专利名称:照明组件的制作方法
技术领域:
本发明一般涉及照明或照射组件。更具体地说,本发明涉及用于发光元件的封装。
背景技术:
照明系统用于多种不同应用。传统的照明系统使用例如白炽灯或荧光灯的照明光源。最近,其它类型的发光元件,特别是LED,已经用于照明系统。LED具有尺寸小、寿命长和功耗低的优点。LED的这些优点使其可用于许多不同的应用。
随着LED的光强度的增加,LED更加频繁的取代其它的照明光源。对于许多照明应用来说,通常有必要具有多个LED,以提供所需的光强度。可以将多个LED组装成具有较小外形尺寸和较高光照度或辐照度的阵列。
可以通过增加阵列内的单独二极管的封装密度,来提高LED阵列的光强度。可以通过在不增加由阵列占用的空间的情况下增加该阵列内的二极管的数目,或通过保持该阵列内的二极管的数目,而减小该阵列的外形尺寸,来实现封装密度的增加。然而,即使具有整体上有效的热传导机构,局部发热也会减少LED的寿命期限,所以在阵列中紧密封装大量LED关系到长期可靠性。因此,随着LED的封装密度的增加,消散由LED阵列产生的热量变得更加重要。
常规的LED安装技术使用与美国专利申请公开No.2001/0001207 A1中示出的类似的封装,这种封装不能快速输送在LED结中产生的热量,使之远离LED。从而,限制了器件的性能。最近,已经可以得到热增强的封装,在该封装中,LED安装并用引线连接在诸如陶瓷的电绝缘但导热的基板上,或者带有导热孔阵列(例如,美国专利申请公开No.2003/0001488 A1),或使用引线框以电接触连接于导热导电的热输送介质上的晶粒(例如,美国专利申请公开No.2002/0113244 A1)。
尽管最近的方法改进了LED阵列的热学性质,但是这些方法还是存在几项缺点。具体来说,不管基板是诸如陶瓷的无机材料还是诸如FR4环氧树脂的有机材料,基板具有有限的热导率,并且从发热LED到组件的散热部分的热阻限制了LED中的最大功耗,因而限制了阵列内的LED的密度。
为了减小热阻,已知在有机材料中提供导热孔,以将热量从LED传递到基板的相对面,然后传递到散热组件。然而,由于电镀化学材料可能陷入在导热孔中,所以不能电镀封闭导热孔。因此,需要较大直径的通孔,以获得从LED到基板的背面的较低的热阻。因此,导热孔的尺寸限制了LED的最小间距,并且该导热孔的直径限制了由单个通孔所能够输送的热量。
另外,有机和无机基板均具有与其材料相关联的热膨胀系数(CTE)。因为优选的是匹配组件内的材料的CTE,以减小在热循环过程中的材料分层的可能性,所以特别是在诸如难以与聚合材料匹配的陶瓷的低CTE材料的情况下,限制了其它部件材料的选择。
因此,需要具有改进的热学性质的LED封装。
发明内容
本发明提供了一种具有改进的热学性质的照明组件。该组件包括基板,该基板在其第一面上具有电绝缘层,并且在其第二面上具有导电层。多个LED布置在基板上。每个LED布置在通孔中,该通孔穿过在基板的第一面上的电绝缘层,延伸到该基板的第二面上的导电层。每个LED通过通孔操作连接到导电层。
在一个实施例中,基板为挠性的,并且在该基板的第二面导电层为导热的。导电层形成图案,以限定多个电隔离散热元件,这里每个LED电、热连接到相关联的散热元件。散热组件布置为与散热元件相邻,并且通过导热电绝缘材料层与其隔开。
图1示意性示出了根据本发明的照明组件的实施例的透视图。
图2示意性示出了用于图1的组件中的基板的俯视图。
图3A示意性示出了沿图2的线3-3截取的横截面视图。
图3B示意性示出了根据本发明的照明组件的另一实施例的横截面视图。
图3C示意性示出了根据本发明的照明组件的另一实施例的横截面视图。
图4示意性示出了与倒装芯片式LED一起使用的基板的俯视图。
图5示意性示出了沿图4的线5-5截取的横截面视图。
图6示意性示出了与引线接合LED一起使用的另一基板实施例的俯视图。
图7示意性示出了沿图6的线7-7截取的横截面视图。
图8示意性示出了与根据本发明的照明组件一起使用的基板的另一实施例的俯视图。
图9示意性示出了沿图8的线9-9截取的横截面视图。
图10A-C示意性示出了使用多层光学薄膜的照明组件的实施例。
图11A-C示意性示出了根据本发明的成形的照明组件的实施例。
具体实施例方式
下面参照附图详细说明优选实施例,这些附图示出了可以实施本发明的具体实施例。应该理解,在未背离本发明的保护范围的情况下,可以采用其它实施例,并且可以做出结构或逻辑上的变更。因此,并非从限制性的意义上进行下列详细说明,并且本发明的保护范围由所附的权利要求书来限定。
在此使用的LED晶粒(dies)包括,但并不局限于发光元件,仅举几例,如发光二极管(LED)、激光二极管和超辐射器。LED晶粒通常理解为具有用于向二极管提供电力的接触区的发光半导体本体。
图1示出了根据本发明的照明组件20的一部分的一个实施例的透视图。照明组件20包括布置为阵列的LED晶粒22的二维构造。对LED晶粒22进行选择,以使其发射优选波长,例如在红、绿、蓝、紫外或红外光谱范围内进行发射。LED晶粒22可以每个在相同的光谱范围内发射,或者作为另外一种选择,也可以在不同的光谱范围内发射。
LED晶粒22布置在基板32上的通孔30内。基板32由电绝缘介电层34构成,该电绝缘介电层具有布置在其表面上的导电导热材料的带图案层36。通孔30经过介电层34延伸到带图案导电层36,在这里LED晶粒22操作连接到导电层36的接合垫(未示出)上。基板32的导电层36布置为与散热片或散热组件40相邻,并且通过导热材料层42与散热组件40隔开。如果散热组件40为导电的,则层42的材料也为电绝缘的。
电绝缘介电层34可以由多种合适的材料构成,包括例如聚酰亚胺、聚酯、聚对苯二甲酸乙二醇酯(PET)、多层光学薄膜(如在美国专利Nos.5,882,774和5,808,794中所披露的)、聚碳酸酯、聚砜或FR4环氧复合物。
导电导热层36可以由多种合适的材料构成,包括例如铜、镍、金、铝、锡、铅及其组合物。
在根据本发明的一个优选实施例中,基板32为挠性的并可变形。具有聚酰亚胺绝缘层和铜导电层的合适的挠性基板32为可从3MCompany of Saint Paul,Minnesota,U.S.A.得到的3MTMFlexibleCircuitry。
举例来说,散热组件40可以是由诸如铝或铜的导热金属或诸如碳填充聚合物的导热聚合物制成的通常称为散热片的散热器件。举例来说,层42的材料可以是诸如装填了氮化硼的聚合物(与可从3M公司作为3M 2810得到的相类似)的导热粘合材料,或诸如银填充化合物(与可从Arctic Silver Incorporated of Visalia,California,U.S.A.作为Arctic Silver 5得到的相类似)的导热非粘合材料。在优选实施例中,散热组件40具有尽可能小的热阻率,并且优选小于1.0C/W的热阻率。在另一实施例中,散热组件40具有在0.5到4.0C/W的范围内的热阻率。层42的材料具有在0.2W/m-K到10W/m-K的范围内的热导率,优选至少为1W/m-K的热导率。
在图1的照明组件20中,所示出的LED晶粒22是这样的类型,即在LED晶粒的基底上具有一个电触点,并且在LED晶粒的相对表面(顶面)上具有另一个电触点。每个LED晶粒22的基底上的触点电、热连接到在通孔30的底部的接合垫46a,而每个LED晶粒22的顶部上的触点通过接合引线38电连接到导电层36,该接合引线从LED晶粒22延伸到在通孔44的底部的接合垫46b。与通孔30的情况相同,通孔44穿过绝缘层34延伸到导电层36。根据所使用的制造工艺和材料,通孔30、44可以进行化学蚀刻、等离子蚀刻或激光铣切,而穿过绝缘层34。在组装过程中,通孔30具有便于对准放置LED晶粒22的点的优点。
在图2中可以更好地看到图1的导电层36的图案。导电层36形成图案,以限定多个电隔离散热元件50。每个散热元件50定位成通过相关的通孔30、44而电、热连接到相关的LED晶粒22。举例来说,对于在图1中示出的在二极管基底上具有一个电触点,并在该二极管的顶部上具有另一个电触点的LED晶粒来说,在图2中,通孔30和44的位置用虚线表示。根据特定应用的要求,接合垫46a、46b可以定位在带图案的导电层36内,使得LED晶粒22在电力引线48a、48b之间串联电连接。
如在图2中可以更好地看到的,可以仅提供电连接LED晶粒22的狭窄的导电布线迹线,以代替对导电层36形成图案;在优选实施例中,导电层36形成图案,以便只去除电隔离散热元件50所必需的导电材料,保留尽可能多的导电层36,以作为用于由LED晶粒22产生的热量的散热器。在其它实施例中,当形成散热元件50时,可以去除层36的额外部分,散热元件50的从LED晶粒传导热量的能力相应下降。因此,每个LED晶粒22与层36中的导热材料的较大区域直接接触。然后,由于用于每个LED晶粒22的散热元件50的尺寸,层36的每个散热元件50可以从LED晶粒22有效地传递热量。在导电层36和散热组件40之间的层42中使用导热电绝缘材料,允许通过简单地调整LED晶粒22的间距(从而调整每个LED晶粒22的散热元件50的尺寸)使该组件具有任意低的热阻。
取决于具体应用的要求,散热元件50的间距至少为LED晶粒的尺寸(通常大约为0.3mm),但是不存在对于该间距的实际的上限。在一个实施例中,散热元件的间距为2.5mm。
尽管散热元件50在图2中示出为通常正方形的形状,但是散热元件50可以是矩形、三角形或任何其它形状。优选散热元件50成形为有效地贴合基板32的表面。
图3A为沿图2的线3-3截取的放大剖视图。LED晶粒22定位于通孔30内,并用各向同性导电粘合剂(例如可从MetechIncorporated of Elverson,Pennsylvania,U.S.A.得到的Metech6144S)、或各向异性导电粘合剂或焊料的层60,电、热连接到导电层36的接合垫46a上。焊剂通常具有比粘合剂低的热阻,但并不是所有的LED晶粒都具有可焊的金属化基底。由于加工过程中熔化的焊料的表面张力,焊料连接还具有LED晶粒22自对准的优点。然而,某些LED晶粒22会对焊料再流焊温度敏感,则优选使用粘合剂。
在一个实施例中,LED晶粒22名义上为250微米高,绝缘层34的厚度在25到50微米的范围内,并且导电层36的厚度在17到34微米的范围内,但是可以根据LED晶粒22的功率要求变化为高于或低于此范围。为便于在接合垫46b的良好的引线接合(wirebond),导电层36可以包括镍和金的金属化表面。作为化学蚀刻通孔的典型特征,通孔30和44示出为具有倾斜的侧壁49。然而,等离子蚀刻或激光铣切的通孔可以具有基本上垂直的侧壁49。
在某些应用中,当LED晶粒22相对于反射器(未示出)定位时,LED晶粒22的垂直位置是很关键的。如图3B中所示,在这些情况下,金属52在通孔30中向上电镀,以调整LED晶粒22的高度。电镀金属52可以包括或由焊料的镀层构成,从而与典型的焊膏沉积工艺相比,提供精确控制的焊料厚度。
图3C为引线接合LED晶粒22’的放大剖视图,两个电接触垫53都在LED晶粒的相同面,而不是如同在图1至3B的引线接合实施例中那样,在二极管的相对面上。光线从包括接触垫53的二极管22’的相同面发射。导电层36与图2中的导电层相似地形成图案,接合垫46a移至通孔44’的底部。LED晶粒22’定位在通孔30内,并通过导热粘合剂或焊料层60’热连接到导电层36。层60’为导电的或电绝缘的,这取决于应用和LED晶粒22’的类型。
根据本发明的照明组件的另一实施例在图4和5中示出。图4和5的实施例旨在与LED晶粒22”一起使用,两个电接触垫53都在LED晶粒的相同面上,而不是如图1至3B的引线接合实施例中那样,在二极管的相对面上。从与接触垫53相对的二极管22”的面发射光线。如在图4中更好地看到的,导电层36形成图案,以限定散热元件50和接合垫54a和54b。由于两个电接触垫53在LED晶粒22”的相同面上,所以可以使用包围电隔离接合垫54a、54b的单个通孔30。在图4中通孔30的位置用虚线表示,并且可以看到通孔30包围电接合垫54a、54b。
图5为沿图4的线5-5截取的放大剖视图。LED晶粒22”定位在通孔30内,并电、热连接到导电层36的接合垫54a、54b上。如同图1至3B的引线接合方法的情况一样,导电粘合剂、各向异性导电粘合剂或焊料再流焊均属于可以用以将LED晶粒22”连接于导电基板36上的连接方法。如同图1至3B的引线接合实施例一样,倒装芯片式实施例在通过连接于LED晶粒22”的基底上的较大的散热器元件50提供改进的热输送的同时,允许LED晶粒阵列的二维布线。倒装芯片式实施例的一个优点是,悬壁式接合垫54a、54b保持扁平,而引线接合解决方案为了形成引线接合,可能需要相当高(100微米)的高度。另外,倒装芯片式构造通过消除易毁坏的接合引线,增加了坚固性。
在图6和7中示出根据本发明的照明组件的另一实施例。图6和7的实施例利用称为2-金属基板32’的基板,并如图1至3B的实施例中那样,旨在与在二极管的相对面上具有电接触垫的引线接合LED晶粒22一起使用。如在图7中更好地看到的,绝缘层34在其顶面上包括第二导电层36’。LED晶粒22定位在通孔30内,并分别电、热连接到导电层36和36’的接合垫56a和56b上。通孔44充满诸如金属的导电材料,以在层36’的接合垫56b和层36之间建立电连接。如同图1至3B的引线接合方法一样,导电粘合剂、各向异性导电粘合剂或焊料再流焊均属于可以用以将LED晶粒22连接于导电基板36的连接方法。
在图8和9中示出照明组件20的另一实施例。在图8和9的实施例中,在除通孔30和44之外的区域中,去除部分绝缘层34,以露出导电层36。然后,导热封装物70(优选具有大于1W/m-K的热导率)与LED晶粒和导电层36的露出部分接触,以提供从LED晶粒22到导电层36的另外的热流路径。去除的电绝缘层34的形状和面积由制造可靠性问题来决定。当使用透明、导热封装物时,图8和9的实施例也可以特别与从其侧面发射光线的LED晶粒一起使用。透明导热封装物也可用于在不降低LED晶粒光输出的情况下,封装LED晶粒上的或周围的荧光体层(用于颜色转换)。当然,绝缘层34的去除和导热封装物70的使用对于与图4和5中示出的类似的倒装芯片式实施例很实用。
在此说明的每个实施例中,可以使用诸如金属化聚合物或多层光学薄膜(MOF)的反射或波长选择材料作为绝缘挠性基板,使用传统挠性电路构造技术形成带图案的电迹线。在一个实施例中,图6和7的2-金属基板32’的层36’为诸如铬或银的反射材料,并用作反射器,以及(或代替)作为导电电路路由层。或者,具有合适通孔的反射层可以层压到绝缘基板上。正如LED晶粒用于许多不同应用一样,使用光线控制柔性电路系统以封装LED晶粒也可用于多种应用。
目前,存在很多种可以放在刚性电路板上的LED晶粒阵列。这些阵列可用于交通信号灯、建筑照明、泛光灯、照明器材改型及若干其它应用。在现有构造中,LED晶粒安装在非反射电路板上。由于光线的吸收和散射,从LED晶粒入射到电路板上的任何光线并未得到利用。通过在反射、挠性电路上安装LED晶粒,改进了光线的利用。此外,由于基板的挠性性质,阵列可以安装成与例如抛物线形状的照明器材本体一致,以聚焦或引导光线。
通过为在此说明的实施例中的绝缘层34使用诸如多层光学薄膜的反射表面材料,从连接的LED晶粒反射的光线具有被向聚焦元件反射的较大可能性。如图10A到10C中所示,LED晶粒22可以按照在此说明的任何方式连接于平面MOF基板上(图10A)。然后,折叠围绕LED晶粒22的多层光学薄膜80,在LED晶粒22周围生成反射集中器82。在图10B和10C中分别示出反射集中器82的侧视图和俯视图。如图11A到11C中所示,具有连接的LED晶粒22的平面MOF基板(图11A)可以卷成筒状元件84,并用作亮光源。在图11B和11C中分别示出筒状元件84的侧视图和俯视图。
在此说明的用于LED晶粒的各种封装提供许多优点。首要的优点是从LED晶粒到基板32的导电层36、从而到散热组件40的优良的热传递特性。
所说明的封装的另外的益处是基板材料的较低的CTE。置于绝缘层34和不连续导电散热器层36上、然后粘合连接于散热组件40上的LED晶粒阵列的CTE受到散热组件40的CTE的支配,从而减小了在器件的温度循环过程中不同层的分层的可能性。
尽管为了优选实施例的说明起见,已经在此对具体实施例进行了解释和说明,但所属领域的技术人员会理解,在未背离本发明的保护范围的情况下,许多种可以达到相同目的的可选的和/或等同的实施方式可以代替所示出和说明的具体实施例。化学、机械、机电和电学领域的技术人员会容易地理解,本发明可以实施为很多种实施例。本申请旨在涵盖在此讨论的优选实施例的任何修改或变型。因此,显然本发明仅由权利要求书及其等同内容来限制。
权利要求
1.一种照明组件,包括基板,在其第一面上具有电绝缘层,并且在其第二面上具有导电层;多个LED晶粒,每个LED晶粒布置在通孔中,所述通孔穿过所述基板的第一面上的所述电绝缘层延伸到所述基板的第二面上的所述导电层,每个LED晶粒通过所述通孔操作连接到所述基板的第二面上的所述导电层。
2.根据权利要求1所述的照明组件,其中,所述基板为挠性的。
3.根据权利要求1所述的照明组件,其中,在所述基板的第一面上的所述电绝缘层由选自以下组群的材料构成,所述组群包括聚酰亚胺、聚酯、聚对苯二甲酸乙二醇酯(PET)、光反射绝缘聚合物、多层光学薄膜(MOF)、聚碳酸酯、聚砜、FR4环氧复合物及其组合物。
4.根据权利要求1所述的照明组件,其中,贯穿所述电绝缘材料的所述通孔为化学蚀刻的。
5.根据权利要求1所述的照明组件,其中,贯穿所述电绝缘材料的所述通孔为等离子蚀刻的。
6.根据权利要求1所述的照明组件,其中,贯穿所述电绝缘材料的所述通孔为激光铣切的。
7.根据权利要求1所述的照明组件,其中,所述基板的第二面上的所述导电层由选自以下组群的材料构成,该组群包括铜、镍、金、铝、锡、铅及其组合物。
8.根据权利要求1所述的照明组件,其中,所述基板的第二面上的所述导电层由导热材料构成。
9.根据权利要求1所述的照明组件,其中,所述导电层形成图案,以限定多个电隔离的散热元件,每个LED晶粒电、热连接到相关联的散热元件。
10.根据权利要求1所述的照明组件,还包括布置为与所述基板的第二面相邻的散热组件。
11.根据权利要求10所述的照明组件,其中,所述散热组件通过导热材料层与所述基板的第二面隔开。
12.根据权利要求11所述的照明组件,其中,所述导热材料为粘合剂。
13.根据权利要求12所述的照明组件,其中,所述导热粘合材料为装填有氮化硼的聚合物粘合剂。
14.根据权利要求11所述的照明组件,其中,所述导热材料为非粘合剂。
15.根据权利要求14所述的照明组件,其中,所述导热非粘合材料为装填有银颗粒的聚合物。
16.根据权利要求10所述的照明组件,其中,所述散热组件包括导热部件。
17.根据权利要求16所述的照明组件,其中,所述导热部件由选自以下组群的材料构成,该组群包括金属和聚合物。
18.一种照明装置,包括基板,在其第一表面上具有电绝缘层,并且在其第二表面上具有导电层;多个安装通孔,所述通孔穿过所述电绝缘层延伸到所述导电层;多个发光元件,其布置在所述多个安装通孔中,其中,所述发光元件通过所述安装通孔操作连接到所述导电层。
19.根据权利要求18所述的照明装置,其中,所述导电层形成图案,以限定多个散热元件。
20.根据权利要求18所述的照明装置,其中,所述发光元件为LED晶粒。
21.根据权利要求18所述的照明装置,其中,所述发光元件选自以下组群,该组群包括发光二极管、激光二极管和超辐射器。
22.根据权利要求18所述的照明装置,其中,所述多个安装通孔的每一个接收单个发光元件。
23.根据权利要求18所述的照明装置,还包括多个引线接合通孔,该引线接合通孔穿过所述电绝缘层延伸到所述导电层,每个引线接合通孔使所述导电层的相应的引线接合连接垫露出。
24.根据权利要求18所述的照明装置,还包括导热封装,所述封装与所述发光元件和电绝缘层接触。
25.根据权利要求18所述的照明装置,其中,所述基板为挠性的。
26.一种照明装置,包括电绝缘材料层;导热导电材料层,其布置在所述绝缘材料层的底面上,所述导电材料形成图案,以形成多个相邻的散热元件;所述绝缘材料中的多个通孔,每个通孔穿过所述绝缘材料延伸到相关联的散热元件;多个发光元件,每个发光元件布置在所述多个通孔的一个中,每个发光元件热、电联接到与所述通孔相关联的所述散热元件上。
27.根据权利要求26所述的照明装置,其中,每个发光元件还电连接到相邻的散热元件的电连接垫上。
28.根据权利要求27所述的照明装置,其中,每个发光元件电连接到相邻的散热元件的电连接垫上。
29.根据权利要求28所述的照明装置,其中,每个发光元件通过接合引线电连接到相邻的散热元件的电连接垫上。
30.根据权利要求27所述的照明装置,其中,每个发光元件电连接到所述通孔内的相邻的散热元件的电连接垫上。
31.根据权利要求26所述的照明装置,其中,所述电绝缘材料层为挠性的。
32.根据权利要求31所述的照明装置,其中,所述导热导电材料层为挠性的。
33.根据权利要求26所述的照明装置,其中,还包括热连接到所述多个散热元件上的散热组件。
34.根据权利要求33所述的照明装置,其中,所述多个散热元件由低模量材料从空间上隔离,使得所述照明装置的CTE由所述散热组件的CTE支配。
35.一种挠性电路,包括电绝缘材料的挠性层;导电材料的挠性层,其布置在所述绝缘材料的第一表面上,所述导电材料形成图案,以形成多个相邻的散热元件,每个散热元件具有第一电连接垫和第二电连接垫;多个安装通孔,其贯穿所述绝缘材料,其中,每个安装通孔使相关联的散热元件的第一电连接垫露出。
36.根据权利要求35所述的挠性电路,其中,每个安装通孔还使相邻的散热元件的第二电连接垫露出。
37.根据权利要求35所述的挠性电路,还包括多个连接通孔,所述连接通孔贯穿所述绝缘材料,其中,每个连接通孔使相关联的散热元件的第二电连接垫露出。
38.根据权利要求35所述的挠性电路,其中,所述绝缘材料包括至少部分反射的多层光学薄膜。
39.根据权利要求38所述的挠性电路,其中,所述多层光学薄膜成形为非平面光引导结构。
全文摘要
本发明公开了一种照明组件,该照明组件包括基板,该基板在其第一面上具有电绝缘层,并且在其第二面上具有导电层。多个LED晶粒布置在基板上。每个LED晶粒布置在通孔中,该通孔穿过在基板的第一面上的电绝缘层,延伸到该基板的第二面上的导电层。每个LED晶粒通过该通孔操作连接到导电层。
文档编号H05K1/00GK1902757SQ200480039911
公开日2007年1月24日 申请日期2004年11月9日 优先权日2003年12月2日
发明者约翰·C·舒尔茨, 唐纳德·K·拉尔森, 迈克尔·N·米勒 申请人:3M创新有限公司