专利名称:功率模块的制作方法
技术领域:
本发明系关于一种功率模块,特别关于一种应用在电源变换器的功率模块。
背景技术:
高效率和高功率密度一直是业界对电源变换器的要求。高效率意味着减少能耗, 利于节能减排保护环境,并减少使用成本。高功率密度则意味着体积小、重量轻,减少运输成本和空间需求,从而减少建设成本;高功率密度也意味着材料使用量的减少,进一步利于节能减排保护环境。因此,电源领域对高效率、高功率密度的追求将永不停息。电源变换器由于用途不同,其种类较多。由转换电能类型来分,其可分为非隔离型AC/DC电源变换器,例如,由一个用在功率因数校正(下称PFC电路)的AC/DC转换电路组成;非隔离型DC/DC电源变换器;隔离型DC/DC变换器;隔离型AC/DC电源变换器,例如, 由一个PFC电路加一个或者多个DC/DC变换器而成;DC/AC、AC/AC等等。由于需要转换的电能性质和转换的级数不同,各种变换器的容易达成的功率密度和效率也不尽相同。以隔离型AC\DC电源变换器为例,目前业界普遍的功率密度为10W/inch3,效率为90%左右。非隔离型AC/DC电源变换器、隔离型DC/DC变换器和DC/AC的效率和功率密度则会还高些。如前所提,电源变换器的高效率意味着低能耗。如效率90%时,其转换能耗约是整个电源变换器总输入能量的10%。效率91%的电源变换器,其转换能耗则降低为总输入能量的9%。也就是说,效率每提升一个点,其能耗就较90%效率的电源变换器降低10%,极为可观。事实上,电源变换器效率提升的努力常常以0. 5%甚至0. 的量级进行。电源变换器的能耗主要由通态损耗和开关损耗特别是有源器件的开关损耗组成。 开关损耗受工作频率的影响较大。电源变换器,特别是开关电源变换器,为降低音频噪音, 其工作频率通常在20kHz以上。其实际工作频率的选择受无源器件特别是磁组件的影响较大。若磁组件体积小,为了可靠工作,通常需要高频率来降低其工作磁通密度从而带来高开关损耗;或者减小磁性组件中线组的线径并增加匝数,从而增加通态损耗,均带来高损耗。 反的,若磁组件体积大,则可以在保证可靠工作的前提下降低工作频率从而降低开关损耗; 也可以增加磁性组件中线组的线径或者减小匝数,从而降低通态损耗,以降低总损耗,得到高效率。因此,不难理解,提升电源内部的空间利用率,是得到高功率密度或者高效率的关键因素的一。空间利用率越高,留给对电源变换效率很重要的无源器件特别是磁性组件的空间就越大,就更容易使用到大体积的无源组件,从而提升电源效率。也可以通过使用大体积的无源器件来增加电源总功率,从而提升电源变换器的功率密度。所以,高的电源空间利用率,更易于在特定功率密度下达成高效率或者在特定效率下达成高功率密度,也有机会高功率密度和高效率兼顾。半导体器件是决定电源变换器效率的重要因素的一。但使用半导体器件,往往不可避免的需要使用对电变换效率无益的额外材料,如保护半导体的封装材料、帮助散热的散热器、固定半导体器件的夹具等等。这些材料在电源变换器内部的比例越大,电源的内部
5空间利用率就越差。也正因为此,功率半导体器件及其被使用而实际占用的空间体积(下称功率器件占用空间),越来越被重视。集成功率模块antegrated Power Module, IPM),由于将多个半导体器件集成在一个器件封装里,为提升封装内的空间利用率提供了可能。但现有功率模组并不能很好降低功率器件占用空间,从而少有被高性能电源转换器使用。因此,为进一步提升电源变换器的功率密度或者变换效率,需要空间利用率高的、 成本合理的功率模块解决方案。目前的已有技术尚不能很好满足。
发明内容
有鉴于上述课题,本发明提出了一种适合电源变换器的功率模块,用以提升功率密度或效率的解决方案,并给出了支持所述的解决方案的功率模块实施方案。为达上述目的,依据本发明的一种功率模块包括一第一功率器件及一第二功率器件,各所述的功率器件被封在同一封料中,各所述的功率器件具有至少两个电极,所述功率器件的至少一个具有至少三电极,所述功率器件的至少一个的工作频率在25kHz以上,其中所述的功率模块是应用在一电源变换器,所述的电源变换器内部至少一个处功率器件的操作电压高于48伏特,所述的电源变换器的功率密度及最高效率分别大于15W/inch3和高于92%、或者所述的电源变换器的功率密度大于20W/inch3、或者所述的电源变换器的最高效率高于93%,所述的功率模块占所述的电源变换器总体积比例小于50%,应用所述的功率模组的电能变换级处理功率占所述的电源变换器总输出功率至少30 %以上,所述的电源变换器总输出功率在150W以上。所述的电源变换器是一隔离型AC/DC电源、或非隔离型AC/DC电源变换器、或隔离型DC/DC变换器、或DC/AC变换器,所述的电源变换器的功率密度及最高效率分别大于20w/ inch3且高于93%、或者所述的电源变换器的功率密度大于25W/inch3、或者所述的电源变换器的最高效率高于94%。当所述的功率模块立装在一电路板的一表面时,所述的功率模块的最高点离所述的电路板的所述的表面的高度系在35mm以下,其中所述的功率模块的总厚度系小于6mm。所述的功率模块的最高点离所述的电路板的所述的表面的高度系在21mm以上。所述的功率模块的引脚是从所述的功率模块的下方伸出且直立在所述的电路板。所述的功率模块具有一前表面和一后表面,其中,处在5m/s均衡风速平行风散热环境下,所述的前表面和所述的后表面,至少80%以上面积内,各点最大温差,小于所述的前表面和所述的后表面相对于工作环境平均温升的20%。所述的功率模块是应用在一电源变换器,所述的电源变换器的功率密度及最高效率分别大于25W/inch3且高于95%、或者所述的电源变换器的功率密度大于30W/inch3、或者所述的电源变换器的最高效率高于96 %。所述的功率模块所应用的电源变换器内部至少一个处功率器件的操作电压高于 200伏特。所述的功率模块的宽度小于60mm,其中于400V的操作电压下,其引脚间距系介在 3mm至5mm、其中在30V的操作电压下,其引脚间距系介在0. 5mm至2mm。所述的功率模块还包括一第一散热单元,所述的第一功率器件及所述的第二功率器件系设置在所述的第一散热单元上方;一引线框架,与所述的第一功率器件及所述的第二功率器件的至少一个电性连接;以及一封料,系包覆所述的第一功率器件、所述的第二功率器件及所述的引线框架的一部分。所述的第一散热单元具有一第一区及一第二区,所述的第一功率器件设置在所述的第一区,所述的功率模块还包括一导热绝缘材料层,设置在所述的第二区并具有一绝缘层,第二功率器件通过所述的导热绝缘材料层设置在所述的第一散热单元;其中所述的封料,还包覆所述的导热绝缘层的一部分;以及所述的第一散热单元,与所述的第一功率器件及所述的第二功率器件的至少一个电性连接。所述的第一散热单元与所述的引线框架一体成型。所述的第一散热单元完全设置在封料内、或部分位在封料外、或完全位在封料外。所述的第一散热单元系与一穿出所述的封料的引脚连接、或是所述的第一散热单元穿出所述的封料并形成一引脚。所述的第一散热单元系与一电压静地点电性连接。所述的第一散热单元系分割是多个部分。所述的导热绝缘材料层还具有一线路层,所述的引线框架延伸而连结在所述的线路层。所述的引线框架延而伸连结在所述的第一功率器件及所述的第二功率器件的至少一个。所述的功率模块还包括一第二散热单元,设置在所述的第二功率器件与所述的导热绝缘材料层之间。所述的功率模块,还包括一第三散热单元,设置在所述的第一散热单元或者由所述的第一散热单元延展而成。所述的第三散热单元系穿出所述的封料。所述的第三散热单元系穿出所述的封料并具有一弯折。所述的功率模块,还包括一第四散热单元,与所述的第三散热单元连结,并与所述的封料具有一空隙。所述的导热绝缘材料层是金属基板或金属化陶瓷基板。所述的功率模块,还包括一键接材料层,所述的第一功率器件通过所述的键接材料层连接所述的散热单元,所述的键接材料层的材料的热导系数大于等于2W/m. K。所述的功率模块,还具有一排引脚,其穿出所述的封料,并作为讯号传送或散热。所述的排引脚的散热总和大于等于所述的功率模块总散热量的5%。所述的功率模块还包括一控制器件,设置在所述的第一区。所述的功率模块还包括一绝热层,设置在所述的控制器件与所述的第一散热单元之间。所述的功率模块还包括一高频电容器,集成在所述的功率模块内。所述的功率模块还包括一温度传感器,集成在所述的功率模块内。所述的第一散热单元的厚度大于所述的功率模块的厚度的20%。所述的第一散热单元的厚度小于3mm。所述的封料与所述的第一功率器件或与所述的第二功率器件之间距小于所述的功率模块的厚度的60%,并且小于3mm。所述的导热绝缘材料层在IOX 10面积的上下热阻系小于I/W。所述的功率模块还包括一第三功率器件,设置在所述的第二功率器件上;一第四功率器件,设置在所述的第一功率器件上;一引线框架,位在所述的第一功率器件与所述的第四功率器件之间,并位在所述的第二功率器件与所述的第三功率器件之间,并位在所述的第三功率器件及所述的第四功率器件上;以及一封料,系包覆所述功率器件及所述的引线框架的至少一部分。所述的电源变换器至少含有两块所述的功率模组。所述的两块功率模组可用同个封料模具进行封料。所述的封料的导热系数高于1. 2ff/m. K。所述的封料的导热系数高于1. 8ff/m. K。承上所述,由于本发明的功率模块集成了多个功率器件,故可大幅提升功率密度或效率,例如所述的功率模块所应用的电源变换器的功率密度及最高效率分别大于15w/ inch3和高于92%、或者电源变换器的功率密度大于20W/inch3、或者电源变换器的最高效率高于93%。电源变换器可以是一 AC/DC电源变换器、或隔离型DC/DC变换器、或DC/AC变换器,电源变换器的功率密度及最高效率可分别大于20W/inch3和高于93%、或者电源变换器的功率密度大于25W/inch3、或者电源变换器的最高效率高于94%。且所述功率器件的至少一个的工作频率在25kHz以上。所述的功率模组作为一组件应用在电源变换器中, 所述的功率模块占所应用的电源变换器总体积比例小于50 %。所述的功率模组作为一功率组件应用在电源变换器中,应用所述的功率模组的电能变换级处理功率占所述的电源变换器总输出功率至少30%以上,所述的电源变换器总输出功率在150W以上。所述的功率模组为了提升更高空间利用率,适合应用在较为复杂的系统,前述电源变换器例如是一 AC/DC 电源变换器、或隔离型DC/DC变换器或DC/AC变换器,所述的电源变换器内部通常至少一个处功率器件的操作电压高于48伏特。若是AC/DC电源变换器,所述的电源变换器内部通常至少一个处功率器件的操作电压高于200伏特。另外,由于本发明的第一功率器件非通过导热绝缘材料层设置在散热单元,故可降低导热绝缘材料层的成本。此外,通过本发明所揭露的,用以提升电源变换器功率密度或者效率的封装方法和结构,可以获得与现有技术相比,更佳的热性能,电性能,经济性能, EMC性能与更高的可靠性。其内部空间利用率很高,使用方便,非常有利于提高变换器功率密度或者效率。本发明给出的具体功率模块具体实施,也非常可行有效。本发明非常适合用以提升电源变换器的整体性能和性价比。此外,本发明功率模块将多个功率器件堆栈在一起,既可以减少连接线减低通态损耗,又可以减少高频阻抗,降低开关损耗,进一步提升电源性能。而且对于桥式电路,包括半桥、全桥、三相桥等,堆栈后就无需原先用在绝缘的部分材料,既可节约成本,又可提升空间利用率,进一步提升电源变换器性能。
图1是本发明优选实施例的一种功率模块的示意图;图2及图9显示本发明优选实施例的一种功率模块应用的全桥电路的不同态样;以及图3至图8以及图10至图22是本发明优选实施例的功率模块不同态样的示意图。主要组件符号说明10 功率模块ll、lla、llb、llc 散热单元111 第一区112:第二区12 第一功率器件13 导热绝缘材料层131 导热层132 绝缘层133 线路层13a 铜基板14 第二功率器件15:引线框架16 封料17 键接材料层18 控制器件19a 第三功率器件19b:第四功率器件Al 前表面A2 后表面B 电路板C 电容器D 厚度IL:绝热层P2、P1:引脚Sl S4 开关器件T 高度W 线材
具体实施例方式以下将参照相关图式,说明依本发明优选实施例的一种功率模块,其中相同的组件将以相同的参照符号加以说明。请参照图1所示,本发明优选实施例的一种功率模块10可例如应用在电源变换器 (powerconverter)或是其它需要功率变换的装置上,且功率模块10所应用的一电源变换器的功率密度及最高效率分别大于15W/inch3和高于92%、或者电源变换器的功率密度大于20W/inch3、或者电源变换器的最高效率高于93 %。电源变换器可以是一 AC/DC电源变换器、或隔离型DC/DC变换器、或DC/AC变换器,电源变换器的功率密度及最高效率分别大于20w/inch3和高于93%、或者电源变换器的功率密度大于25W/inch3、或者电源变换器的最高效率高于94%。另外,电源变换器也可是交流/交流(AC/AC)变换器。若电源变换器应用在AC/DC电源变换器上,功率模块10则可应用在电源变换器的功率因子校正部分(power factor correction,PFC)、DC/DC—次侧部分(以下称 D2D_Pri)或 DC/DC 二次侧部分(以下称D2DJ5ec)。功率模块10占电源变换器总体积比例小于50%,应用所述的功率模组的电能变换级处理功率占所述的电源变换器总输出功率至少30 %以上,所述的电源变换器总输出功率在150W以上,所述的电源变换器内部至少一个处功率器件的操作电压高于48伏特。功率模块10是一封装体,包括多个功率器件(power chip),如第一功率器件12及一第二功率器件14。第一功率器件12及第二功率器件14的至少一个的工作频率在25kHz 以上,以提升功率转换效能。以下是本实施例的功率模块10的较佳实施态样,功率模块10 包括一第一散热单元(heat sink) 11、一导热绝缘材料层13、一引线框架(lead frame) 15 以及一封料(molding material) 16.第一散热单元11设置在封装体的一底侧,并具有一第一区111及一第二区112。第一功率器件12及第二功率器件14系设置在第一散热单元 11上方,第一功率器件12设置在第一区111,导热绝缘材料层13设置在第二区112。第二功率器件14设置在导热绝缘材料层13并与引线框架15电性连接。封料16系包覆第一功率器件12、导热绝缘材料层13、第二功率器件14及引线框架15的至少一部分,并构成为封装体的主要外观。第一功率器件12及第二功率器件14被封在同一封料16中。第一功率器件12、或及第二功率器件14所述的电源变换器内部至少一个处功率器件的操作电压高于48伏特第一散热单元11可以是一独立部件或与引线框架15 —体成型,并可为电和热的良导体,例如铜。于此,散热单元11是作为第一功率器件12的载板。第一散热单元11可完全设置在封料16内、或部分位在封料16外、或完全位在封料16外。此外,第一散热单元 11的厚度可大于功率模块10的厚度的20%,且小于3mm。保证良好的热传递后,热量实现从功率器件传递到散热单元中,再由散热单元横向传递到各个方向,以帮助实现各个方向的热均勻性。那么,所述的散热单元就需要有一定的厚度以便支撑横向传递功能。本发明提出,所述的散热单元的厚度以大于功率模块厚度T的20%为佳。由于散热单元是热良导体,以铜为例,其导热系数可以达到400W/m.K。若其厚度占到整体的20%以上,则意味着整个功率模块中,散热单元所在区间横向热传递的平均能力在400W/m. Kx20%= 80W/m.K以上,会更有利于热的横向传递。所述的比例越高,横向导热能力就越好,更容易实现热的均勻性;所述的比例高,也意味着封料等相对非热良导体比例低,厚度薄,更容易将散热单元上的热带到功率模块的表面,以便与表面流体进行热交换。也就是说,在散热单元宽度一定的前提下,其厚度越大,越容易具备大的截面积,占整体比例就越大,热传递能力就越强。但实际上,散热单元厚度要与整体厚度和成本等因素权衡。以满足总厚度小于6mm为例,散热单元厚度以不超过3mm为宜。基于前述,其厚度占功率模块整体厚度当在20%以上为佳。 这样更有益于实现上述的双面散热特性。第一功率器件或第二功率器件具有至少两个电极,所述的些功率器件的至少一个具有至少三个电极,例如第一功率器件12及/或第二功率器件14具有至少三个电极。功率器件例如是金属氧化物半导体场效晶体管(MOSFET)的器件,对于一个MOSFET的器件而言,其通常有两个相对平行的面上表面和下表面。上表面上往往会设置两个电极源极 (source)和间极(gate),下表面电极是漏极(drain),下表面利用一键接材料层17可直接与散热单元11组装,键接材料层17可包括钎焊的焊料、导电银胶、或烧结金属材料等。此类键接材料的热导系数较高(通常不低于2W/m. K),且此层的厚度可以控制得比较薄(例如200um以下,通常低于lOOum)。因此,从功率器件12和散热单元11之间的传导热阻可以控制的比较低。例如,此键接材料层17的热导率是20W/m. K,厚度是lOOum, 面积是IOmm见方,其热阻是0.05K/W。第一散热单元11自身的传导热阻通常也非常低,因此,就可以获得非常低的器件结点至第一散热单元11外壳的热阻(Rjc),且,由于第一散热单元11的热容较大,因此,功率器件的抗热冲击的性能也很优良。总而言的,即直接组装至第一散热单元11的第一功率器件12的热性能非常优良。且由于第一散热单元11的存在, 功率模块10的热会较均勻,更有利于热管理。当然,此处仅以功率器件为例进行描述。由于本实施例的封装类型是电源内部使用,为达成更高空间利用率和提升功率模块10性能,所述的模块表面无需与内部电路全部电绝缘。以降低绝缘成本和绝缘造成的空间浪费,散热能力衰减等不良。所以在一些具体场合,可以直接利用第一散热单元11作为导电信道,由于第一散热单元11通常是铜、铝等电的优良导体,且厚度相对较厚(通常不低于0. 5mm),其导电性能极佳。因此,可以获得更佳的电气性能,减小发热量,从而进一步改善封装体的热性能。更进一步,第一散热单元11可以直接作为引脚(Pin)使用,或者与至少一个引脚相连,即,引脚可以是和第一散热单元11是一体成型的,或者引脚和第一散热单元11通过导线接合(wire bonding)、焊接、钎焊、导电胶粘接等方式实现良好的电连接,以更充分利用所述的表面的电良导体。这样大大减小了器件到第一散热单元11的热阻,也使第一散热单元11这个电良导体同时被发掘热和电的能力。从而提升空间利用率,以利于提升电源变换器功率密度或变换效率。另外,功率模块10—厚度D可在6mm以下。由于现在的电源需求,希望整体越薄越好,一个工业单位厚度(1U),约是44. 45mm厚,是日后电源走势。如图21所示,功率模块 10立装在一电路板(PCB)B,其最高点离电路板B的表面的高度T在35mm以下。同时,为了尽可能使用电源内部空间,所述的功率模块高度也不宜太低,其高度使用当在最高点高度的60%以上为宜,例如功率模块10的最高点离电路板B上表面的距离当高于35讓劝0% =21mm为佳。在本实施例中,功率模块10的引脚是从功率模块10的下方伸出且直立在电路板B,功率模块10是直插型封装(如SIP或者DIP)。另外,图22显示本发明一种功率模块10的一应用案例截面图尺寸。散热单元11 的厚度占功率模块10的总厚度以20%以上为佳,举例来说,采用的散热单元11 (Cu)厚度是 1. 5mm,占总厚度比例约是32. 6%,大于希望的20%,所以具备较好的热均勻能力。封料16 的前表面Al离打线的线材W最高点设计距离是0. 24mm,小于希望的0. 5mm,所以具备较好的功率器件(Die) 12、14往封料16前表面传递能量的能力。封料16距离功率器件上表面的最薄处是1. 24mm(即封料前表面Al至其中一功率器件12或14的上表面),实际平均厚度在2. 5mm以下,满足小于3mm的期望,并满足小于总厚度55%,满足期望的60%要求。所述的实施例具备良好的双面散热能力,自身散热能力较强,无预留安装螺丝孔,空间利用率更高。图22所示的功率模块10的总厚度是4. 6mm,其依序由0. 24mm(前表面Al至线材W最高点)、1· 0mm(线材W高度)、0. 175mm(器件12、14厚度)、0. 05mm(焊料厚度)、0· 5mm(引
11线框架15厚度)、0. 05mm (焊料厚度)、1. 03mm (导热绝缘材料层13厚度)、0. 05mm (焊料厚度)及1. 5mm(散热单元11)所组成。在用在以2700W AC/DC 48V输出通信电源实验中,由于所述的实施例较现有技术改善体积非常明显,使得DC/DC级磁性组件从原先较小的PQ32/30转为PQ35/35,从而使工作频率从原先的IOOkHz降为65kHz,效率提升大于0. 5%。同样,PFC级磁性组件从原先的 PQ35/35转为PQ40/40,使得工作频率从原先的70kHz将为45kHz,效率提升大于0. 3%。而且,由于频率的降低,驱动损耗也明显下降,并由于效率提升,风扇功耗也可以下降,从而带来辅助电源损耗大为下降,提升效率可达0. 2%。由于功率模组,内部集成多个器件,路径更为优化,其直流阻抗和交流阻抗均有下降,直接对效率的贡献也可达0. 1 %。这样一来,实际总体效率提升接近1 %,非常可观。这些都主要是由于所述的功率模组的实施例大大提升了空间利用率带来的。承上所述,所述的功率模组尤其适合应用在高性能的电源变换器中,所述的电源变换器的功率密度及最高效率分别大于25W/inch3和高于95%、或者所述的电源变换器的功率密度大于30W/inch3、或者所述的电源变换器的最高效率高于96%。由于在变压器的一次侧或二次侧等场合中,全桥电路极为常用。所以,本实施例的功率模块10可被用在全桥电路中。图2是全桥电路示意图,要满足所述的应用,功率模块 10至少要能够排布下8个功能引脚,即Vin, GND、VA、VB、Gl、G2、G3、G4。由于典型应用下, Vin、GND、VA、VB各引脚间,电压可达400V,其引脚间绝缘距离以2 3mm为宜,Gl至VA、G2 至VB、G3至GND、G4至GND则电压较低,为30V以下,引脚间绝缘距离以0. 5 Imm为宜,引脚本身所需宽度可设计在0. 5 2mm,加上有些场合需要集成温度传感器等器件,至少需要预留2个引脚以备用。这样一来,功率模块的封装宽度可在6cm以下为较佳。为进一步提升功率模块10性能,充分发掘潜力,功率模块10当具备双面散热能力。双面散热能力的定义如下一足够大空间中有均勻等速空气流体,功率模块两个表面均不给以额外散热装置,将功率模块至于足够大空间中,直接面对空气,两表面与空气流体平行;两表面散热能力相差不超过1倍,即任一表面散热能力不低于两表面总和的1/3为佳。在本实施例中,功率模块的两个最大的主表面,一前表面(封料16)A1和一后表面(散热单元11及封料16)A2,均能用来散热。举例来说处在5m/s均衡风速平行风散热环境下,功率模块10的前表面Al和后表面A2,至少80%以上面积内,各点最大温差,小于所有表面相对于工作环境平均温升的20%。这样就可以大大增加有效散热能力,更容易在低损耗场合下自行散热而无需额外散热器,大大提升电源的内部空间利用率。为了实现更好的散热特性,封料的厚度越薄越好,例如,封料16上表面与芯片上表面键合导电材料间的最小间距可控制在0. 5mm以下为佳。此外,封料16平均厚度小于功率模块10的厚度的 60%,并且小于3mm。这里封料16平均厚度的定义如下如图1,功率模块所有封料16的总体积,除以由其主体高度D与其宽度(图未显示)形成的主面积,得到的即为所述的功率模块封料16的平均厚度。为方便实现双面散热,所述的种功率模组以如图21所示安装方式应用在电源变换器为佳。即所述的种功率模组是直插型封装(如单列直插SIP或者双列直插DIP),以方便两个主要表面与环境进行热交换,更易于达成双面散热效果。在风流速和风流温度已先被设定的状态下,决定表面热交换能力的是表面平均温度。平均温度的定义如下将表面分成若干个微等份,所有微等份的各自面积与各自温度相乘后,乘积全部相加在一起(即所述的表面温度的积分);相加结果再除以所述的表面总面积,即是所述的表面平均温度。平均温度越高,则散走的热量就越高。当需要耗散的热量一定时,则意味着平均温度必须被决定在一定范围,此时如果希望表面热分布尽量均勻,则意味着最高温度点较低,从而更有利与得到低的功率器件结点温度,从而使器件可靠工作,并有更好性能。另外,前述所指的一表面区域平均温升的定义如下按上述表面平均温度的定义得到所述的表面区域平均温度;进入所述的区域的流体温度和出所述的表面的流体温度相加除以2得到所述的区域的流体平均温度;所述的表面区域平均温度减去所述的区域流体平均温度即是所述的表面区域平均温升。为减少使用时的机械应力,以使模块更容易设计得薄,所述的功率模块也可以不必预设螺丝安装孔。以进一步提升空间利用率。若需安装额外散热器,可选择无螺丝的解决方案,如直接粘结等。这样一来,本实施例的功率模块10将大大提升所述的类型封装的量,也很符合目前和未来电源变换器的需求,并能提升电源变换器的空间利用率,从而提升电源的功率密度或者效率。另外,请续参照图1所示,第二功率器件14系通过一导热绝缘材料层13设置在散热单元11上,非直接置在散热单元11。导热绝缘材料层13可具有一绝缘层132,比如用陶瓷片绝缘。为保证散热能力,导热绝缘材料层13在10 X 10面积的上下热阻应当小于I/W。 导热绝缘材料层13比如是金属基板或金属化陶瓷基板,例如覆铜陶瓷基板(direct bonded COpper,DBC)、金属化陶瓷片上组装厚铜电路层、覆铝陶瓷基板(direct bonded alumihum, DBA)、铝基板、铜基板,或其它形式的高导热基板。于此导热绝缘材料层13以DBC基板为例, 导热绝缘材料层13可包括一导热层131、一绝缘层132及一线路层133,其中导热层131及线路层133可以是铜,绝缘层132可以是陶瓷。以常用的DBC基板为例,相对于现有技术,由于本发明可以仅有一部分元器件 (第二功率器件14),安装在导热绝缘材料层13上,因为搭载在其上的元器件数量减少, DBC基板面积也可以相应减小,如此可以降低封装的材料成本,提高封装的经济性能。并且,因为DBC基板面积的减小,使得由于DBC基板和散热单元11,封料16之间热胀系数 (coefficient of thermal expansion, CTE) IfcM-^Ifcft (warpage) M^-ik^W 所缓解。这是因为由于不同材料CTE之间的失配而引起的挠曲通常随着尺寸的增加而加剧。如此,可以降低封装体内的应力,从而进一步提高封装体的可靠性。所以,由于部分器件(第一功率器件12)已经直接与散热单元11相连,相对于现有技术,本发明的功率模块需要绝缘的材料明显减少,不尽降低了成本,更提升了热管理能力,还更有利于减少各材料 CTE不匹配造成的可靠性设计难度。在实际应用中,有一些对散热要求非常苛刻的场合,还可以选用导热系数更高的 (不低于lW/m. K,尤以大于1. 2ff/m. K乃至大于1. 8ff/m. K为佳)封料16,如此,可以增加封料一侧的散热能力,从而实现更优良的双面散热,进一步提升整个封装体的散热能力。图3是所述的封装类型的另一种扩展应用,可以将散热单元表面进行绝缘处理, 使第一散热单元11完全由封料16包覆,使其任一表面不外露、或是通过一绝缘体使散热单元11与外界隔离,以便使用在希望绝缘的场合。为保证散热能力,所述的绝缘体或封料16 在IOmmXlOmm面积的上下导热热阻应当小于!3K/W。为使功率模块的封装类型可以扩展到更多场合,其可以被设计成双排Pin。如图4 所示。当内部电路过于复杂,以至于需要更多引脚,可以在前面提及的特征上,再加一排引脚P2。若此类封装类型被应用在单排引脚Pl就足够的场合,则图中的上排引脚P2可以被设计成散热用途。例如,经由引脚P2的散热总和大于等于功率模块10总散热量的5%。另外,为保证其能够有效帮助散热,实际使用时,其与环境的平均温差与前面所谈及的前后两表面中平均温度较高的一个与环境的平均温差,温差差异不应超过50%。众所周知,电源内部,电压跳变点越多,造成的电磁辐射往往就越强,从而给电源电磁兼容带来难度。本发明的散热单元11,由于具备电特性,其面积又相对较大,所以对电磁辐射带来隐患。但如果优化设计所述的散热单元11的电特性,反而有机会将其设计成电磁辐射的屏蔽层,更有利于电磁相容。例如,可以将散热单元11连接到电压静地点,即相对来讲,所述的电位相对与大地,比较安静,少噪音。如图2中的Vin和GND,相对与其它电压点,就是比较平静的。将散热单元11设计成Vin或者GND,更有利于电磁兼容的。但实际操作中,为了便于实现,需要功率器件与散热单元11连接的那个面只有一个电极,在本实施例中是第一功率器件12。比如M0SFET,其漏极(Drain)与源极(Source)间承受的电压往往高于门极(Gate)与源极(Source)间的电压,所以,其器件的源极和门极往往共享一面,漏极往往独占一面。这样一来,将漏极作为静地点的功率器件(第一功率器件12),直接与散热单元11连接,既可以更好地进行电磁兼容,又方便工艺。如图5,可以将背面的散热单元11拓宽/长,甚至折弯,使其部分超过封料16包覆的部分,以扩大表面积。超出封料16包覆的散热单元11的两面均可以实现和环境的热交换,因此,可以进一步加强功率模块10的散热性能。如图6,在某些场合下,封装体内部不仅仅需要搭载一些功率半导体器件,还需要集成一些控制功能。控制线路通常比较复杂,因此需要使用布线密度更高的基板,如PCB板或者IC。在此态样中,可以将搭载控制线路的控制器件18,例如高密度布线板或者控制IC 也封装至封装体内。如图7,控制器件18可以是导热系数较低,但是布线密度较高的高密度基板。以便可以集成更多的控制功能。控制器件18通常耐温等级较功率器件的耐温等级相比较低, 因此,在控制器件18和散热单元11之间放置一个绝热层(热导率通常低于0. 5ff/m. K) IL0 如此,可以降低控制器件18,以及其上所搭载器件的温度。如图8,上面所述散热单元11,不限于一整块,其上可以根据需要做进一步的分割,以形成一些电路图形,即散热单元11也可以具有多个电极。如此可以进一步增加功率模块设计的灵活性。功率模块10由于将多个器件集成在一起,相比分立器件,其电流流通回路被大大减少,从而降低了回路电感,即减少了损耗,又降低了电压噪音。但仍可以继续被优化。如图9,以所提及全桥电路为例,增加集成一高频电容器C至功率模块10内部,以进一步减少回路,降低回路电感量。通常电源变换器为了安全可靠,会实时监测功率半导体的温度状态,若温度过高或者升温过快,则说明电路有危险,可以提前采取预防动作,如关闭电源等。分立器件的温度检测,只能在其外部增加温度传感器,所以,无法及时反映内部温度状态,且温度传感器的安装也较复杂。所以,功率模块中,还可以集成温度传感器,既提升了温度监测效果,又简化了使用。如图10所示,此态样的功率模块还包括一第二散热单元(heat sink) 11a,其设置在第二功率器件14与导热绝缘材料层13之间。由于功率器件在工作过程中,例如会经历超过正常工作电流数倍以上的瞬时冲击,故,通过第二散热单元11a,可以在不增加导热绝缘材料层13 (DBC基板)面积的情况下,改善搭载至DBC基板上需要承受热冲击的组件的抗热冲击能力。另外,引线框架15系延伸与导热绝缘材料层13的线路层133连接。如图11所示,为了进一步改善导热绝缘材料层13(以DBC基板为例)上发热量较大的组件(例如第二功率器件14)的抗热冲击的性能,以及进一步改善DBC基板上线路的承载电流的能力(因为,DBC基板上铜层的厚度受DBC成型工艺的影响,一般厚度不高于 0. 5mm,通常不高于0. 3mm),降低电流传导阻抗,更可以将引线框架15的面积增加,通过一导电材料键合至DBC基板的线路层上。利用此结构开发的一款功率模块的实物照片见图 12 (未经封料包覆)。其中导热绝缘材料层13通过钎焊的方式焊接至第一散热单元11上, 引线框架15同样通过钎焊的方式和导热绝缘材料层13的线路层实现电气与机械连接。图 12所示的功率模块10所使用的DBC基板,其线路层厚度是0. 3mm,引线框架15的厚度是 0. 5mm,因此,采用此结构的传导电阻和直接将芯片键合在DBC基板线路层上相比降低60% 以上,如此可以有效降低模块产热量,从而提高模块的电性能,改善模块的散热性能。如图13所示,在功率模块10内除了使用导热能力较好的DBC基板以外,也可以使用类似铜基板13a等导热能力较好的基板。一般铜基板的结构是,在一较厚的铜衬底上,生成绝缘层和薄铜线路层。而且绝缘层和薄铜线路层的层数不以一层为限,可以是多层。在某些场合下可以实现更高的布线密度。一般而言,第一功率器件与第二功率器件皆由导线(wire bonding)来传输讯号, 由于导线往往是用铝导线(Al wire)来完成,内阻很大。用金导线(Auwire),则成本太高。 虽然最近工艺有铜导线(Cu wire)出现,但仍旧内阻很大。如图14所示,为进一步降低封装内阻造成的损耗,本发明可以用导线接合(wireless bond)工艺,如铜片取代导线接合来实现电流传递,大大降低了封装内阻,且成本也不会太高。本态样系通过引线框架15延伸连结于第一功率器件12及第二功率器件14的至少一个而取代导线。图15所示是一进一步改善热传递能力的方案。由于本发明提及的功率模块,往往是有些器件(例如第一功率器件1 直接与散热单元11相连以提升电性能、热性能,有些器件(例如第二功率器件14)与散热单元11之间则有绝缘组件(例如具有绝缘层的导热绝缘材料层1 ,从而导致整个模块中封料16的厚度不均,也就是说,局部封料16与器件的距离会比较厚,使封料16的温度不均勻,从而影响了封料16表面的散热能力。图15中,在封料16较厚的地方增加热良导体的一第三散热单元1 lb,其系设置在第一散热单元11的第一区,从均勻化封料16至器件的厚度,改善散热能力。另外,如图18所示,第三散热单元lib系穿出封料16,并具有一弯折。第三散热单元lib穿出封料16可作为引脚Pin、或是单纯散热、或是部分作为引脚部分用来散热。第三散热单元lib通过弯折可减少功率模块10直立时的尺寸,且从封装组件到顶点总长度不应长于20mm,尤以不长于IOmm为佳。
15
实际应用中,若需进一步扩大散热能力,可以通过图19的方式达成。即在功率模块10的第三散热单元lib上再安装一第四散热单元11c。第四散热单元IlC可通过焊接、 粘结等方式与第三散热单元lib连结。由于安装简单第四散热单元Ilc的形状和位置可以不受限定。但实际效果上,以保留功率模块10自有表面散热能力为佳。即,如图19,在第四散热单元Ilc与功率模块10前表面Al之间保留一空隙,使得风流可以所述的空隙中流动, 从而使功率模块前表面和第四散热单元Ilc下表面(靠近前表面Al的表面)均能发挥一定散热功能。为使所述的空隙中的风流能够达到相当的程度,所述的空隙厚度可大于1mm, 尤以大于2mm为佳。另外,如图20所示,功率模块10还包括一第三功率器件19a、一第四功率器件 19b、一引线框架15以及一封料16。第三功率器件19a设置在第二功率器件14上,第四功率器件1%设置在第一功率器件12上,且第一功率器件12及第二功率器件14设置在散热单元11上。引线框架15位在第一功率器件12与第四功率器件19b之间,并位在第二功率器件14与第三功率器件19a之间,并位在第三功率器件19a及第四功率器件19b上。封料 16系包覆所述功率器件12、14、19a、19b及引线框架15的至少一部分。通过将多个功率器件堆栈在一起,既可以减少连接线减低通态损耗,又可以减少高频阻抗,降低开关损耗,进一步提升电源性能。而且对于桥式电路,包括半桥、全桥、三相桥等,堆栈后就无需原先用在绝缘的部分材料,既可节约成本,又可提升空间利用率,进一步提升电源变换器性能。为了更好地解释本发明的意义,进一步借助全桥电路来进行说明,如前所述,图2 是全桥电路的拓扑图,图16和图17A至17D分别是其功率模块内部结构和三维示意图。其中,图17A是功率模块10的正面示意图,图17B是功率模块10的背面示意图,图17C是功率模块10脱去封料16的正面示意图,图17D是功率模块10脱去封料16的背面示意图。虽然上述实施例系以一第一功率器件12及一第二功率器件14为例作说明,但并非具限制性,且其中第一功率器件12所代表的意义是其设置在散热单元11上,第二功率器件14所代表的意义是其通过一导热绝缘材料层13设置在散热单元11上。以下系以二个第一功率器件Sl及S2以及二个第二功率器件S3及S4作说明。如图2所示,全桥电路包括4个开关器件Sl S4,这里以金属氧化物半导体晶体管为例。这四个开关器件组成两组导电桥臂si和S4组成一组,S2和S3组成一组桥臂; 桥臂上管开关器件Sl和S2的漏极端共同连接在电压高电位点Vin (在D2D应用时,电气端 Vin是直流输入端,是电压波形为一个稳定的直流或者带有很小纹波的直流),桥臂下管开关器件S3和S4的Source端共同连接在电压的低电位点GND ;单一桥臂上管的源极和下管的漏极相连接,如Sl和S4桥臂连接在VA,S2和S3的桥臂连接在VB,其工作的基本原理是桥臂的上下管互补导通,如Sl开通,S4关断;Sl关断,S4开通,在开关状态转换过程存在短暂时间都关断的过程。这样,D2D的应用场合下,输入端Vin-GND之间是直流,桥臂中间连接点VA,VB的电压则是开关次的跳变,幅值是0与Vin。目前大功率晶体管最典型的电极引出方式是,芯片的背面是漏极,正面分布两个电极源极和闸极,其中闸极的尺寸较小,例如lmm*lmm。芯片背面的漏极通常预先进行可钎焊处理,正面的源极和间极往往是铝金属化电极,可以通过铝/金导线接合(wire bonding)的方式实现和外围电路的连接。由于开关器件Sl和S2的漏极连接在共同的直流电位点Vin,因此,可以将其直接钎焊至散热单元11上,Vin和外界电连接的pin也可以直接钎焊至散热单元11上,从而利用所述的导电极佳的散热单元11导电,降低电损耗,减少封装体的热量产生。如此,可以获得最佳的热,电性能。现有的功率模块,如前述公知的做法是,将所有四颗功率晶体管安装至DBC基板上,随后,所有功率晶体管和引线框架的电连接均靠导线接合的方式来实现。如上文所讨论的一样,现有技术的种种缺陷(散热差,电性能差,价格高,可靠性差等等)相比的下一目了然。本发明在此处的应用更具降低EMI的效果,前面对全桥电路的基本工作原理分析看。散热单元11连接在直流输入端Vin,是很好的静态电位点,桥臂中间连接点VA,VB则是电压跳变点,大片的散热单元11可以有效阻断跳变信号的传递。如此,可以有效减小跳变点对外围电路的干扰,减小测试的EMI。如前所述,为了具备更好的EMC特性和散热性能,将全桥模块中的开关器件S3、S4 置在绝缘层(即导热绝缘材料层具有的绝缘层)上,将开关器件Si、S2直接置在散热单元 11上;为了方便生产,并减少生产工差造成的空间浪费,开关器件S3、S4置在相连的绝缘层上;为减少回路电感和方便使用,将S2置在S3外侧,将Sl置在S4外侧。也就是说,对于图 2所示的全桥电路来讲,模块内部器件按S2-S3-S4-S1或者S1-S4-S3-S2的顺序排布,性能更为优秀。另外,在以上的实施例中,电源变换器可以包括至少两块所述的功率模组,所述的两块功率模组可用同个封料模具进行封料,以降低封料模具成本。另外,导线架也可以集成一个散热单元,这个散热单元也可以被作为安装元器件的载板。在此所指的散热单元,是定义是连接体被封装材料覆盖的部分。以下说明本实施例的功率模块的制造流程,于此,导热绝缘材料层系以覆铜陶瓷基板为例,另外,此功率模块除了搭载功率器件(半导体芯片)外还集成了一些被动组件, 如电阻和电容,且在引线框架其中一些引脚上还搭载了一个温度测量电阻,以用作模块过温保护的用。具体的制作流程如下先在散热单元11上组装导热绝缘材料层13的位置以及和引线框架15连接的位置涂上锡膏,同样将导热绝缘材料层13上需要和引线框架15组装的位置涂上锡膏,随后将散热单元11、导热绝缘材料层13和引线框架15按照设定的装配关系置在一治具中(Assembly);然后过回流焊炉(Reflow)使其焊接在一起,由此这三个部件形成一个整体,在随后植晶工艺中可以利用引线框架15进行传输与定位;清洗(Flux Cleaning)后,进行植晶安装所需的半导体器件(如晶体管及二极管),此处需要着重强调的是部分功率器件放置在散热单元11上(如第一功率器件12),另外一部分功率芯片放置在导热绝缘材料层13上(如第二功率器件14);在使用单一功能的植晶机时,由于其不具备抓取表面黏着(SMT)器件的能力,因此,一些电阻、电容等器件还需要进行SMT的操作, 即点锡膏(Solder Dispense)后,放置其它元器件(SMT);由于所用的功率器件的芯片尺寸较大,采用锡膏(solder paste)进行reflow时有焊接层的气孔率较高而带来工艺性、可靠性不佳的疑虑,此处采用真空回焊(Vacuum Reflow)使组件和散热单元11、导热绝缘材料层13、引线框架15焊接在一起;清洗(Flux Cleaning)后,进行打线接合(Wire bond)作业;塑封(Molding)后即完成主要流程。在一些在植晶工艺时无需使用引线框架15进行定位的应用下,有机会进一步简化工艺流程。首先将散热单元11、导热绝缘材料层13、引线框架15上需要的位置施加锡膏; 随后将所需的组件(功率芯片以及被动SMT组件)分别放置在需要的位置上,这步骤可以通过泛用较强的机械(如集成植晶和表面黏着技术功能的机械)上而一站式实现,也可以在多个机械上实现;随后将放置有组件的散热单元11、导热绝缘材料层13、引线框架15按照设定的装配关系放置在一治具中,完成assembly ;随后真空reflow;后续的工艺和上述的工艺流程相同。如此,可以减少reflow的次数以及相应的清洗等流程,由于reflow次数的减少对于提高模块的可靠性也有一定的好处。综上,通过本发明所揭露的,用以提升电源变换器功率密度或者效率的封装方法和结构,可以获得与现有技术相比,更佳的热性能,电性能,经济性能,EMC性能与更高的可靠性。其内部空间利用率很高,使用方便,非常有利于提高变换器功率密度或者效率。本发明给出的具体功率模块具体实施,也非常可行有效。本发明非常适合用以提升电源变换器的整体性能和性价比。以上所述仅是举例性,非限制性。任何未脱离本发明的精神与范畴,对其进行的等效修改或变更,均应包括在权利要求所限定的范围内。
权利要求
1.一种功率模块,其特征在于,包括一第一功率器件及一第二功率器件,各所述的功率器件被封在同一封料中,各所述的功率器件具有至少两个电极,所述功率器件的至少一个具有至少三个电极,所述功率器件的至少一个的工作频率在25kHz以上,其中所述的功率模块是应用在一电源变换器,所述的电源变换器内部至少一个处功率器件的操作电压高于48伏特,所述的电源变换器的功率密度及最高效率分别大于15w/ inch3和高于92%、或者所述的电源变换器的功率密度大于20W/inch3、或者所述的电源变换器的最高效率高于93%,所述的功率模块占所述的电源变换器总体积比例小于50%,应用所述的功率模组的电能变换级处理功率占所述的电源变换器总输出功率至少30%以上, 所述的电源变换器总输出功率在150W以上。
2.根据权利要求1所述的功率模块,其特征在于,所述的电源变换器是一隔离型AC/DC电源、或非隔离型AC/DC电源变换器、或隔离型 DC/DC变换器、或DC/AC变换器,所述的电源变换器的功率密度及最高效率分别大于20w/ inch3且高于93%、或者所述的电源变换器的功率密度大于25W/inch3、或者所述的电源变换器的最高效率高于94%。
3.根据权利要求1所述的功率模块,其特征在于,当所述的功率模块立装在一电路板的一表面时,所述的功率模块的最高点离所述的电路板的所述的表面的高度系在35mm以下,其中所述的功率模块的总厚度系小于6mm。
4.根据权利要求3所述的功率模块,其特征在于,所述的功率模块的最高点离所述的电路板的所述的表面的高度系在21mm以上。
5.根据权利要求3所述的功率模块,其特征在于,所述的功率模块的引脚是从所述的功率模块的下方伸出且直立在所述的电路板。
6.根据权利要求4所述的功率模块,其特征在于,所述的功率模块具有一前表面和一后表面,其中,处在5m/s均衡风速平行风散热环境下,所述的前表面和所述的后表面,至少 80%以上面积内,各点最大温差,小于所述的前表面和所述的后表面相对于工作环境平均温升的20%。
7.根据权利要求5所述的功率模块,其特征在于,所述的功率模块是应用在一电源变换器,所述的电源变换器的功率密度及最高效率分别大于25W/inch3且高于95%、或者所述的电源变换器的功率密度大于30W/inch3、或者所述的电源变换器的最高效率高于 96%。
8.根据权利要求7所述的功率模块,其特征在于,所述的功率模块所应用的电源变换器内部至少一个处功率器件的操作电压高于200伏特。
9.根据权利要求5所述的功率模块,其特征在于,所述的功率模块的宽度小于60mm,其中于400V的操作电压下,其引脚间距系介在3mm至5mm、其中在30V的操作电压下,其引脚间距系介在0. 5mm至2mm。
10.根据权利要求1所述的功率模块,其特征在于,所述的功率模块还包括一第一散热单元,所述的第一功率器件及所述的第二功率器件系设置在所述的第一散热单元上方;一引线框架,与所述的第一功率器件及所述的第二功率器件的至少一个电性连接;以及一封料,系包覆所述的第一功率器件、所述的第二功率器件及所述的引线框架的一部分。
11.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元具有一第一区及一第二区,所述的第一功率器件设置在所述的第一区,所述的功率模块还包括一导热绝缘材料层,设置在所述的第二区并具有一绝缘层,第二功率器件通过所述的导热绝缘材料层设置在所述的第一散热单元;其中所述的封料,还包覆所述的导热绝缘层的一部分;以及所述的第一散热单元,与所述的第一功率器件及所述的第二功率器件的至少一个电性连接。
12.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元与所述的引线框架一体成型。
13.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元完全设置在封料内、或部分位在封料外、或完全位在封料外。
14.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元系与一穿出所述的封料的引脚连接、或是所述的第一散热单元穿出所述的封料并形成一引脚。
15.根据权利要求14所述的功率模块,其特征在于,所述的第一散热单元系与一电压静地点电性连接。
16.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元系分割是多个部分。
17.根据权利要求10所述的功率模块,其特征在于,所述的导热绝缘材料层还具有一线路层,所述的引线框架延伸而连结在所述的线路层。
18.根据权利要求10所述的功率模块,其特征在于,所述的引线框架延而伸连结在所述的第一功率器件及所述的第二功率器件的至少一个。
19.根据权利要求11所述的功率模块,其特征在于,所述的功率模块还包括一第二散热单元,设置在所述的第二功率器件与所述的导热绝缘材料层之间。
20.根据权利要求10所述的功率模块,其特征在于,所述的功率模块,还包括一第三散热单元,设置在所述的第一散热单元或者由所述的第一散热单元延展而成。
21.根据权利要求20所述的功率模块,其特征在于,所述的第三散热单元系穿出所述的封料。
22.根据权利要求21所述的功率模块,其特征在于,所述的第三散热单元系穿出所述的封料并具有一弯折。
23.根据权利要求21所述的功率模块,其特征在于,所述的功率模块,还包括一第四散热单元,与所述的第三散热单元连结,并与所述的封料具有一空隙。
24.根据权利要求11所述的功率模块,其特征在于,所述的导热绝缘材料层是金属基板或金属化陶瓷基板。
25.根据权利要求11所述的功率模块,其特征在于,所述的功率模块,还包括一键接材料层,所述的第一功率器件通过所述的键接材料层连接所述的散热单元,所述的键接材料层的材料的热导系数大于等于2W/m. K。
26.根据权利要求10所述的功率模块,其特征在于,所述的功率模块,还具有一排引脚,其穿出所述的封料,并作为讯号传送或散热。
27.根据权利要求沈所述的功率模块,其特征在于,所述的排引脚的散热总和大于等于所述的功率模块总散热量的5%。
28.根据权利要求11所述的功率模块,其特征在于,所述的功率模块还包括 一控制器件,设置在所述的第一区。
29.根据权利要求观所述的功率模块,其特征在于,所述的功率模块还包括 一绝热层,设置在所述的控制器件与所述的第一散热单元之间。
30.根据权利要求1所述的功率模块,其特征在于,所述的功率模块还包括 一高频电容器,集成在所述的功率模块内。
31.根据权利要求1所述的功率模块,其特征在于,所述的功率模块还包括 一温度传感器,集成在所述的功率模块内。
32.根据权利要求10所述的功率模块,其特征在于,所述的第一散热单元的厚度大于所述的功率模块的厚度的20%。
33.根据权利要求32所述的功率模块,其特征在于,所述的第一散热单元的厚度小于3mm ο
34.根据权利要求10所述的功率模块,其特征在于,所述的封料与所述的第一功率器件或与所述的第二功率器件之间距小于所述的功率模块的厚度的60%,并且小于3mm。
35.根据权利要求10所述的功率模块,其特征在于,所述的导热绝缘材料层在10X10 面积的上下热阻系小于I/W。
36.根据权利要求1所述的功率模块,其特征在于,所述的功率模块还包括 一第三功率器件,设置在所述的第二功率器件上;一第四功率器件,设置在所述的第一功率器件上;一引线框架,位在所述的第一功率器件与所述的第四功率器件之间,并位在所述的第二功率器件与所述的第三功率器件之间,并位在所述的第三功率器件及所述的第四功率器件上;以及一封料,系包覆所述功率器件及所述的引线框架的至少一部分。
37.根据权利要求1所述的功率模块,其特征在于,所述的电源变换器至少含有两块所述的功率模组。
38.根据权利要求37所述的功率模块,其特征在于,所述的两块功率模组可用同个封料模具进行封料。
39.根据权利要求10所述的功率模块,其特征在于,所述的封料的导热系数高于1.2W/m. K。
40.根据权利要求10所述的功率模块,其特征在于,所述的封料的导热系数高于1.8W/m. K。
全文摘要
一种功率模块包括一第一功率器件及一第二功率器件,各所述的功率器件具有至少两个电极,其中所述的功率模块所应用的一电源变换器的功率密度大于15w/inch3且最高效率高于92%,或者功率密度大于20w/inch3,或者最高效率高于93%。所述功率器件的至少一个的工作频率在25kHz以上。因此,既可节约成本,又可提升空间利用率,进一步提升电源变换器性能。
文档编号H05K7/20GK102340233SQ201010230158
公开日2012年2月1日 申请日期2010年7月15日 优先权日2010年7月15日
发明者仝爱星, 叶奇峰, 曾剑鸿, 洪守玉, 郭雪涛 申请人:台达电子工业股份有限公司