n结的界面,该纳米晶须被封装在透明材料中;以及透明电极,其延伸于该晶须的自由端上,并与其电接触。
43.如权利要求42所述的太阳能电池,其特征在于,每个纳米晶须具有多个位于半导体长度部分之间的p-n结,所述半导体被选择,以形成吸收太阳辐射的多种不同波长的p-n结。
44.一种太赫辐射源,包括纳米晶须,该纳米晶须包含具有纳米尺寸直径的柱,该柱包括与多层第二带隙材料交替插入的多层第一带隙半导体,从而形成超晶格,该尺寸被选择,以使电子能够以一波矢在所述超晶格中运动,从而发出太赫辐射。
45.一种光子晶体,包括衬底和从该衬底的一侧延伸的一维纳米元件阵列,每个元件从该衬底竖直延伸并具有基本上恒定不变的纳米尺寸直径,其中该纳米元件阵列布置在二维点阵中,从而为入射电磁辐射提供光子带隙。
46.如权利要求45所述的光子晶体,其特征在于,每个纳米元件的直径不大于100nm。
47.如权利要求45所述的光子晶体,其特征在于,所述纳米元件以大约300nm的距离隔开。
48.如权利要求45所述的光子晶体,其特征在于,每个纳米元件包括具有多个第一类型的长度部分的纳米晶须,该第一类型的长度部分由具有第一折射率和具有第一预定长度的材料组成,所述第一类型的部分与至少一个第二类型的部分交替,该第二类型的部分由具有第二折射率和具有第二预定长度的材料组成,所述第一和第二折射率以及所述第一和第二预定长度被选择,以形成三维光子晶体。
49.一种形成光子晶体的方法,该方法包括在衬底表面上形成籽晶颗粒形成区域的阵列,该阵列布置在一二维点阵结构中;处理所述区域,以形成籽晶颗粒;以及利用所述籽晶颗粒生长纳米晶须,从而使得每个纳米晶须从衬底竖直延伸并具有基本上恒定不变的预定尺寸的直径,以为入射电磁辐射提供光子带隙。
50.一种用于在第一结晶材料的衬底上形成第二结晶材料的外延层的方法,所述第一结晶材料不同于所述第二结晶材料,该方法包括在衬底表面上形成多个籽晶颗粒材料区域;在所述籽晶颗粒材料区域周围形成一层覆盖材料;从该籽晶颗粒材料区域生长所述第二结晶材料的纳米晶须;以及利用该纳米晶须作为生长点,继续生长所述第二结晶材料,从而产生在所述衬底上延伸的所述第二结晶材料的外延层。
51.如权利要求50所述的方法,其特征在于,该介电材料为碳基材料。
52.一种层状结构,包括由第一结晶材料组成的结晶衬底;覆盖所述结晶衬底的覆盖材料层,所述覆盖材料层可抑制在所述结晶衬底的表面上的外延生长,并在其中还具有纳米尺寸的孔阵列,所述结晶衬底的表面上的外延生长点暴露于所述孔内;以及第二结晶材料的外延层,其从所述结晶衬底的表面上的所述外延生长点生长而成。
53.一种用于在第一结晶材料的衬底上形成第二结晶材料的外延层的方法,所述第一结晶材料不同于所述第二结晶材料,该方法包括在所述衬底上形成催化籽晶颗粒材料区域的阵列;在所述籽晶颗粒区域周围形成覆盖材料层;在催化籽晶颗粒区域下面催化生长所述第二结晶材料结晶相的初始生长区域;以及利用所述初始生长区域作为生长点,继续生长所述第二结晶材料,从而产生在所述第一结晶材料的衬底上延伸的所述第二结晶材料的外延层。
54.一种用于在第一结晶材料的衬底上形成第二结晶材料的外延层的方法,所述第一结晶材料不同于所述第二结晶材料,该方法包括在第一结晶材料的所述衬底的上表面上形成V形凹槽;在所述V形凹槽中提供多个催化籽晶颗粒;从该催化籽晶颗粒生长所述第二结晶材料的纳米晶须;以及利用该纳米晶须作为生长成核点,继续生长所述第二结晶材料,从而产生在所述第一结晶材料的衬底上延伸的所述第二结晶材料的外延层。
55.如权利要求54所述的方法,其特征在于,所述第一结晶材料的衬底的上表面为<100>面,且该V形凹槽将<111>面暴露于该V形凹槽中。
56.一种层状结构,包括在第一结晶材料衬底的表面上生长的第二结晶材料的外延层,所述第二结晶材料不同于所述第一结晶材料,其中,所述第一结晶材料衬底的表面上设有V形凹槽,且多个从所述V形凹槽延伸的纳米晶须构成所述第二结晶材料的生长外延层的成核点。
57.一种在衬底上形成纳米晶须的方法,该方法包括提供衬底;在所述衬底的表面上形成多个催化籽晶颗粒;在第一生长条件下从所述催化籽晶颗粒初始生长纳米晶须,该第一生长条件产生沿着<111>生长方向从衬底延伸的纳米晶须;以及随后,通过在所述晶须中生长矮的势垒材料部分,将所述晶须的<111>生长方向改变为<100>方向,选择所述势垒材料,以将所述<111>生长方向改变为所述<100>生长方向。
58.一种在衬底上形成纳米晶须的方法,包括提供衬底;在所述衬底的表面上形成多个催化籽晶颗粒;在第一生长条件下从所述催化籽晶颗粒初始生长纳米晶须,该第一生长条件产生沿着<111>生长方向从衬底延伸的纳米晶须;以及随后,通过将第一生长条件改变为第二生长条件,将所述晶须的<111>生长方向改变为<100>方向,该第二生长条件使所述纳米晶须沿着<100>生长方向生长。
59.一种形成于衬底上的纳米晶须,该纳米晶须开始时沿着<111>方向从衬底延伸,该纳米晶须的大部分长度沿着<100>方向延伸。
60.一种场致发射显示器,包括衬底,在其表面上具有可独立寻址的电接点区域的阵列;至少一个一维纳米元件,其基本上从每个所述接点区域延伸并终止于一自由端;以及安装成与所述至少一个一维纳米元件的自由端相邻的荧光显示屏,从而提供场致发射显示,其中该显示器的元件可独立寻址。
61.一种用于将红外区中的图像上转换成可见光区中的图像的显示系统,该系统包括可透过红外辐射的导电衬底,以用于在其一个表面上接收红外图像;从该衬底的另一侧面延伸的一维导电纳米元件的阵列,每个所述一维纳米元件终止于一自由端;以及结合与该一维纳米元件的自由端相邻布置的一电极的荧光显示屏,以产生由红外图像转换成的可见光图像。
62.一种用于红外或可见光或紫外电磁辐射的天线,包括从衬底上的金属接点区延伸的一维导电纳米元件,该一维纳米元件具有约为所述电磁辐射的四分之一波长的长度。
63.一种形成共振隧穿二极管的方法,该方法包括通过一工艺在衬底上形成纳米晶须,该纳米晶须包括具有纳米尺寸直径并由结晶半导体材料构成的柱,该工艺包括在衬底上沉积具有纳米尺寸直径的催化籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处熔化;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给籽晶颗粒,从而使得所述成分溶解在所述熔化催化籽晶颗粒中并从那里结晶,以形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;停止将用于形成所述第一半导体材料的成分向所述籽晶颗粒的供应;在一段时间中将用于形成第二半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第二部分,该第二半导体材料的带隙大于所述第一半导体材料的带隙,该第二部分具有允许有效地使电荷载流子隧穿过去的长度;停止将用于形成所述第二半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第三半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第三部分,该第三半导体材料的带隙小于所述第二半导体材料的带隙,该第三部分具有使得所述第三部分形成一量子阱的长度;停止将用于形成所述第三半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第四半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第四部分,该第四半导体材料的带隙大于所述第三半导体材料的带隙,该第四部分具有允许有效地使电荷载流子隧穿过去的长度;停止将用于形成所述第四半导体材料的成分向籽晶颗粒的所述供应;在一段时间中将用于形成第五半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第五部分,该第五半导体材料的带隙小于所述第四半导体材料的带隙;以及在所述纳米晶须的第一和第五部分之间制作电接点,并制作电终端引线,从而形成所述共振隧穿二极管的发射极和集电极。
64.一种形成纳米晶须的方法,该方法包括在衬底上沉积具有纳米尺寸直径的催化籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处熔化;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给籽晶颗粒,从而使得所述成分溶解在所述熔化催化籽晶颗粒中并从那里结晶,以形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;以及停止将用于形成所述第一结晶半导体材料的成分向籽晶颗粒的供应,并将用于形成第二结晶半导体材料的成分供应给籽晶颗粒,从而形成所述纳米晶须的第二部分,该第二结晶半导体材料具有不同于所述第一结晶半导体材料的带隙,该第二部分与所述纳米晶须的所述第一部分具有组分边界,从而形成具有至少第一和第二半导体部分的柱,其中,由这些部分的材料之间的晶格失配所导致的晶格应变基本上通过向外的原子侧位移得以调适。
65.一种形成纳米晶须的方法,该方法包括在衬底上沉积具有纳米尺寸直径的催化籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处熔化;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给籽晶颗粒,从而使得所述成分溶解在所述熔化催化籽晶颗粒中并从那里结晶,以形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;停止将用于形成所述第一结晶半导体材料的成分向籽晶颗粒的供应;以及将用于形成第二结晶半导体材料的成分供应给籽晶颗粒,以形成所述纳米晶须的第二部分,该第二结晶半导体材料具有不同于所述第一结晶半导体材料的带隙,该第二部分与所述纳米晶须的所述第一部分具有组分边界,以形成具有至少第一和第二半导体部分的柱,其中,该组分边界在不超过8个晶面的轴向间距上延伸。
66.如权利要求65所述的方法,其特征在于,所述衬底安装在超高真空室中,并将所述成分作为引入至该超高真空室中的分子束供应给籽晶颗粒。
67.如权利要求65所述的方法,其特征在于,不同组分之间的迅速转换经由一程序实现,在该程序中,生长率被降低至可忽略的程度,然后重新建立起继续生长的过饱和条件。
68.如权利要求65所述的方法,其特征在于,所述催化籽晶颗粒为金气溶胶颗粒,选择其尺寸,以得到具有介于大约10和50nm之间的均匀直径的纳米晶须。
69.如权利要求65所述的方法,其特征在于,所述第一半导体材料和所述第二半导体材料中的一个为III-V族材料,其由至少一个第III族元素和至少一个第V族元素组成,且通过改变所述温度控制条件,在纳米晶须的形成过程中有选择性地改变该第III族元素的扩散常数。
70.一种电极结构,包括一衬底,在该衬底的一表面上形成有电接点区域的矩阵,且在选定的电接点区域上形成一个或多个纳米晶须,该纳米晶须从该衬底表面直立,因此每个所述纳米晶须或所述多个纳米晶须中的每一个均可通过电信号独立寻址。
71.如权利要求70所述的电极结构,其特征在于,其适于植入神经结构中。
72.一种纳米晶须,其中该纳米晶须由可被氧化的材料形成,且该纳米晶须被氧化,以沿着其长度形成氧化物环绕层,而位于该纳米晶须的自由端的催化籽晶颗粒熔融体则保持无氧化物状态。
73.一种纳米晶须,其中该纳米晶须由具有第一带隙的材料形成,且该纳米晶须被处理,以沿着其长度形成具有第二带隙的材料的环绕层,而位于该纳米晶须的自由端的催化籽晶颗粒熔融体则保持无第二带隙的材料的状态。
74.一种悬臂梁阵列,包括具有多个纳米晶须的基底件,该纳米晶须从该基底件并排延伸并相互隔开,从而形成一排纳米晶须,每个纳米晶须用作在外力作用下发生弯曲的梁,以及用于检测该梁的弯曲运动的装置。
75.如权利要求74所述的阵列,其特征在于,在所述梁上设有涂层,该涂层对一定的有机分子或生物分子敏感,从而当分子接触悬臂梁时便会经受一定的化学反应而产生弯曲应力。
76.一种纳米晶须结构,包括在其上具有绝缘材料层的衬底,该绝缘层上形成有导电层,在该导电层和绝缘层中形成有孔,纳米晶须形成于该孔中并从该衬底延伸,以使位于纳米晶须自由端的导电籽晶颗粒熔融体大致上与导电层平齐,从而该纳米晶须的机械振动在所述导电层中产生电振荡信号。
77.如权利要求76所述的纳米晶须结构,其特征在于,所述纳米晶须在其上具有涂层以吸引一定类型的分子,从而将分子沉积到该纳米晶须上将改变该纳米晶须的惰性特征,并因而改变所述导电层中的振荡信号的频率。
78.如权利要求76所述的纳米晶须结构,其特征在于,该结构提供一标准电流发生器,其中,在该纳米晶须的每个振动周期内,一个单电子经由导电籽晶颗粒熔融体迁移通过导电层。
79.一种扫描隧道显微镜的尖端,包括柔性悬臂梁,并在该梁的端部处或朝向该端部形成从该悬臂梁直立的纳米晶须。
80.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过6个径向晶面的轴向间距。
81.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过5个径向晶面的轴向间距。
82.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过4个径向晶面的轴向间距。
83.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过3个径向晶面的轴向间距。
84.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过2个径向晶面的轴向间距。
85.如权利要求1所述的纳米晶须,其特征在于,第一和第二部分的结晶材料之间的组分边界延伸过不超过1个径向晶面的轴向间距。
86.一种形成共振隧穿二极管的方法,包括通过一工艺在衬底上形成纳米晶须,该纳米晶须包括具有纳米尺寸直径并由结晶半导体材料组成的柱,该工艺包括在衬底上提供具有纳米尺寸直径的催化籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处发挥催化剂的作用;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给籽晶颗粒,因此所述成分从所述籽晶颗粒结晶而形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;以及停止将用于形成所述第一半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第二半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第二部分,该第二半导体材料具有大于所述第一半导体材料的带隙,该第二部分具有允许有效地使电荷载流子隧穿过去的长度;停止将用于形成所述第二半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第三半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第三部分,该第三半导体材料具有小于所述第二半导体材料的带隙,该第三部分的长度使所述第三部分形成量子阱;停止将用于形成所述第三半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第四半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第四部分,该第四半导体材料具有大于所述第三半导体材料的带隙,该第四部分具有允许有效地使电荷载流子隧穿过去的长度;停止将用于形成所述第四半导体材料的成分向籽晶颗粒的供应;在一段时间中将用于形成第五半导体材料的成分供应给籽晶颗粒,以足以形成所述纳米晶须的第五部分,该第五半导体材料具有小于所述第四半导体材料的带隙;以及在所述纳米晶须的第一和第五部分之间制作电接点,并制作电终端引线,从而形成所述共振隧穿二极管的发射极和集电极。
87.一种形成纳米晶须的方法,包括在衬底上提供具有纳米尺寸直径的籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处发挥催化剂的作用;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给所述籽晶颗粒,从而所述成分从所述籽晶颗粒结晶而形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;停止将用于形成所述第一结晶半导体材料的成分向籽晶颗粒的供应,并将用于形成第二结晶半导体材料的成分供应给籽晶颗粒,该第二半导体材料具有不同于所述第一半导体材料的带隙,从而形成所述纳米晶须的第二部分,该第二部分与所述纳米晶须的所述第一部分具有组分边界,从而形成具有至少第一和第二半导体部分的柱,其中由这些部分的材料之间的晶格失配所导致的晶格应变通过原子侧位移得以调适。
88.一种形成纳米晶须的方法,包括在衬底上提供具有纳米尺寸直径的籽晶颗粒;将所述衬底和所述催化籽晶颗粒加热至一温度,所述催化籽晶颗粒在该温度处发挥催化剂的作用;将用于在温度和压力控制条件下形成第一半导体材料的成分供应给籽晶颗粒,因此所述成分从所述籽晶颗粒结晶而形成从所述衬底延伸的所述纳米晶须的第一部分,所述纳米晶须的所述第一部分由所述第一结晶半导体材料组成;停止将用于形成所述第一结晶半导体材料的成分向籽晶颗粒的供应;以及将用于形成第二结晶半导体材料的成分供应给籽晶颗粒,该第二半导体材料具有不同于所述第一半导体材料的带隙,从而形成所述纳米晶须的第二部分,该第二部分与所述纳米晶须的所述第一部分具有组分边界,从而形成具有至少第一和第二半导体部分的柱,其中该组分边界在不超过8个晶面的轴向间距上延伸。
89.如权利要求88所述的方法,其特征在于,所述衬底安装在超高真空室中,并将所述成分作为引入至该超高真空室中的分子束供应给籽晶颗粒。
90.如权利要求88所述的方法,其特征在于,不同组分之间的迅速转换经由一程序实现,在该程序中,生长速率被减弱至可忽略的程度,然后重新建立起继续生长的过饱和条件。
91.如权利要求88所述的方法,其特征在于,所述催化籽晶颗粒为金气溶胶颗粒,选择该金气溶胶颗粒的尺寸,以得到具有介于大约10与50nm之间的均匀直径的纳米晶须。
92.如权利要求88所述的方法,其特征在于,所述第一半导体材料和所述第二半导体材料中的一个为III-V族材料,其由至少一个第III族元素和至少一个第V族元素组成,而且通过改变所述温度控制条件,在纳米晶须的形成过程中有选择性地改变该第III族元素的扩散常数。
93.如权利要求88所述的方法,其特征在于,所述催化籽晶颗粒通过纳米压印蚀刻工艺形成,以得到具有介于大约10与50nm之间的均匀直径的纳米晶须。
94.一种纳米晶须,包括具有纵轴的柱,该柱具有沿着所述轴的长度以及垂直于所述轴的至少一个维度,所述垂直于轴的维度不超过约500nm;所述柱至少包括具有第一组分的第一结晶半导体材料的第一长度部分;以及具有第二组分的第二结晶半导体材料的第二长度部分,所述第一长度部分与所述第二长度部分在一界面处接触,所述界面构成一结,在该结处,在不超过8个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
95.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约100nm。
96.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约50nm。
97.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约30nm。
98.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约20nm。
99.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约10nm。
100.如权利要求94所述的纳米晶须,其特征在于,垂直于所述轴的所述至少一个维度不超过约5nm。
101.如权利要求94所述的纳米晶须,其特征在于,在不超过7个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
102.如权利要求94所述的纳米晶须,其特征在于,在不超过6个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
103.如权利要求94所述的纳米晶须,其特征在于,在不超过5个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
104.如权利要求94所述的纳米晶须,其特征在于,在不超过4个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
105.如权利要求94所述的纳米晶须,其特征在于,在不超过3个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
106.如权利要求94所述的纳米晶须,其特征在于,在不超过2个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
107.如权利要求94所述的纳米晶须,其特征在于,在不超过1个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
108.如权利要求94所述的纳米晶须,其特征在于,所述柱具有大致圆形或多边形横断面,且垂直于所述柱的轴的所述至少一个维度为该柱的直径。
109.如权利要求108所述的纳米晶须,其特征在于,所述柱的直径通常沿着所述柱的轴是恒定的。
110.如权利要求108所述的纳米晶须,其特征在于,所述柱呈锥形,从而所述柱的直径沿着所述柱的轴减小。
111.如权利要求108所述的纳米晶须,其特征在于,所述柱的直径这样设定,以使所述柱沿着所述轴的至少一部分长度展现出量子局限效应。
112.如权利要求94所述的纳米晶须,其特征在于,所述柱还包括与其一端成一体的催化颗粒。
113.如权利要求94所述的纳米晶须,其特征在于,从由III-V族半导体材料组成的组中选择所述第一和第二结晶材料。
114.一种纳米晶须阵列,包括多个如权利要求94所述的纳米晶须,且各纳米晶须相互平行延伸。
115.如权利要求114所述的纳米晶须阵列,其特征在于,所述纳米晶须中的每一个在其端部处与一衬底相连。
116.如权利要求94所述的纳米晶须,其特征在于,所述第一结晶半导体材料具有A1-xBxC形式的化学计量组分,所述第二结晶半导体材料具有A1-yByC形式的化学计量组分,其中A、B和C为选定元素,x和y为在0-1范围内的不同数字。
117.如权利要求116所述的纳米晶须,其特征在于,所述元素A和B为第III族半导体,所述元素C为第V族半导体。
118.如权利要求94所述的纳米晶须,其特征在于,所述第一和第二结晶半导体材料被选择,以在所述结处产生预定的带隙变化。
119.一种纳米晶须,包括具有纵轴的柱,所述柱具有沿着所述轴的长度以及垂直于所述轴的至少一个维度;所述柱至少包括具有第一组分和第一晶格的第一结晶半导体材料的第一长度部分;以及具有第二组分和第二晶格的第二结晶半导体材料的第二长度部分,所述第一长度部分与所述第二长度部分在一界面处接触,所述界面构成一结,在该结处,在不超过8个径向晶面的轴向间距内所述第一组分转变成所述第二组分,垂直于所述轴的所述维度这样设定,以使得在所述第一长度部分与所述第二长度部分之间的界面处产生的由所述第一晶格与所述第二晶格之间的晶格失配所导致的晶格应变基本上可通过原子侧位移得以调适。
120.如权利要求119所述的纳米晶须,其特征在于,在不超过7个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
121.如权利要求119所述的纳米晶须,其特征在于,在不超过6个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
122.如权利要求119所述的纳米晶须,其特征在于,在不超过5个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
123.如权利要求119所述的纳米晶须,其特征在于,在不超过4个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
124.如权利要求119所述的纳米晶须,其特征在于,在不超过3个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
125.如权利要求119所述的纳米晶须,其特征在于,在不超过2个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
126.如权利要求119所述的纳米晶须,其特征在于,在不超过1个径向晶面的轴向间距内所述第一组分转变成所述第二组分。
127.如权利要求119所述的纳米晶须,其特征在于,所述柱具有大致圆形或多边形横断面,且垂直于所述柱的所述轴的所述至少一个维度为该柱的直径。
128.如权利要求127所述的纳米晶须,其特征在于,所述柱的所述直径沿着所述柱的所述轴基本上是恒定的。
129.如权利要求127所述的纳米晶须,其特征在于,所述柱呈锥形,从而使得所述柱的直径沿着所述柱的轴减小。
130.如权利要求127所述的纳米晶须,其特征在于,所述柱的直径使得所述柱沿着所述轴的至少一部分长度展现出量子局限效应。
131.如权利要求119所述的纳米晶须,其特征在于,所述柱还包括与其一端成一体的催化颗粒。
132.如权利要求119所述的纳米晶须,其特征在于,从由III-V族半导体材料组成的组中选择所述第一和第二结晶材料。
133.一种纳米晶须阵列,包括多个如权利要求119所述的纳米晶须,且各纳米晶须相互平行延伸。
134.如权利要求133所述的纳米晶须阵列,其特征在于,所述纳米晶须中每一个在其端部处与一衬底相连。
135.如权利要求119所述的纳米晶须,其特征在于,所述第一结晶半导体材料具有A1-xBxC形式的化学计量组分,所述第二结晶半导体材料具有A1-yByC形式的化学计量组分,其中A、B和C为选定元素,x和y为在0-1范围内的不同数字。
136.如权利要求135所述的纳米晶须,其特征在于,所述元素A和B为第III族半导体,所述元素C为第V族半导体。
137.如权利要求119所述的纳米晶须,其特征在于,所述第一和第二结晶半导体材料被选择,以在所述结处产生预定的带隙变化。
全文摘要
通过采用具有不同带隙的不同材料形成晶须的长度部分,将共振隧穿二极管和其它一维电子、光子结构以及机电MEMS装置制成纳米晶须中的异质结构。因此,共振隧穿二极管包括纳米晶须,该纳米晶须在其一端具有籽晶颗粒熔融体并具有纳米尺寸的恒定直径的柱,从而展现出量子局限效应,该柱包括分别包含发射极和集电极的第一和第二半导体部分、位于第一和第二半导体部分之间的第三和第四部分以及位于第三和第四部分之间并形成量子阱的第五中央部分,其中,第三和第四部分的材料具有不同于第一和第二半导体部分的带隙,第五中央部分的半导体材料具有不同于第三和第四部分的带隙。RTD通过一种方法制成,该方法包括在衬底上沉积颗粒,并将该籽晶颗粒暴露于处于温度和压力控制条件下的材料中,从而用该籽晶颗粒形成熔融体,因此,该籽晶颗粒在柱的顶端爬升,以形成纳米晶须,该纳米晶须的柱具有纳米尺寸的恒定直径;在柱的生长过程中,有选择地改变所述气体的组分,从而不连续地改变该柱在沿着其长度区域中的材料组分,并同时维持外延生长,其中,所述部分的材料之间的晶格失配通过边界处的晶须沿径向向外膨胀得以调适。
文档编号C30B25/00GK1681975SQ03821285
公开日2005年10月12日 申请日期2003年7月8日 优先权日2002年7月8日
发明者拉尔斯·伊瓦尔·塞缪尔森, 约纳斯·比约恩·奥尔松 申请人:Btg国际有限公司