专利名称:多晶硅薄膜、其制法以及用该膜制造的薄膜晶体管的制作方法
用于参照的相关申请本申请要求2003年3月5日公开的第2003-13829号韩国专利申请的优先权,其公开的内容全部作为参考文献在这里引用。
背景技术:
1、发明领域本发明涉及一种用于显示器设备的多晶硅薄膜、其制造方法,以及使用该膜制造的薄膜晶体管。本发明尤其涉及一种通过控制硅晶粒形状而制备的多晶硅薄膜及其该膜的制造方法,以及使用该多晶硅薄膜制造的薄膜晶体管。
2、相关领域的描述一般来说,相继横向固化(SLS)法是用于结晶硅晶粒,该方法是通过在无定形硅层上重叠辐射激光束两次或更多次以使硅晶粒横向生长。用SLS方法制造的多晶硅晶粒的特点是它们从头到尾以长的柱状形成,并且由于有限的晶粒尺寸,在相邻的晶粒之间形成晶粒间界。
据报道多晶或单晶晶粒能通过SLS结晶技术在基板上形成大的硅晶粒,并且用这种大硅晶粒制造的薄膜晶体管(TFT)能获得与用单晶硅制造的TFT特性相似的性能。
图1A,图1B,图1C,图1D代表普通的SLS结晶方法。
在SLS结晶方法中,如图1A所示,如果激光束通过一个具有激光束传导区和激光束非传导区的掩膜对无定形硅进行辐射,则无定形硅在激光束传导区融化。
在激光束辐射完成后开始冷却时,在无定形硅/熔融硅的界面发生晶化,其中硅的温度逐渐从无定形硅/熔融硅界面降低到熔融硅层的控制部分,并以这样的方式形成温度梯度,随着热量的散失,熔融硅固化并结晶。
因此,参考图1B,形成了具有长的柱状晶粒的多晶硅薄膜层。随着热流从掩膜界面流向熔融硅层的中心部分,多晶硅晶粒横向地生长直到熔融硅层完全固化。
如图1C和1D所示,通过移动掩膜的激光束传导区域,使更多的无定形硅和结晶硅的一部分暴露出来,并用激光束辐射这些暴露区域,这样随着硅原子粘附于已经形成的并因掩膜覆盖而未融化的多晶硅晶粒上,晶粒的长度增加,其后部分熔融的无定形硅薄膜和结晶硅层随之冷却。
由于在制造TFT时,占线通道方向与通过SLS方法生长的晶粒方向平行的情况下晶粒间界对电荷载体方向的阻挡作用降至最小,因此,能获得与单晶硅相似的TFT特性。在占线通道方向与晶粒生长方向垂直的情况下,由于大量晶粒间界成为电荷载体的捕集器,因此TFT特性被大大削弱。
在用现有的SLS方法制备TFT的情况下,由于TFT特性随占线通道方向而发生大幅度改变,因此电路的装配性受到限制。
另一方面,WO97/45827的PCT国际专利和6322625美国专利公开了在整个基板上的无定形硅转化为多晶硅,或在基板上沉积无定形硅后,用SLS技术仅在基板上的选择性区域进行结晶。
另外,当通过用SLS结晶技术形成大的硅晶粒而制造用于包括驱动器和像素阵列的液晶显示器(LCD)设备的TFTs时,能获得与用单晶硅制造的TFTs特性相似的TFTs性能,这是因为占线通道方向与通过SLS结晶方法生长的晶粒方向平行的情况下,电荷载体方向的晶粒间界的阻挡作用降至最小,正如第6177391号美国专利中所述。但是在这个方法中存在大量能发挥电荷载体捕集器作用的晶粒间界,并且在该专利中在占线通道方向与晶粒生长方向相垂直的情况下,TFT特性也被大大削弱。
事实上,在制造活性基质显示器时,激励电路内部的TFTs通常与像素单元区域的TFT垂直的情况很多,其中通过以下方法制造活性基质显示器能提高设备的一致性,该方法是使占线通道区域的方向与晶体生长方向以30°-60°角度倾斜以提高TFTs间的性质一致性,与此同时每个TFT的性质都不被大幅度削弱。
但是,由于这个方法也使用了由SLS结晶技术形成的具有有限尺寸的晶粒,因此在占线通道区域内可能包括了致命的晶粒间界。因此,这个方法中存在由不可预知的非一致性导致的TFTs间的特性差异的问题。
发明概述因此,为解决上述和/或相关技术的其他问题,本发明一个方面提供了一个控制多晶硅形状的方法,该多晶硅是使用SLS结晶方法制造多晶硅薄膜的情况下进行,并提供了通过该方法制造的多晶硅薄膜。
另外,本发明的另一个方面是通过使用上述制造的多晶硅薄膜,提供具有优越性能的TFT,该TFT不具有依赖于占线通道方向的TFT特性。
本发明的其他方面和优点将在下面的说明书中的部分阐述,并且这些方面和优点将部分地从说明书中更明显地体现,或可从本发明的实践中得到认识。
为了获得上述方面和/或其他方面的目的,本发明提供了一种用于显示器设备的多晶硅薄膜,该薄膜包括彼此不平行的相邻主晶粒间界,其中被主晶粒间界包围的面积大于1μm2。
另外,本发明提供了使用该多晶硅薄膜制造的薄膜晶体管。
另外,本发明提供了一种用于显示器设备的多晶硅薄膜的制造方法,该方法包括通过使用掩膜的激光使无定形硅进行结晶,该掩膜包括一个其中线形成的激光传导图案和激光非传导图案相混合的激光传导区域。
另外,本发明提供了一种用于显示器设备的多晶硅薄膜的制造方法,该方法包括通过使用掩膜的激光使无定形硅进行结晶,该掩膜中激光传导图案与激光非传导图案相混合,其中激光非传导图案是圆或点形成的不透明掩膜图案。
另外,本发明提供了一种用上述方法制造的用于电致发光显示器设备的多晶硅薄膜。
附图简述本发明的这些和/或其他的方面和优点,将在结合附图的优选实施方案的下列描述中变得更加明显,并更容易理解。
图1A,1B,1C和1D是传统SLS结晶方法的简图;图2是本发明一个实施方案中的多晶硅薄膜制造方法中使用的掩膜结构平面示意简图;图3是使用图2中的掩膜制造的多晶硅薄膜的平面示意图;
图4是本发明另一个实施方案中的多晶硅薄膜制造方法中使用的掩膜结构平面示意简图;图5是本发明的又一个实施方案中的掩膜图案,其中激光传导区域以线图案组的方式形成,该线图案组是在一个方向上以长矩形形成,并且这些线图案组以彼此间隔一定距离的方式,平行交替排列,并且激光非传导点形成的掩膜图案是以矩形排列。
图6是使用图5中的掩膜制造的多晶硅薄膜的晶粒;图7是本发明的又一个实施方案中的掩膜图案,其中线图案组是在激光传导方向以长矩形形成,这样这些线图案组以彼此间隔一定距离的方式,相互平行排列,并且激光非传导点形成的图案以三角形图案排列。
图8是用图7中的掩膜制造的多晶硅薄膜的晶粒;图9是本发明的再一个实施方案中的掩膜图案,其中线图案组在激光传导方向以长矩形形成,这样线图案组彼此相互垂直,并且激光非传导点形成的图案以不规则矩形形式排列。
图10是用图9中的掩膜制造的多晶硅薄膜的晶粒;图11是通过使用本发明的实施方案制造的多晶硅薄膜制造的TFTs的电场移动性与通道方向的关系图;图12是通过使用本发明的实施方案制造的多晶硅薄膜制造的TFTs的阈值电压与通道方向的关系图。
优选实施方案的详细描述本发明的优选实施方案将详细描述,其中的实施例将对照附图加以说明,其中同样的参考数字代表同样的基元,并贯穿全文。下面对实施方案以参阅附图解释本发明。
图2是说明本发明一个实施方案中的多晶硅薄膜制造方法中使用的掩膜结构的平面示意简图;图3是使用该掩膜制造的多晶硅薄膜的平面示意图;如图2所示,由于激光束是以穿越一个具有在一个方向形成的长矩形形状的线形图案的掩膜的方式进行辐射,在这种情况下,热流从激光束传导图案的边缘向中间部分形成,因此,多晶硅晶粒是以一个方向形成长的矩形形状。
在使用图2所示的掩膜图案的情况下,从激光传导部分的界面彼此相对地生长的硅晶粒,如图3所示,在图案的中心部分彼此相遇,这样形成了具有高突出部分的晶粒间界,这导致主晶粒间界以条纹状排布的柱状晶粒的形成。
图4是本发明另一个实施方案中的多晶硅薄膜制造方法中使用的掩膜结构平面示意简图。
在图4中,在使用其中激光束非传导部分具有圆或点形成的图案的掩膜的情况下,由于热流是从激光束不能通过的点图案的中央部分向外部角方向产生,因此多晶硅晶粒在每个方向上生长。
点图案以矩形排列的情况下,如果图案间的间隙小于晶粒横向生长距离,在各个点图案边缘生长的多晶硅晶粒就彼此碰撞以致形成的主晶粒间界相应地具有矩形形状。因此,具有不同形状的显微结构的多晶硅薄膜能通过控制掩膜图案的形状和排列而进行制造。
优选的是,多晶硅晶粒的相邻主晶粒间界彼此不平行,由主晶粒间界包围的面积大于1μm2。
图5表示本发明的又一个实施方案中的掩膜图案,其中激光传导区域以线图案组的方式形成,该线图案组在一个方向上以长矩形形式形成,并且这些线图案组以彼此间隔一定距离,相互平行排列,并且激光非传导点形成的掩膜图案以矩形排列。
图6所示为使用图5的掩膜制造的多晶硅薄膜的晶粒,其中在使用图5的掩膜图案使无定形硅结晶的情况下,多晶硅薄膜的主晶粒间界以矩形排列。在本发明的这个实施方案中也优选的是,多晶硅晶粒的相邻主晶粒间界彼此不平行,而由主晶粒间界包围的面积大于1μm2。
图7表示本发明的又一个实施方式中的掩膜图案,其中线图案组是在一个激光传导方向以长的矩形形成,这样线图案组是以彼此间隔一定距离的方式,相互交替地平行排列,并且激光非传导点形图案以三角形排列。
图8表示用图7的掩膜制造的多晶硅薄膜的晶粒,其中在使用图7的掩膜图案的无定形硅结晶的情况下,使多晶硅薄膜的主晶粒间界以六角形排列。在本发明的这个实施方式中也优选地多晶硅晶粒的相邻主晶粒间界彼此不平行,而由主晶粒间界包围的面积大于1μm2。
图9是本发明的再一个实施方式中的掩膜图案,其中线图案组在一个激光传导方向上以长的矩形形成,这样线图案组彼此相互垂直排列,并且激光非传导点形成的图案以不规则矩形排列。
图10表示用图9的掩膜制造的多晶硅薄膜的晶粒,其中在使用图9的掩膜图案的无定形硅结晶的情况下,使多晶硅薄膜的主晶粒间界以不规则的闭合多边形排列。在本发明的这个实施方式中也优选地多晶硅晶粒的相邻主晶粒间界彼此不平行,而主晶粒间界包围的面积大于1μm2。
本发明的这些实施方案中制造的多晶硅晶粒的主晶粒间界是围绕某个穿越主晶粒间界的轴为中心而彼此对称,并且主晶粒间界优选是以放射形或某个轴为中心而形成双曲线。
优选是使用用本发明的多晶硅薄膜制造的薄膜晶体管是用于有机电致发光显示器。
图11是通过使用图3和图9所示的本发明实施方式中的掩膜图案制造的多晶硅薄膜制造的TFTs的电场移动性与通道方向的关系图。
图12是通过使用图3和图9所示的本发明实施方式中掩膜图案制造的多晶硅薄膜制造的TFTs的阈值电压与通道方向的关系图。
如果图3所示的多晶硅薄膜的主晶粒间界垂直于TFT的占线通道方向,则由于晶粒间界的数目少,就会获得较高的电场移动性和较低的阈值电压特性。如果TFT的占线通道方向与主晶粒间界平行,由于晶粒间界的数目大,TFT特性就会大大削弱,这样电场移动性会降低60%或更多,阈值电压会增加60%或更多。
另一方面,TFT特性与通道方向的关系会被大大破坏,这样在使用图9所示掩膜制造的多晶硅薄膜晶体管的情况下,根据通道方向使TFT的特性差异控制在25%的范围内。
因此,本发明能通过使用其中线形图案与点形图案相混合的掩膜使无定形硅结晶而制造具有不同形状晶粒结构的多晶硅薄膜,并能通过设计掩膜来控制多晶硅薄膜微结构而制造不依赖于通道方向的性能优越的薄膜晶体管,因此通过制造薄膜晶体管提高了在嵌板上电路部分的集成度。
虽然对本发明的几个实施方式做了展示和描述,但可以理解,对本领域的熟练技术人员,在不脱离本发明原则和实质,限定在权利要求中的范围及其等同物下可对这些实施方案进行改变。
权利要求
1.一种用于显示器设备的多晶硅薄膜,该薄膜包括彼此不平行的相邻主晶粒间界,其中被主晶粒间界包围的面积大于1μm2。
2.如权利要求1所述的多晶硅薄膜,其中主晶粒间界以闭合曲线形或闭合多边形形成。
3.如权利要求1所述的多晶硅薄膜,其中主晶粒间界以矩形或六角形形成。
4.如权利要求1所述的多晶硅薄膜,其中主晶粒间界以穿越主晶粒间界的某个轴为中心而彼此对称。
5.如权利要求4所述的多晶硅薄膜,其中主晶粒间界以放射形或某个轴为中心而形成双曲线。
6.一种薄膜晶体管,它是用权利要求1的多晶硅薄膜制造的。
7.如权利要求6所述的薄膜晶体管,其中该薄膜晶体管是用于有机电致发光显示器设备。
8.一种制造用于显示器设备的多晶硅薄膜的方法,该方法包括使用一种包括线性激光传导图案和激光非传导图案相混合的激光传导区域的掩膜的激光使无定形硅结晶。
9.如权利要求8所述的方法,其中激光传导区域包括多个线形成的图案组,每组中的线形成图案都以长的矩形并平行而形成,并且相邻的线图案组以一定距离彼此间隔并交错排列,以使相互之间水平错位。
10.如权利要求8所述的方法,其中激光非传导区域包括大量彼此垂直排列的线形成的图案组。
11.如权利要求8所述的方法,其中激光非传导区域进一步包括圆或点形成的掩膜图案。
12.如权利要求11所述的方法,其中圆或点形成的掩膜图案以圆形、三角形、矩形或六角形排列。
13.如权利要求8所述的方法,其中线形成的激光传导图案比激光非传导图案宽。
14.如权利要求11所述的方法,其中圆或点形成的掩膜图案是不规则排列的。
15.一种制造用于显示器设备的多晶硅薄膜的方法,该方法包括通过使用掩膜的激光使无定形硅结晶,该掩膜中激光传导图案和激光非传导图案相混合,其中激光非传导图案为圆形或点形的不透明掩膜图案。
16.如权利要求15所述的制造方法,其中圆或点形成的不透明掩膜图案以圆形、三角形、矩形或六角形排列。
17.如权利要求15所述的制造方法,其中圆或点形成的不透明掩膜图案是不规则排列的。
18.一种用于显示器设备的多晶硅薄膜,其中多晶硅薄膜是通过权利要求15所述的方法制造。
19.如权利要求18所述的多晶硅薄膜,其中多晶硅薄膜用于有机电致发光显示器设备。
20.一种用于显示器设备的多晶硅薄膜,其中多晶硅薄膜通过权利要求8的方法制造。
21.如权利要求20所述的多晶硅薄膜,其中多晶硅薄膜是用于有机电致发光显示器设备。
22.一种制造多晶硅薄膜的方法,该方法包括使用其中线形成图案与圆或点形成图案相混合的掩膜而使无定形硅结晶,其中多晶硅薄膜具有不同形状的晶粒结构。
23.一种薄膜晶体管,该薄膜晶体管包括具有不同形状晶粒结构的多晶硅薄膜,其中多晶硅薄膜是通过使用其中线形成图案与圆或点形成图案相混合的掩膜使无定形硅结晶而制造的,并且其中薄膜晶体管的性能特征不依赖于晶粒间界相关的通道方向。
全文摘要
本发明公开了一种用于显示器设备的多晶硅薄膜,该薄膜具有彼此不平行的相邻主晶粒间界,其中被主晶粒间界包围的面积大于1μm
文档编号H05B33/00GK1527405SQ20041000365
公开日2004年9月8日 申请日期2004年2月5日 优先权日2003年3月5日
发明者朴志容, 朴惠香 申请人:三星Sdi株式会社