氮化镓半导体衬底及其制造方法

文档序号:8033315阅读:926来源:国知局
专利名称:氮化镓半导体衬底及其制造方法
技术领域
本发明涉及氮化镓(GaN)半导体衬底,以及涉及刻蚀外延衬底—其上外延地生长了GaN、InGaN和AlGaN膜的GaN衬底的方法,以及涉及由这种方法刻蚀的GaN衬底。
背景技术
在蓝色发光器件技术中,典型地通过在蓝宝石衬底上外延地生长包括n-型和p-型GaN和InGaN层的薄膜以形成p-n结,向下刻蚀该薄膜至n-型GaN层,在n-型GaN上设置n-电极和在p区上设置p-电极以得到用划片机切割为单个芯片的单元发光二极管以制造LED芯片,将管座(stems)粘附到芯片,用导线将p-电极和n-电极连接到引线,以及用帽盖覆盖该组件,来制造蓝色LED器件。该工艺具有已证实的性能记录并被广泛地采用。
利用蓝宝石衬底,很好的确立制造方法;以低成本和没有供应的不稳定性,衬底具有已证实的性能纪录。然而,由于蓝宝石没有解理,它不能被自然劈开分为芯片,而是代替地,必须用划片机机械地切割。因为蓝宝石是坚硬的、坚固材料,来自该切割操作的产量是不利的。因为蓝宝石是绝缘体,必须在衬底的底部设置电极—在GaN膜的顶上必须设置n-电极,以及需要两次引线键合。而且,N-电极需要的额外表面积是一个问题,在于它对缩小尺寸有限制。
面对这样的背景,GaN单晶体有希望作为用于InGaN基蓝色发光器件的衬底。已知加热GaN不会使它液化,因此GaN晶体不能由液相生长,而是使用在制造GaN膜中采用的汽相方法。可利用的方法包括HVPE、MOCVD和MOC,这些方法是其中在起始衬底提供汽相前体,以形成GaN或其他氮化物基薄膜的技术。
汽相技术已被采用和改进,以形成厚的、小位错GaN层,其中通过除去起始衬底,制造独立的GaN膜。由于起始衬底使用蓝宝石,因此带来除去蓝宝石的困难,本申请人利用(111)GaAs衬底。GaAs起始衬底可以用王水刻蚀掉。
当可以以此方式获得GaN单晶体时,用于使该晶体成为具有镜面抛光的晶片的抛光、刻蚀和相关技术不被研制。因此,现阶段是其中在晶体上按照原样生长薄膜,没有抛光或刻蚀。依据GaN晶片,可以通过汽相生长在异质衬底上形成的仅仅是c-面晶体,其中在表面中出现c-面((0001)面)。
至于所涉及的c面,有两种,(0001)面和(001)面。这些是其中Ga被露出的表面,和其中N被露出的表面。这两种表面的生化性能是完全不同的。Ga表面在化学上是惰性的,几乎不经历任何化学影响,以及在物理上是极其坚固的,难以使用研磨剂抛光。N表面在物理上是脆弱的,且可以被抛光,以及存在可以用化学剂刻蚀的晶面。
GaN的刻蚀是不能被简单地处理的具有挑战性的问题。已设计了各种技术将电极粘附到晶体并刻蚀晶体,同时使电流穿过它,以及刻蚀该晶体,同时用紫外线轰击它。尽管如此,认为其上有可能被刻蚀的表面通常是N表面,而刻蚀和抛光Ga表面是困难的。
然而,为了制造具有镜面抛光的晶片,抛光是必不可少的。尽管抛光工序本身是困难的,在其中以某种方式管理GaN晶片抛光的情况下,由于该抛光,在晶片上将出现加工变换层。这是抛光研磨剂和压盘成分侵入晶片表面和外来物进入该表面的晶片部分,损害晶体结构。
一旦嵌在里面,必须尽一切办法除去该加工变换(process-transformed)层,因此必须执行刻蚀。但是,至今为止,没有GaN刻蚀技术。一般,GaN不能用化学活性物质刻蚀。加工变换层是相当厚的;因此,不能通过湿法刻蚀除去加工变换层。
L.H.Peng等的″Deep ultraviolet enhanced wet chemical etching ofgallium nitride,″Applied Physics Letters,Volume 72,Issue 8(1998),报道了通过在晶体上提供铂电极,以及将它浸泡在H3PO4溶液或KOH溶液中,将该样品暴露于来自汞灯的光,以及施加电压到样品,在GaN晶体上执行光增强的刻蚀,该汞灯输出254nm波长的紫外光。这意味着所谓的光电化学刻蚀技术是可能的;但是,由于它们的结果没有被重复测试,关于通过该技术是否实际地湿法刻蚀GaN存在一定的疑问。
即使这种问题被排除,利用该技术,必须在GaN晶体上形成电极,以及在刻蚀完成之后,该金属电极必须被除去。不完全去除冒着该GaN晶体将被金属污染的风险。因此,除涉及的劳动之外,还有其中可能有杂质的质量问题。由于该技术需要电极形成/去除,其制造方法不适合批量生产。
D.A.Stocker等人的″Crystallographic wet chemical etching ofGaN″,Applied Physics Letters,Volume 73,Issue 18(1998),报道了通过将GaN晶体衬底浸泡在H3PO4或KOH溶液中,刻蚀该GaN晶体衬底,在该溶液中,乙二醇是溶剂,以及将样品加热到90℃-180℃。该刻蚀强烈地取决于晶体取向。作者注意到,在(0001)面,晶体一般不被刻蚀,而{1013},{101 2},{1010}和{101 1}面容易被刻蚀。因为通过汽相生长技术获得的GaN晶体的表面是(0001),因此它们不被刻蚀;然而由于在有任何不均匀的地方该晶体被刻蚀,替代的表面变得粗糙,以致不能获得光滑的平坦表面。尽管在该文献中没有产生区别,但是不被刻蚀的大部分表面将是Ga表面,不是N表面。
J.A.Bardwell等人的″Ultraviolet photoenhanced wet etching of GaNin K2S2O8solution,″Journal of Applied Physics,Volume 89,Issue 7(2001),提出不同于L.H.Peng等人的上述文献,GaN晶体表面的湿法刻蚀不在GaN晶体上形成电极,通过将作为氧化剂的K2S2O8添加到KOH,并将该样品暴露于紫外线。通过紫外线照射产生硫酸根(Sulfateradical)和羟基,这些原子团用作有力的(potent)氧化剂,由此形成氧化镓Ga2O3。作者提出接着通过KOH溶解氧化镓Ga2O3的机理。然而,采用来自低压汞灯的紫外线,产生Teflon(聚四氟乙烯)或SUS-级钢的事实,这些材料可以承受UV射线,在清洗装备的结构部件中是不可避免的。所得的缺点是成本增加。具体,汞灯发射的UV射线产生构成物质、腐蚀金属、绝缘体和塑料的元素原子团,以及使它们磨损。因此普通的清洗装备不能被采用,这意味着该技术不是以批量生产为目标。
日本未审查的专利申请公开号2001-322899提出了通过抛光、干法刻蚀和湿法清洗晶片,制造没有划痕、优越的表面平坦性的未沾污氮化镓基半导体衬底。但是,该出版物没有提及有关衬底表面的金属污染。这是因为其目的是平整衬底;由于其目的不是减小衬底表面的污染,因此目标不同于本发明。
在日本未审查的专利申请公开号2002-43270中,由于用有机溶剂清洗导致碳氢化合物粘附到衬底表面,在低于其沸点的温度下有机溶剂被保持。通过碱清洗或酸清洗处理该衬底,或使它经历UV臭氧清洗,粘附到该表面的碳氢化合物被除去。这仅仅期望去除碳氢化合物,而利用本发明,其中把由于金属的杂质作为一个问题,目的是从衬底表面除去金属。
日本未审查的专利申请公开号2003-249426提出了一种方法,其中SiC衬底被抛光和平整,以及通过用气体簇离子束溅射该衬底,表面杂质被降低至不超过1011cm-2(原子/cm2)。然而,在该说明书没有提及关于残余杂质中的元素的范畴,也没有提及评价杂质浓度的方法。

发明内容
通过汽相生长,可制造独立的GaN晶体衬底,但是抛光、刻蚀和同样的表面-处理技术使衬底成为具有镜面抛光的晶片,用于还有待于建立的器件制造。
在本发明中,提出卤素等离子体干法刻蚀GaN,以便除去由抛光该晶体产生的加工-变换层。本发明人最新发现了一种通过干法刻蚀表面地除去GaN的方法。该方法是使用氯等离子体的一种反应离子刻蚀(RIE)。之后将详细描述该工艺。
据发现通过干法刻蚀可以除去由抛光产生的加工-变换层。但是,同时,发现由于该干法刻蚀,金属微粒和金属氧化物、硅化物或类似的金属化合物的微粒粘附到衬底表面,变为新的污染源。该微粒之后将被描述,但是金属包括Si、Mn、Fe、Cr和Ni,因而不能通过干法刻蚀来除去。
于是,在本发明中,决定在干法刻蚀之后进行基于化学的湿法刻蚀。这样做的目的与去除加工-变换层的普通刻蚀不一样,而是除去通过干法刻蚀工序重新产生的金属残留物。尽管注意到在之前几乎没有能刻蚀GaN的表面化学剂,但是因为在此情况下,GaN本身的刻蚀不是必需的,以及代替该目的,是为了除去粘附到该表面的金属,因此单独刻蚀是充分的。
然而,还有不仅仅由干法刻蚀产生的金属残留物的其他问题。
该其他问题是本申请人制造的GaN没有均匀的Ga表面和均匀的N表面。本申请人采用通过一种技术生长晶体GaN的方法(它们暂时地称为“条纹生长方法”),其中为了减小位错密度,在晶体内有意地产生条纹形式的缺陷-聚集区,使得缺陷在那里聚集。本申请人明白这些缺陷聚集条纹区是单晶区,其中GaN晶轴被反向。这意味着产生复杂的晶体,其中条纹区中的晶轴是倒立的,以及非条纹区中的晶轴是竖直的。因此,由本申请人制造的GaN严格来说不是单晶体。
但是,除该条纹区之外,该GaN是单晶体,以及因为不必使用条纹区,因此它们不妨碍器件制造。尽管那些可以是该情况,由本申请人制造的GaN是这样的非条纹表面是Ga表面和条纹表面是N表面,以及通过形成有与N表面交替的Ga表面,因此是复杂的。
在抛光中Ga表面和N表面不同,以及在刻蚀中Ga表面和N表面不同。即使依据执行湿法刻蚀,使用化学剂,使得Ga表面和N表面的刻蚀速度的显著不同将导致凹陷的表面。换句话说,这意味着不必使用具有刻蚀选择性的化学剂。
至于抛光,可用无研磨剂的方法,其中晶片被夹在上下压盘之间,同时在它们之间分配包含疏松研磨剂的抛光浆料,该上和下压盘在相反的方向旋转,以研磨该晶片。尽管可用的研磨剂包括金刚石、SiC和硅石,假定GaN具有高硬度,那么使用金刚石研磨剂。即使利用金刚石研磨剂,研磨不能被十分简单地执行。假定研磨剂的尺寸越粗糙,则抛光速度越快,执行多次抛光,研磨剂尺寸被逐渐地减小。
例如,使用压盘是典型的抛光方法,压盘是圆形铸铁板,其上铺开抛光布,但是对于GaN,由于划痕将被另外引入该表面,不使用松散的研磨工艺,代替,利用牢固的研磨工艺。牢固的研磨工艺是其中嵌入诸如金刚石的研磨剂到金属或其他适合材料的基板中的恒定高度。使研磨剂的高度恒定是为了实现均匀的抛光速度,以便不会引入划痕或其他表面瑕疵。具体地,可以利用其中金刚石研磨剂被嵌入铜(Cu)基盘中的压盘来抛光GaN衬底。
在汽相制造中,当生长GaN晶体时,随着表面的粗糙,也将弯曲。通过消除弯曲作为一个目标的抛光设计,可以减轻弯曲。由于消除弯曲的抛光不是本发明的目的,这里将不再详细描述这种抛光。除铜以外,压盘基板也可以具有诸如铁或Sn的材料—所需要的是为了嵌入研磨剂,该材料是软的。
抛光本身不是本发明的目的。尽管通过抛光工序可以获得光滑的平坦表面,但是下降趋势是重新产生加工变换层的问题。无论什么晶片类型,即使Si晶片或GaAs晶片,加工-变换层的产生都是一个问题。然而,通过湿法刻蚀清除该加工-变换层消除了该问题。
但是,就GaN而言,湿法刻蚀是不可能的。尽管可以使用从N表面腐蚀地除去材料的化学剂,但是没有能从Ga表面有效的腐蚀去除材料的化学剂。然而,不去除该加工变换层,则不能生成GaN晶片,也不可能将它们用于器件形成。因此必须寻求一种去除加工变换层的方法。
本发明的第一目的是提供光滑的、平坦GaN晶片,其中源于抛光的加工-变换层被除去,以能够在晶片上形成器件。
如果金属留在GaN晶片的表面上,金属原子污染该表面,那么当器件被制造时,外延晶体生长将是不完全的,这导致将造成诸如p-n结中的电流泄漏和不完全/暗电流故障的可能性,降低所制造的器件的发光效率。考虑这些原因,本发明的第二目的是提供具有良好表面的GaN晶片,实际上不含浅薄地粘附的金属残留物。
本发明的第三目的是提供一种复杂的晶片,其中Ga表面和N表面被交替露出,然而不会出现由于晶向不同而导致的粗糙度。
本发明的第四目的是获得一种可用的刻蚀方法,用于有效地除去源于抛光而产生的加工-变换层。
本发明的第五目的是获得一种可用的湿法刻蚀法,以便不产生由于晶体取向的粗糙度,即使GaN晶片具有复杂的表面,其中Ga表面和N表面互相交替。
本发明的第六目的是获得一种评估留在GaN衬底的表面上的金属的类型和数量的方法。


该图是曲线图,绘制了GaN衬底表面上的残留金属原子密度(×1010原子/cm2)的测量结果,以及通过在衬底上外延地生长2μm厚度的GaN层和0.2μm厚度的InGaN层并用来自HeCd激光器的325nm激光束轰击该衬底产生的光致发光。水平轴是金属原子密度,以及垂直轴是光致发光强度(任意比例刻度)。该光致发光理想地具有2.0个刻度或更高,这对应于100×1010原子/cm2的金属原子密度。
具体实施例方式
本发明使用卤素等离子体干法刻蚀GaN的表面,以及使用氢氟酸+过氧化氢、硫酸+过氧化氢、氯化氢+过氧化氢、硝酸、氯化氢+臭氧等的水溶液湿法刻蚀该表面,以制造镜面抛光的GaN晶片,具有最小的金属污染和具有光滑的、平坦表面。因此,在本发明中,通过干法刻蚀除去由抛光产生的加工-变换层,以及通过湿法刻蚀除去由于干法刻蚀粘附的金属污染。
例如,为了除去非金属显微碎片,使用碱,同时为了除去有机物质的晶片,使用有机溶剂。这些与Si晶片的情况相同。
本发明人发现尽管GaN的Ga表面基本上不能用化学活性的物质腐蚀地刻蚀,但是通过使用卤素等离子的反应离子刻蚀(RIE)可以从晶体有效地刻蚀掉表面材料。
卤素气体,如氯气、氟气、溴气、氯化氢或氟化氢或卤化氢气体被引入RIE室,该室被抽真空(10-3至10Pa),以及通过在电极之间施加交流电源(100W至1kW)或通过引入微波能量(200W至2kW)到该室中,产生卤素等离子体。据发现产生的等离子体是富反应性的气态物质以及包含卤离子和卤原子团,以及能相等地刻蚀N表面和Ga表面。
在该实施例例子中,采用利用氯气的RIE,但是GaN衬底的表面刻蚀也可以用其他卤素或卤化氢气体。有时加工-变换层总计相当厚,它不能被湿法刻蚀除去,而是通过干法刻蚀,可以除去相当厚的加工-变换层。
尽管加工-变换层问题可被解决,但是干法刻蚀丰富地散播反应等离子体在整个室中,因为衬底腐蚀,那么由于新的金属的衬底表面污染变为一个问题。由于承受等离子体的室由不锈钢制成,室壁表面被包含如Fe、Ni、Cr或Al的金属的等离子体刻蚀,室组分的颗粒被引入气体,停留并粘附到该衬底。
此外,由于构成基座的金属可以粘附到衬底的表面,在干法刻蚀操作中夹持衬底的基座被等离子体表面地侵蚀。这种原子元素产生新的金属污染问题。
如果金属被留下,因此粘附到衬底,那么即使它具有镜面抛光,该表面顶上外延生长的GaN或InGaN膜的晶格结构将被损害,破坏结晶性。因此,如果光电接收器被制造,以及如果激光器是,产生激光的阈值电流波动,那么将引起诸如暗电流增加和降低发光效率的问题。为了避开这种问题,衬底表面上的残留金属必须被减小,但是不可能通过干法刻蚀来做这些,必须采用湿法刻蚀。
除这种金属以外,还必需从有机物质除去污点(smudge)。此外,也可能发生抛光剂中的SiO2和相关的化学物质粘附到衬底表面;因此,衬底也必须除去氧化硅。
为了除去基于有机物质的污点,晶片被投入有机溶剂和并经声波处理。利用,例如,异丙醇剂作为有机溶剂。
众所周知,氟化氢(HF)适于去除氧化硅(SiO2)。该问题是金属(Fe,Cr,Ni,Mn,...)远离非金属的硅。由于金属粘附到该表面,如果表面本身可以被除去一定的厚度,那么这些金属也可以被除去。
如已经重复地陈述,例如,可以独立地和有效地侵蚀GaN的Ga表面的化学剂还有待于发现。然而,仅仅除去粘附到GaN的Ga表面和N表面的金属的困难不同于除去GaN本身的一部分的困难。金属将以金属的形式单独粘附到表面,或作为氧化物或硅化物,因而用现有的化学剂除去金属是可能的。这些形式中的金属应该在颗粒级别下被漂洗掉,或该金属应该被溶解和漂洗掉。
由于杂质被除去,这些可以被称作“洗涤”。然而,如之后描述,由于该洗涤使用强酸或碱,称它为“湿法刻蚀”,毕竟看起来更合适。因此,下面,干法刻蚀之后的工序将被称为湿法刻蚀,以及组成该工序的每个操作步骤应该称作洗涤。
在此存在另一个问题。本发明人制造的c-面GaN晶片在普通的检测中不是单晶体。在起始衬底上以条纹结构(或点—即,岛—结构)形成SiO2的敷层,例如,用作缺陷-形成籽晶,然后进行GaN晶体生长。在籽晶上产生缺陷-聚集区,以及位错快速地聚集,在限制的缺陷-聚集区内聚积。由于该工序,缺陷-聚集区外面的部分成为小位错密度的高质量晶体。
最初本发明人不确定缺陷-聚集区的晶体结构的性质是什么,但是现在理解缺陷-聚集区似乎是单晶体,其中晶轴被反向。因此,当通过本申请人的技术生长c-面晶体时,表面的主要部分是(0001)Ga表面,但是在籽晶部分的中心的缺陷-聚集区是(0001)N面。换句话说,该产品不是单晶体,而是其中Ga和N面相混合的晶体。
由于这将被湿法刻蚀,使用化学剂,由此在刻蚀Ga和N面时的速率之间将有大的差异是不合需要的,因为该表面将代替竖着(end up)变为凹陷的。GaN和N面上的刻蚀速率不同的特性被称作选择性,如所述。因为湿法刻蚀的目的是不刻蚀GaN晶体表面,而是溶解/除去表面残留的金属,如果化学剂不能腐蚀Ga表面,它不是一个缺点。相反地,最好G-表面刻蚀速度SGa和N-表面刻蚀速度SN尽可能接近。理想地它们将是SGa=SN(1)。
这意味着没有选择性;如果两侧都是0,它不会是问题。的确,因此将更好说所希望的是N表面不被腐蚀。这些正好与现在希望的GaN湿法-刻蚀材料的性能相反。
至于湿法刻蚀的性能,迄今为止,关键要素是该工序无论如何强烈地腐蚀GaN的一部分,其中具有刻蚀N表面的强能力的化学剂已被发现,这些化学剂已被推荐作为GaN上使用的刻蚀剂。然而,这些主要是具有强选择性的刻蚀剂,它们不是本发明需要的。具有选择性意味着SGa≠SN(2),以及该差值是大的,意味着该刻蚀剂是强选择性的。为了发现哪种化学溶液是适合的,研究了各种酸和碱的pH、选择性、GaN刻蚀能力和难闻气味。这里“pH”限制被测试的化学溶液的浓度范围,并不是化学溶液本身的性能。这些限制可以给作摩尔浓度,以及由于摩尔浓度和pH是与每一种化学剂唯一相关的,在此它们提供一共性,使之由pH代表浓度。
由于这里表示的是在给定pH下的化学剂的性能,酸的pH在酸性侧上更多,或碱的pH在碱性侧更多,与具有刻蚀能力的化学剂相比,高于该化学剂,意味着它们是同样适合的物质。至于“选择性”,在其中从Ga表面和从N表面腐蚀地除去材料的化学剂速度没有先前差异的情况中,称为没有选择性,以及在从N表面腐蚀地除去材料的化学剂显着地快于从Ga表面的速度的情况中,选择性被称为是高的(没有相反的情况)。
Ga表面和N表面上的刻蚀能力不同。但是,由于它们不同的程度被表示为选择性,在此“刻蚀能力”意味着Ga表面上的刻蚀能力。至于难闻气味,尽管它与刻蚀作用无关,强烈的难闻气味对工作环境将是有害的。由于晶片将被批量生产,希望使用尽可能不难闻的化学剂进行该生产加工。因此,难闻气味是严重的因素。
表I化学溶液的pH、选择性、刻蚀能力和难闻气味

由于氢氧化钾(KOH)是强选择性的,在本发明中它不适合用作湿法刻蚀的刻蚀剂。尽管它在N表面上是腐蚀性的,但是它在Ga表面上是非腐蚀性的。而氢氧化铵(NH4OH)是弱选择性的,该溶液不能从Ga腐蚀地除去材料,以及是强烈地难闻的;因此它是不适合的。过氧化氢(H2O2)具有弱酸性作用,但是具有氧化能力。它没有选择性,是弱腐蚀性的以及是非难闻的;因此,除刻蚀能力条件之外,根据本发明,过氧化氢满足该刻蚀剂条件。由此,这意味着如果与腐蚀性的其它化学剂物质一起使用,过氧化氢将具有成为适合的刻蚀剂的潜能。
在上述文献中引入的磷酸(H3PO4),作为新发现的GaN的刻蚀剂,但是因为磷酸是强选择性的,在本发明中,它不适合用作刻蚀剂。氟化氢(HF)是非选择性的,是弱腐蚀性的,以及是非难闻的;因此,如果与腐蚀性的其它物质结合,氟化氢可以是本发明需要的刻蚀剂。
硝酸(HNO3)没有选择性,是强腐蚀性的,以及是非难闻的,因此具有用于本发明的刻蚀剂的资格。在此测试的是pH=1,高浓度HNO3,这意味着,在高于那些浓度的pH≤1浓度下,可以使用该酸。硫酸(H2SO4)没有选择性,是强腐蚀性的,以及是非难闻的,以及因此具有用于本发明的刻蚀剂的资格。
盐酸(HCl)没有选择性,但是是腐蚀性的,以及因此涉及的那些条件是优良的,除了由于该酸释放的蒸气是难闻的,因此它不能称作最佳。该酸腐蚀SUS-级钢,且因此在该设备上可能发挥消极作用。但是依据性能,HCl是可用的刻蚀剂。
由于湿法刻蚀的目的不是从GaN除去腐蚀性地除去材料,而是清除掉由干法刻蚀粘附的金属(Fe,Cr,Mn,Zn,Ni,...)及其他碎片,不止侵蚀GaN的能力,该刻蚀剂希望的是金属电离作用,以将金属溶解在水溶液中。即使为一组,金属是多种多样的,每种对化学剂的抵抗性不同。
以前不理解那种金属粘附,以及由于多种金属粘附到晶片表面,考虑这些或相对于单个金属没有更多意义。这意味着通常所希望的是能够溶解和清除金属,以及这些应该可评估,根据氧化还原电位是高的。具有高氧化还原电位的刻蚀剂通过将Ga氧化为Ga2O3,将当然具有相当大的清除Ga的能力,意味着刻蚀剂除去Ga将是突出的。
给出这些考虑,各种化学溶液的氧化还原电位被测量。由于氧化还原电位根据浓度而变化,该浓度又被注意。该氧化还原电位是在给定的浓度上的。在图表II中阐述了氧化还原电位的测量结果。
表II化学溶液的氧化还原电位(电压对普通氢电极[NHE])

尽管dHF常常用来溶解玻璃,由于其氧化还原电位是低的,是0.83V,它不除去金属颗粒和碎片,也不可能除去Zn或Cu。不意外地,10%溶液中的HCl和H2SO4实际上不能真正除去金属。这些溶液中的简单酸性物没有氧化能力。10ppm臭氧(O3)溶液的氧化能力,在1.22V下是强的,该溶液可以使Ga成为Ga2O3,而是不能除去金属,例如Fe、Zn和Cu。尽管单独用氟化氢没有更多效力,但是其中稀释的氟化氢与过氧化氢结合的dHF+H2O2具有1.67V的氧化还原电位,并能够清除Fe、Zn、Cu及其他金属。其中过氧化氢以4∶1混合到硫酸中并被加热到120℃的溶液,在1.85V时,也具有强氧化能力。
为了溶解并除去金属、金属氧化物、金属硅化物,1.2V或更高的氧化还原电位是必需的。优选地,具有1.5V或更高的电位的溶液是有利的。对于表II中的那些电位,氧化还原电位是在给定浓度下,以及增加浓度将也增加该电位,而减小浓度将减小氧化还原电位,亦即,该电位可以根据浓度来调整。因此,至少1.2V或至少1.5V的氧化还原电位仅仅是由化学剂和那些化学剂的浓度规定。
因为氟化氢(HF),如由表I可以明显看到,没有选择性,但是有弱的刻蚀能力,其中它与过氧化氢(H2O2)结合的溶液的刻蚀能力被增强。由表II,也将理解dHF+H2O2结合的高氧化还原电位。因此,HF+H2O2是有希望的组合。
尽管由表I,硫酸(H2SO4)显得是有利的,其中它是非选择性的和强腐蚀性的,表II表明该酸的氧化还原电位是低的,表示其除去金属的能力稍微欠缺。硫酸(H2SO4)与H2O2结合增强氧化能力,由此依据选择性、Ga刻蚀能力和除去金属的能力得到有效的溶液。
表I表明由于硝酸(HNO3)是非选择性的以及是高Ga-腐蚀性的,该酸是有益的选择。酸可以被单独采用,同时HNO3+H2O2是有益的,其中添加了过氧化氢(H2O2)。
其中臭氧(O3)被添加到HCl、H2SO4或HNO3的溶液也是有益的,因为它们没有选择性,相当大的刻蚀能力以及高的氧化还原电位,这些酸是强酸。然而,由于臭氧本性上是气体,它没有很好的溶解到水溶液中,即使一旦溶解,它最终从该溶液离析;因此,臭氧的缺点是它难以被处理。由此,有利地作为用于湿法刻蚀的化学剂的溶液,包括HF+H2O2;HCl+H2O2;H2SO4+H2O2;HNO3+H2O2;HF+O3;
HCl+O3;H2SO4+Os;HNO3+O3;以及HNO3。
这些溶液用于除去粘附到GaN晶体表面上的金属。为此,其选择性(用于N表面/Ga表面)为零、其刻蚀能力强以及其氧化还原电位大的溶液被选择。
然而,存在诸如非金属、各种碎片的物质将粘附到晶体表面的可能性。无论从那点看,这种物质不能用酸除去。然后,用于碎片除去的碱是必需的。该碱是,例如,氢氧化钾(KOH)或氢氧化铵(NH4OH)。由于KOH具有选择性,以及因为如果它在非常活泼的状态下使用,在Ga表面和N表面将出现不均匀,因此应该选择使溶液温度低和刻蚀时间短的条件,以便粘附的碎片脱落,然而该溶液不刻蚀Ga表面。NH4OH也可以用来移去非金属微粒。该碱是有利的,因为它是弱选择性的和弱腐蚀性的,但是由于它是难闻的,因此必须设计它不被泄漏的装置。
有机溶剂(例如,异丙醇)用来除去有机物质,这与Si晶片或相关物质的情况相同。
如之后描述,表面颗粒密度是10×1011原子/cm2或更小是必要的。此外,更优选地该密度是5×1011原子/cm2或更小。
为了获得这些级别,必须使用溶液,通过结合上述化学物质,具有1.2V或更高的氧化还原电位。更优选地该电位是1.5V。
通过汽相生长制造的GaN独立单晶晶片最后变为可能。目前是其中在晶片表面上不进行任何工序的情况下,通过MOCVD、MBE或其他外延生长技术在其上外延地生长GaN、InGaN、AlGaN等的薄膜的情况。包括抛光、刻蚀、研磨的GaN表面-处理技术,还有待于完善。本发明涉及刻蚀。由于先前阶段抛光而新产生加工-变换层,因此刻蚀是必要的,以便除去该层。GaN的Ga表面难以被化学贯穿,以及实际上不能用化学活性物质刻蚀。
给出这些因数,本发明通过采用卤素等离子体的干法刻蚀(RIE方法),除去GaN晶片的表面上的加工-变换层。进行干法刻蚀导致金属颗粒、金属氧化物和金属硅化物重新粘附到晶片表面。因为由本申请人制造的GaN具有复杂的结构,其中N表面和Ga表面混合,其在Ga表面和表面上的刻蚀速率不同(具有选择性)的化学剂是不合适的。
因此,利用没有选择性以及仍然可以除去金属的高氧化还原电位的化学物质。利用这种化学物质也允许金属微粒被干净地除去。这样做使之可以制造具有光滑的平坦表面的GaN晶片,没有加工-变换层,以及其表面是清洁的。
由本发明制造的GaN单晶晶片作为用于蓝色发光装置的衬底是极其有用的。其中InGaN和GaN膜淀积在蓝宝石上的蓝色LED和蓝色LD已经被销售并广泛使用。蓝宝石衬底是低成本的,具有被证实的性能纪录,以及被稳定供应。但是由于蓝宝石没有解理,它不能基于自然解理分为芯片。因此用划片机切割蓝宝石的时间成本和麻烦的事实导致低的生产产量。
在激光二极管(LD)实施中,振荡器部分必须被抛光为光滑的镜面。如果衬底是GaN,那么劈开是可能的,这便于分为芯片和可以简单地形成用于LD振荡器的镜面。而且,由于蓝宝石的晶格常数不同于InGaN和GaN,将预想到蓝宝石装置上的内应力是大的,导致高的缺陷密度。在LD实施中,由于高密度电流通过该装置,因此存在该缺陷将蔓延和损害装置的可能性。
因此GaN衬底具有超过蓝宝石衬底的优点。由于GaN衬底还没有被投入实际使用,因此它们是昂贵的,如果技术发展和需求被刺激,该成本应该下降。
实施例本发明的目的是为了使GaN衬底成为用于器件制造的初始晶片,以除去由抛光产生的加工-变换层和使衬底表面平坦。通过干法刻蚀除去加工-变换层和执行平面化。但是,由于该干法刻蚀,金属微粒和相似的碎片又粘附到该表面,以致单独的干法刻蚀是不足够的。此后,为了除去金属微粒污染,执行湿法刻蚀。但是尽管那样,湿法刻蚀必须除掉金属。湿法刻蚀使用各种刻蚀液进行。接下来阐述湿法刻蚀过程的五种不同范畴的试验例子。
试验例1—湿法刻蚀仅仅是有机溶剂洗涤干法刻蚀和湿法洗涤结合,以处理GaN衬底。作为处理目标的GaN衬底是50mmΦ直径和400μm的厚度。
A.干法刻蚀刻蚀室具有刻蚀剂气体引入端口和气体排出端口,气体排出端口具有真空排气装置,可以抽吸至真空,备有相对的上下电极,以及被配置为来自天线的高RF功率可以被引入该室内部。GaN衬底被装载到已经预先抽吸到10-4pa压力的刻蚀室中。作为刻蚀剂气体的氯气(Cl2)被引入刻蚀室内部,以及室内压力被控制为0.2Pa。高RF功率被施加到上下电极,以产生等离子体,以及根据表III中的条件在衬底上进行基于氯等离子体的损坏去除的工序。
表III用于试验例1的干法刻蚀条件

B.湿法洗涤-仅仅有机洗涤B1.有机洗涤包含异丙醇的石英烧杯被放入加热到50℃的水槽中,以及GaN衬底被浸泡在异丙醇中并洗涤5分钟。相同的5分钟洗涤被再一次重复(5分钟×2)。此后,GaN衬底被取出并在异丙醇蒸气干燥机中干燥(82℃)。
试验例子2—湿法刻蚀是有机溶剂洗涤+碱洗涤干法刻蚀和湿法洗涤被结合,以处理GaN衬底(50mmΦ和400μm厚度)。湿法洗涤包括基于有机溶剂的洗涤和基于碱的洗涤。亦即,碱洗涤被增加到试验例1;由于不能用碱洗涤完成该工序,最终有机洗涤被再次执行。
A.干法刻蚀该干法刻蚀条件与试验例1的相同。
例1(表III).
GaN衬底被放入刻蚀室中,刻蚀室已被预先抽吸至10-4pa的压力;作为刻蚀剂气体的氯气(Cl2)被引入该室中,其内部压力被设为0.2Pa,以及高RF功率被施加到上下电极,以产生等离子体,干法刻蚀GaN衬底表面。
B.湿法洗涤-有机洗涤和碱洗涤
B1.有机洗涤包含异丙醇的石英烧杯被放入加热到50℃的水槽中,以及该GaN衬底被浸泡在异丙醇中并洗涤5分钟。相同的5分钟洗涤被再次重复(5分钟×2)。此后,GaN衬底被取出并在异丙醇蒸气干燥机中干燥(82℃)。
B2.碱洗涤GaN晶体衬底被浸入加热到45℃的KOH水溶液中并调整为pH=11至12,在990kHz的频率下用超声波间接地处理,以及洗涤液通过再循环过滤器,被洗涤3分钟。然后在超纯水中溢流漂洗该GaN衬底。
该超声洗涤是洗涤液经历超声振动以引起在溶液中引起空穴和去除表面-粘附的颗粒的工序,首先采用1kHz或类似的低频波,以及逐渐地采用高频波。假定更细的碎片应该用较高的频率除去,那么采用约1MHz的高振动频率下的超声振动。这些是因为在金属颗粒当中微小颗粒占优势,该金属颗粒是超声洗涤的目标。
B3.有机洗涤与初始有机洗涤相同。包含异丙醇的烧杯被放入50℃水槽中,该GaN基板被放入洗涤液中并进行5分钟洗涤两次。此后,该GaN衬底被取出并在异丙醇蒸气干燥机中在82℃下干燥。
试验例3—湿法刻蚀是有机溶剂洗涤+酸洗涤+碱洗涤干法刻蚀和湿法洗涤被结合,以处理GaN衬底(50mmΦ和400μm厚度)。湿法洗涤是有机洗涤、酸洗涤和碱洗涤的组合。亦即,酸(HF)洗涤被加到试验例2;但是,由于该工序不能用碱洗涤完成,最终有机洗涤被执行两次。
A.干法刻蚀干法刻蚀条件与试验例1的相同(表III)。
GaN衬底被放入到刻蚀室中,刻蚀室已被预先抽吸至10-4pa的压力;作为刻蚀剂气体的氯(Cl2)气体被引入刻蚀室内部,其内部压力被设为0.2Pa,以及高RF功率被施加到上下电极,以产生等离子体和干法刻蚀GaN衬底表面。
B.湿法洗涤-有机洗涤、酸洗涤和碱洗涤湿法洗涤是其中酸洗涤(氢氟酸,HF)被加到试验例2的工序。用于有机洗涤和碱洗涤的条件与试验例2的相同。
B1.有机洗涤-包含异丙醇的石英烧杯被放入加热到50℃的水槽中,以及GaN衬底被浸泡在异丙醇中并洗涤5分钟。相同的5分钟洗涤被再次重复(5分钟×2)。此后,GaN衬底被取出并在异丙醇蒸气干燥机(82℃)中干燥。
B2.酸洗涤在Teflon(聚四氟乙烯)容器中包含的pH=2至3的室温dHF水溶液中浸渍GaN衬底5分钟。同样的洗涤被重复两次(5分钟×2次)。然后在超纯水中溢流漂洗该衬底。
B3.碱洗涤在加热到45℃并调整为pH=11至12的KOH水溶液中浸入GaN晶体衬底,在990kHz的频率下,用超声波间接地处理,以及洗涤液通过再循环过滤器,被洗涤3分钟。然后在超纯水中溢流漂洗该GaN衬底。
B4.有机洗涤与最初的有机洗涤相同。包含异丙醇的该石英烧杯被放入50℃的水槽中,以及GaN衬底被放入洗涤液中并进行两次5分钟洗涤。此后,该GaN衬底被取出并在异丙醇蒸气干燥机中在82℃下干燥。
试验例4—湿法刻蚀是有机溶剂洗涤+酸洗涤+碱洗涤干法刻蚀和湿法洗涤被结合以处理GaN衬底(50mmΦ和400μm厚度)。该湿法洗涤是有机洗涤、酸洗涤和碱洗涤的组合。酸的类型略微不同于试验例3,是添加了过氧化氢(H2O2)的氢氟酸(HF)。增加H2O2是为了使酸性更高。此后,在含水的氢氧化铵(NH4OH)溶液中碱洗涤该衬底。由于该工序不能用碱洗涤完成,最后有机洗涤被执行两次。与试验例3的不同点是酸洗涤液是HF+H2O2,碱洗涤不是KOH,而是NH4OH。
A.干法刻蚀该干法刻蚀条件与试验例1(表III)的相同。
GaN衬底被放入刻蚀室中,刻蚀室已被预先抽吸至10-4pa的压力;作为刻蚀剂气体的氯(Cl2)气体被引入刻蚀室内部,其内部压力被设为0.2Pa,以及高RF功率被施加到上下电极,以产生等离子体和干法刻蚀该GaN衬底表面。
B.湿法洗涤-有机洗涤,酸洗涤和碱洗涤湿法洗涤是其中在试验例3的酸洗涤中增加过氧化氢(H2O2)的工序。有机洗涤和碱洗涤的条件与试验例1,2和3的相同。
B1.有机洗涤包含异丙醇的石英烧杯被放入加热到50℃的水槽中,以及GaN衬底被浸泡在异丙醇中并洗涤5分钟。相同的5分钟洗涤被再次重复(5分钟×2)。此后,GaN衬底被取出并在异丙醇蒸气干燥机(82℃)中干燥。
B2.酸洗涤在Teflon(聚四氟乙烯)容器中包含的pH=2至3的室温1%HF+7%H2O2水溶液中浸渍GaN衬底5分钟。同样的洗涤被重复两次(5分钟×2次)。然后在超纯水中溢流漂洗该衬底。
B3.碱洗涤在加热到50℃并调整为pH=11至12的NH4OH水溶液中浸入GaN晶体衬底,在990kHz的频率下,用超声波间接地处理,以及洗涤液通过再循环过滤器,被洗涤3分钟。然后在超纯水中溢流漂洗该GaN衬底。
B4.有机洗涤与最初的有机洗涤相同。包含异丙醇的石英烧杯被放入50℃的水槽中,以及该GaN衬底被放入洗涤液中并进行两次5分钟洗涤。此后,该GaN衬底被取出并在异丙醇蒸气干燥机中在82℃下干燥。
试验例5—湿法刻蚀是有机溶剂洗涤+2-阶段酸洗涤+碱洗涤干法刻蚀和湿法洗涤被结合以处理GaN衬底(50mmΦ和400μm厚度)。该湿法洗涤是有机洗涤、二阶段酸洗涤和碱洗涤的组合。对于酸洗涤,除利用HF+H2O2的洗涤之外,增加利用硫酸(H2SO4)的酸洗涤。在硫酸洗涤的增加中,该例子不同于试验例4。增加硫酸洗涤是因为它推测利用具有强氧化能力的酸应该能够更清洁地除去粘附的金属。
此后,在含水的氢氧化铵(NH4OH)溶液中碱洗涤该衬底。由于该工序不能用碱洗涤完成,最终有机洗涤被执行两次。
A.干法刻蚀该干法刻蚀条件与试验例1(表III)的相同。
GaN衬底被放入刻蚀室中,该刻蚀室已被预先抽吸至10-4pa的压力;作为刻蚀剂气体的氯(Cl2)气体被引入刻蚀室内部,其内部压力被设为0.2Pa,以及高RF功率被施加到上下电极,以产生等离子体和干法刻蚀该GaN衬底表面。
B.湿法洗涤—有机洗涤,2-阶段酸洗涤和碱洗涤该湿法洗涤是其中利用硫酸的酸洗涤(H2SO4)被增加到试验例4的工序。用于有机洗涤和碱洗涤的条件与试验例4的相同。
B1.有机洗涤包含异丙醇的石英烧杯被放入加热到50℃的水槽中,以及GaN衬底被浸泡在异丙醇中并洗涤5分钟。相同的5分钟洗涤被再次重复(5分钟×2)。此后,GaN衬底被取出并在异丙醇蒸气干燥机(82℃)中干燥。
B2.阶段1酸洗涤在Teflon(聚四氟乙烯)容器中包含的pH=2至3的室温1%HF+7%H2O2水溶液中浸渍GaN衬底5分钟。同样的洗涤被重复两次(5分钟×2次)。然后在超纯水中溢流漂洗该衬底。
B3.阶段2酸洗涤在被加热到90℃的4∶1(相对体积)硫酸(H2SO4)∶过氧化氢(H2O2)水溶液(pH=2至3)中,GaN衬底被浸渍30分钟,同时该溶液通过过滤器循环。
B3.碱洗涤在被加热到45℃并调整为pH=11至12的NH4OH水溶液中浸入GaN晶体衬底,在990kHz的频率下,用超声波间接地处理,以及洗涤液通过再循环过滤器,被洗涤3分钟。然后在超纯水中溢流漂洗该GaN衬底。
B4.有机洗涤包含异丙醇的石英烧杯被放入50℃的水槽中,以及该GaN衬底被放入洗涤液中并进行两次5分钟洗涤。此后,该GaN衬底被取出并在异丙醇蒸气干燥机中在82℃下干燥。
表IV

刻蚀&洗涤技术的评估关于不同实验条件的上述试验例子,评估晶片表面上的残留金属和粘附的颗粒。使用全反射X射线荧光光谱法(TXRF)来分析粘附到晶片表面的金属类型和数量。这是根据与表面成微倾斜角用多色的x-射线(x-射线包括各种连续的波长)轰击该样品表面的技术,由此该射线是全反射的;然后分析从表面向上传播的荧光x-射线,以发现表面上的原子类型和数量。
其倾角相对于表面是5毫弧度(0.28度)或更小(即,其入射角是89.78度或更大)的x-射线被全反射,不进入样品。X射线束包括各种波长的射线;x-射线与晶片表面上的杂质交互作用,导致内壳电子跳越,所得的电子跃迁,以便填充该壳层,导致荧光x-射线的发射。该电子束(beam)撞击表面,因为比入射电子束更低能量的电子束被发射,因此它被称为“荧光″。由于发射的电子束是杂质的x-射线特征的集合,荧光x-射线被分裂和定量,以研究表面上存在的原子类型和数量。因为该电子束几乎平行于样品表面入射,因此来自样品母体物质中的原子的荧光x-射线是稀有的,其中特征x-射线由来自形成在表面上的杂质颗粒的原子发出。因此该射线被全反射。由于当x-射线激发的原子的内壳层中的电子被破坏时,外层电子从它们的轨道掉下,因此特征x-射线是发荧光的x-射线。特征x-射线自然地具有比初始x-射线更长的波长,同时它们的能量是两个电子轨道之间的能量差。对于每个元素原子来说,该信息是唯一的,以及是已知的。特征x射线波谱被先期发现。如果重叠用于各种给定金属的公知特征x射线的总和能够得到分析的荧光x射线波谱,那么那些总和将给出表面残留金属的类型和密度。
在表面有效地屏蔽来自母体的信号下,射线被全发射的事实,使之可以排他地获得该表面中存在的原子的信息。该光谱测定技术的另一个优点是非破坏性的—即使微量,也可以探测表面上关注的原子。
在此,利用采用钨管的x射线源(波长=0.1nm至1nm)以0.05°的倾斜角照射样品表面。除了由TXRF决定表面上存在的金属数量之外,在显微镜观察之下计算粘附到该表面的颗粒。由于该晶片用于器件制造,除残留金属是最小量之外,重要的是颗粒的数目也是最小的。
表V给出TXRF分析的结果。样品表面中存在的金属是Si、Cr、Mn、Fe、Ni、Cu、Zn和Al。
表V金属量(1010原子/cm2)和后湿法刻蚀、干法刻蚀GaN衬底上的颗粒量(颗粒/cm2)

干法刻蚀之后金属杂质留在晶片表面上,意味着单独通过干法刻蚀工序不能获得清洁表面。
Fe、Cr和Ni出现的原因是由于用于干法刻蚀的室由不锈钢制成,以及室壁被干法刻蚀工序腐蚀。金属以粉末形式四处散布。部分Fe、Cr和Ni将粘到GaN衬底的表面上。铝用于室的部件,因此铝将被氯气干法刻蚀,一部分污染晶片的表面。因此,Fe、Cr、Ni和Al是从室壁脱离的原子。
铜(Cu)看起来将不从室进入图片,而是在抛光过程中。GaN晶片使用其中金刚石砂粒被嵌入铜压盘中的装置来抛光。假定在抛光工序过程中由于铜原子因此与晶片表面接触,那么此时铜原子粘附到表面。锌(Zn)粘到GaN衬底表面上的原因不被理解。
试验例1至5的工序之后,金属元素,如表V所示,存在于样品表面;但是由于初始GaN衬底不是相同的,不必遵循在其中残留元素的量较少的例子中,通过湿法刻蚀的金属去除效率更大,然而由表V结果可以理广义的术语效率。
试验例1是干法刻蚀和湿法刻蚀的结合,湿法刻蚀仅仅是使用异丙醇的有机洗涤。在此情况下,存在2×1013原子/cm2硅,1×1012原子/cm2铁。还有一些2×1012原子/cm2的铝。颗粒量在1000颗粒/cm2下具有相当大的体积。
试验例2采用异丙醇和含水的氢氧化铵(KOH)溶液,含水的氢氧化铵(KOH)溶液是强碱性的,用于湿法刻蚀。KOH浓度被决定为11至12的pH值。将表明该浓度可以更高(pH更大)。由此颗粒量将是大约100颗粒/cm2,折合成试验例1的1/10。碱性溶液被理解在减小颗粒方面是有效的;而且,该溶液将铝减小至它不可被暴露的级别(在探测阈值下)。显然KOH洗涤对于除去铝是极其有效的。
此外,通过碱洗涤,铁、Ni和Cu也似乎被减小。铁和Ni可能来自室壁散布并粘到衬底上;室的主要成分是铁和Ni,这些金属的表面粘结量是大的,以致减小铁和Ni的粘附是最重要的。然而,在该例子中,Si数量是大约2×1013原子/cm2,几乎与试验例1的相同,由此将看到通过KOH洗涤实际上不能减小Si。因此,还需要减小Si、Fe和Ni。这些结果表明仅仅用有机溶剂和强碱性的KOH的洗涤是不够的。
试验例3还添加用于湿法刻蚀的氟化氢(dHF)洗涤。氟化氢浓度被限定为2至3的pH值,这是相当高的酸浓度。这导致Si的残留浓度被大大地减小。浓度下降至试验例1和2的约1/10,这是突出的结果。Ni和Fe也显著地减小,而铝在探测阈值下。尽管颗粒也减小,试验例2的计算不显著地下降。此外,Cr下降到探测阈值下,以及尽管Mn不变化,在试验例1,2和3中,这不是一个问题,由于首先仅仅有微量。尽管在试验例1,2和3中Zn连续地增加,这似乎是因为酸或碱性溶液都不是非常有效的。
用于湿法刻蚀的试验例4添加过氧化氢(H2O2)到氟化氢(HF),以提高氧化能力。此外,因为采用碱性溶液代替KOH NH4OH时,除去Si更加有效。与试验例3相比较,Si下降到约1/3。如果包括非金属Si的金属元素的残留量是100×1010原子(at)/cm2或更小,那么晶片被充分地清洁,可用作器件衬底。与试验例2和3相比,其中Zn减小的效率也是明显的。与试验例2和3相比,铝少于探测阈值,颗粒量下降。
在试验例5中,除氟化氢和过氧化氢(H2O2)之外,进行具有硫酸(H2SO4)+H2O2的洗涤。硫酸本质上是强氧化能力的酸;然而利用过氧化氢,氧化能力被增强,这假定对于金属成分的除去应该是特别有利的。该洗涤将Si减小至低于探测阈值,而Fe、Cu、Zn等处于它们可以被认为略微地减小的级别。由于初始样品是不相同的,因而不能通过比较数目直接简单地判断洗涤效率。
光致发光分析根据用于制造发光器件的GaN衬底的性能,应该通过在衬底上淀积InGaN、GaN等的外延层,以形成p-n结,并粘附电极,LED或LED将被制造,以及研究其发光性能。但是,这需要器件制造设备,以及由于对本发明人来说这种设备不可得到,这些不是它们可以简单地做的事情。
然后,给定环境,在不掺杂的GaN衬底上,GaN层被淀积至2μm的层厚度,以及在其上淀积0.2μm InGaN层,以及检查InGaN层的光致发光。
来自He-Cd激光器的光产生325nm紫外光束,直接照射在样品上,以及用光电倍增器探测从样品发射的光(光致发光)的强度。全部光能被测量,而不分离光。因为用325-nm紫外光束照射具有大于带隙的能量的样品,因此价带中的InGaN电子被激发到导带中,以及激发的电子返回到导带,发射光。这是光致发光,用于例如研究薄膜的性能的情况,由于电子空穴对可以产生以及即使没有形成p-n结也发射光。
如果InGaN膜具有低位错密度和理想的结晶性,那么杂质能级将是最小的和几乎没有非发光跃迁;因此光致发光强度将是强的。在顶上形成的InGaN是低位错密度,高质量晶体预示GaN衬底的表面是薄膜基体,是光滑的和没有金属污染,是有利的,这意味着该基体本身是可用的。当然,根据杂质金属的类型,在外延生长层施加的影响应该有差异,但是该差异的性质不被理解。金属污染量和光致发光被单独研究,以及发现它们之间的关系。
因此,可以根据薄膜的光致发光评估衬底表面的质量。尽管它是间接的,该分析可用于评估衬底表面的质量。这不同于其中在衬底上制造具有p-n结的LD或LED的评估;但是因为该分析对用于衬底的简单和方便评估是有用的,以及可以容易地进行,在此它被利用。
在表VI和图中给出该结果。图中的水平轴是GaN衬底表面上的金属原子密度(×1010原子/cm2),而垂直轴是任意尺寸刻度的光致发光输出功率。如果光致发光是3000或更高,那么该样品可用作发光器件衬底。那些光致发光处于100×1010原子/cm2的金属原子密度级(=1012原子/cm2),是临界杂质-金属密度。本发明提供所得的衬底,以便金属污染密度是1012原子/cm2或更小(≤1012原子/cm2)。
更好的是50×1010原子/cm2或更小的密度,此时光致发光是4000或更高。
表VI每个试验例子的光致发光输出

为了将这些数据与先前提及的试验例子残留金属密度的相比较,其中在表面的所有金属(Si、Cr、Mn、Fe、Ni、Cu、Zn、Al)的密度总和的数据如下试验例1=2825×1010原子/cm2,试验例2=2279×1010原子/cm2,试验例3=218×1010原子/cm2,试验例4=79×1010原子/cm2,以及试验例5=15×1010原子/cm2,这是试验例4和5适合金属原子量是100×1010原子/cm2或更小的条件的情况。试验例4利用HF+H2O2,而试验例5利用HF+H2O2和H2SO4+H2O2。
如先前描述,这些溶液根据它们没有选择性、具有刻蚀能力和具有1.2V或更高的氧化还原电位的条件来选择;这些是该溶液在有效地除去残留金属方面优秀的条件,以有效地清洁晶片表面。
工业实用性根据本发明,由抛光GaN产生的加工-变换层被除去,能够获得具有光滑的、平坦表面的晶片;以及可以获得具有理想表面的GaN晶片,其上在视觉上不存在表面地粘附的残留金属。利用本发明的晶片制造的发光器件显示出高发光效率。
权利要求
1.一种氮化镓半导体衬底,其特征在于衬底表面上的金属污染是10×1011原子/cm2或更小。
2.一种氮化镓半导体衬底,其特征在于衬底表面上的金属污染是5×1011原子/cm2或更小。
3.一种制造氮化镓半导体衬底的方法,其特征在于为了除去由抛光产生的加工-变换层,进行使用卤素等离子体的干法刻蚀;并且借助于没有Ga表面和N表面选择性的具有刻蚀能力以及具有1.2V或更高的氧化还原电位的刻蚀剂进行湿法刻蚀;由此除去由干法刻蚀产生的污染金属。
4.一种制造氮化镓半导体衬底的方法,其特征在于借助于一种刻蚀剂进行湿法刻蚀,该刻蚀剂是HF+H2O2,HCl+H2O2,H2SO4+H2O2,HNO3+H2O2,HF+O3,HCl+O3,H2SO4+O3,HNO3或HNO3+O3中的一种,并且该刻蚀剂具有1.2V或更高的氧化还原电位。
5.一种如权利要求3或4所述的氮化镓半导体衬底的制造方法,其特征在于在湿法刻蚀之前或之后,借助于有机溶剂进行用于除去有机物质的洗涤和借助于碱性溶液进行用于除去非金属污染物的洗涤。
全文摘要
当氮化物半导体单晶晶片被抛光时,产生加工-变换层。为了除去加工-变换层,需要刻蚀。但是,氮化物半导体材料在化学上是惰性的,不存在适合的刻蚀。尽管提出了例如,氢氧化钾或硫酸作为GaN刻蚀剂,但是它们从Ga表面腐蚀地除去材料是弱的。为了除去加工-变换层,进行利用卤素等离子体的干法刻蚀。可以用卤素等离子体刻蚀掉Ga表面。然而,由于该干法刻蚀,再次产生由于金属颗粒的表面污染的问题。为了解决该问题,执行湿法刻蚀,利用诸如HF+H
文档编号C30B29/38GK1875465SQ200480031798
公开日2006年12月6日 申请日期2004年8月6日 优先权日2003年10月27日
发明者中山雅博, 松本直树 申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1