纤维增强复合材料及其制造方法

文档序号:110918阅读:389来源:国知局
专利名称:纤维增强复合材料及其制造方法
本发明涉及纤维增强复合材料及其制造方法。
需要承受重负荷的结构部件,如汽车壳体或框架、机械、建筑等,通常必需压制成相当复杂的形状,因此,这些结构部件相对地较重,加工这些部件所需的机械和工具必然是复杂的和昂贵的,早已知道,由复合材料,如复合玻璃纤维和树脂基体,所制成的结构材料可以制造重量大大减轻的结构部件,所需的机械及模具也较便宜等,因此,由此所得的结构部件可能比由钢铁制成的结构件部便宜。但是,这类结构复合材料已被证明需要非常强的劳动强度,这是由于这类结构复合材料的大多数实用的制造方法是需将骨架纤维成形至毡垫或织物,再将毡垫或织物浸渍树脂,然后手铺到支承物或模壳上。
不仅由于手铺的方法需要极大劳动强度,而且不能实现这类复合材料潜在的强度,这些织物或毡制布在二维方向具有极好的强度的同时,但由于采用了手铺的方法,其固有的特点是在深度方向不具有增强纤维,也即这些结构复合材料在二维方向有较好强度时,在第三维方向强度较弱。因此,用结构复合材料代替钢制造的结构部件,如汽车壳体,不能得到很好的应用。
本发明的目的是提供一种在三维方向在本质上具有相同强度的结构复合材料及其制造方法,该结构复合材料能在各不相同弯曲条件下制造成能载负荷的复杂外形,该方法允许采用劳动节省、高速自动化技术制造这类结构的复合材料,按本发明制造的随机整理的气流法纤维网状物或纤维层具有大量的向纤维的向纤维层深度方向分布的纤维,因此纤维在全部三维空间相互交织,并可以在制得的纤维层后,施加某些热塑性纤维或一种垫塑性材料,如果需要,然后将纤维层加热至足够稳定纤维层中的热塑性材料的较低温度,以使处理纤维层时它将不会裂开,再将纤维层传送到一个通气的模具中,该模具带有具有所需结构件形状的支承屏,然后将热空气通过纤维层和支承屏,足以将纤维层压到支承屏上,在没有充分压缩纤维层中的纤维条件下,加热纤维层到足以熔融纤维层至所需的形状,也就是在被熔融成可处理物件的同时,在通气模具中制得的预型件仍保持多孔隙特性,然后将预型件传送到一个可变压缩的树脂注入模具,由于纤维层在压制成预型件形状时没有完全被压缩,树脂基质将填满纤维间的孔隙并很易使预型件浸透。当预型件被树脂基质浸透时,将预型件压缩到所需的厚度,从而得到最终制品。纤维层中纤维的压缩将增加它们的纤维浓度,因此将增加由此形成的结构制品的强度。在用树脂饱和之前保持未压缩预型件的多孔隙结构,将使预型件很容易接收树脂,因为预型件已被加热到足以使热塑性树脂材料熔融的温度,所以预型件中的纤维能够承受树脂基质注入时所产生的压缩力,但应挑选树脂基质,这种树脂基质无论是有较低的粘度,或者在加热到低于预型件中所用的热塑性纤维或材料的熔点温度时具有较低的粘度。
本发明的另一个优点是所需制品可以得到纤维混合物中各组分需要的特性。例如,玻璃纤维刚性较好,通常将它制成结构复合材料,但是,玻璃纤维的冲击强度较低,所以由玻璃纤维复合材料制成的制品相当地容易破碎。当采用玻璃纤维和另外一种与玻璃纤维相比弹性较好、抗冲击强度较高的纤维的混合物制造上述纤维层时,这种制品在具有较好刚性同时还具有高的冲击强度。
下面将结合实施例的附图对本发明作进一步说明。
图1是一种气流法无纺纤维层形成装置示意图的一个剖面图。
图2是传送装置的视图,该传送装置用于从图1所示装置中移去形成的纤维层。
图3是一种外形模具图解描述的剖面图,该模具用于压制由图1装置得到的纤维至预型件。
图4是一种树脂注入模具图解描述的剖面图。
图5是图4中密封圈122和树脂注入咀124的俯视图。
附图1是美国专利3918126所述的气流法无纺纤维层形成装置10,该气流法无纺纤维层形成装置包括进料装置12和纤维层形成装置14。
进料装置12包括装有相当大进料箱18的外壳16,进料箱接收制得造网状物或纤维层的纤维,当然,纤维起初是松疏的,在放入进料箱18之前用传统的方法加以混合。纤维混合物包括短结构的纤维法象卷曲玻璃纤维或不卷曲的玻璃纤维、graxhite纤维和(或)高强度聚酯,假如纤维层未被热塑性材料浸透,还将包括热塑性纤维。在最佳实施例中,在进料装置18中的纤维包括52.5%卷曲的玻璃纤维(Dwens-Corning玻璃纤维公司能大批供应)、17.5%Compet
聚酯纤维(Alliet公司能大批供应)和30%象被称谓Vinyon
(Celeanese公司能大批供应)的热塑性粘结纤维或象Dacron
(Dupont公司能大批量供应)或Kodel
(Eastman Kodak公司能大批供应)的聚酯纤维。混合纤维见标号20,传送装置平板22安装在位于进料箱18内的滚筒上,该滚筒利用适当的能源(图中未示出)按箭头T所指的方向转动以使纤维20移向提升平板26,提升平板26是安装在位于进料箱中的滚筒28上,提升平板还带有向外伸出的直齿30,用电源运转滚筒以使纤维向上移动,卸料机平板32带有角钉34并环绕在电动滚筒36上,用电源38控制的通风机40抽吸空气并通常按箭头A的方向使空气通过由卸料机平板32和外壳15顶部所确定的通道42,通过通道42的计量空气移动预定数量的来自提升平板26的纤维20,剩余的纤维通过由提升平板26和外壳16相应壁面确定的通道46,由箭头A所示的计量空气迫使纤维进入由提升板26的上面边缘和外壳16的相应壁面确定的风道44。
然后纤维被通过通道42和风道44的空气固结到进料纤维层47,这空气进入一个通进用适当的电源(图中未示出)控制并按箭头B方向转动的圆筒形多孔凝结器屏48,空气流用通风管50送回鼓风机40,转动的屏48与进料滚筒52相配合压挤进料纤维47,进料滚筒52与机械滚筒54相配合把原料纤维推向纤维层形成装置14,用转动的剌棍62刷去压铁58的纤维,该压铁装在外壳60上并成为纤维层形成装置14的一部份,刺棍62在整个宽度和全部圆周上是带有角钉或齿64的齿形表面,该刺棍按箭头C所示方向转动。依靠刺棍62旋动速度的离心力和鼓风机66的空气流,纤维从刺棍62上落卷,鼓风机66把空气吹进定界在外壳60中的小室68中,该小室把空气导向风道70和进入压铁58和刺棍62之间的通道72,将混合纤维从刺棍上移去,并用空气流将其通过风道75进入有孔的传送装置76,鼓风机66进口和外壳60内的小室77连接,该小室依次通过有孔的传送装置76与风道74相通,有孔的传送装置76包括安装在滚筒80上的有孔的带状物78,该滚筒按箭头D所示方向移动带状物,因为带状物78是有孔的和允许空气流通过,鼓风机66能够通过通道72、风道74、小室77和68、风道70循环空气,因此,可以使纤维从剌棍62落卷并通过风道74和压实在有孔的带状物78的区段82上形成无纺纤维层,因为有孔的带状物是绕滚筒80旋转,纤维层最终被从风道74复盖的带状物区段82送出。
剌棍62的转速和鼓风机66的空气送入量按常规的方法调节,以调节纤维层形成装置10生成纤维层的量,虽然较轻的纤维层是可接受的,但本发明宁愿采用较重的纤维层,例如,推荐采用4盎司/平方码或更重的纤维层,因为这种重量的纤维层将提供如下面将叙述的制造结构复合材料强化所需的足够量纤维。这一点很重要,即用空气通过风道74吹制而随机排列的纤维层中的纤维应有足够长,以使它们相互交织多次,因此可在纤维之间提供较好的附着力,使每根纤维能结牢其它的纤维并保持在适当的位置,最好采用至少有一英寸长的纤维,因为试验表明,这样长度的纤维在纤维层中平均与其它纤维交织三次,所以,这样长度的纤维将提供形成满意的纤维层必需的与其它纤维的交织次数。能应用较短长度的纤维,当然,它们和其它纤维交织的平均次数将减少,从而得到一个不太完善的纤维层。
根据上述讨论,本发明的重要特征是从纤维层生成的结构复合材料在三维空间具有强度,强度是用于制造复合材料的纤维的加强化所提供的,因此,装置10生成的无纺纤维层中的纤维将在三维空间随机排列,因为纤维的随机定向是空气加工法的必然结果。但是,已经指出,依赖于通过风道74的空气流的方向,在纤维凝集器39的纤维层深度方向排列的纤维百分数将显著地改变,该空气方向可用压铁58和剌棍62之间的空间加以控制,压铁58是偏心安装的,因此,它相对于剌棍的位置是可调的,通道72的宽度也是可调的,正常时压铁58和剌棍62之间留有间隔的,因此空气流能按照通道72形状和箭头D的方向通过通道,用这种方向空气流形成纤维层时,将会有一些按纤维层深度方向定向的组分,而多数的纤维将沿着长度和宽度方向定向,但是,已经发现当将压铁58移近剌棍62和调节鼓风机66时,会产生文氏管效应并使空气流偏离箭头E的方向。用这样方法形成的纤维层已发现在纤维层的深度方向定向的纤维量是30%,因此,用在深度方向有30%纤维的纤维层形成的复合材料在三维空间方向几乎有相同的强度。
已经与进料装置12一道叙述了装置10,但是进料装置12的目的是产生用于纤维层形成装置14的原料纤维层47,正如该领域技术人员所熟知,原料纤维层也可以从罗拉梳理机交叉铺网机形成,对于大量生产来说,后者机器将更有效,用另一种方法,原料纤维层也可以用清棉机来形成,这系统可以更有效地用于各种各样的小批量生产。
将纤维层从有孔带状物78输送到邻接的传送装置84,该传送装置包括装有动力并按箭头F所示方向绕滚动88转动的有孔的带状物86,假如纤维层用树脂浸透来代替粘结纤维或不应用粘结纤维,把适当的发泡树脂倒入进料器90并通过进料器喷咀92分配到在带状物或传送装置上移动的纤维层上,因为带状物86是有孔的,所以可以通过真空吸出器94在纤维层下面产生真空,使泡沫可透过纤维层并使全部纤维被泡沫所饱和,过量的泡沫被抽入真空吸出器94并循环到进料器90。然后后将装在带状物86上的纤维层通过加热到温度刚超过200°F的炉子96,该温度足以加热纤维层至稳定,以便进一步对纤维层进行处理,将纤维层加热至使其软化的温度,但不熔融,施用到纤维层上的热塑性粘接纤维或树脂的熔融温度均约250°F。如上面讨论那样,炉子96的目的是稳定纤维层使它在处理时不会裂开。假如由于应用各种纤维,当形成时纤维层不易拉裂,可以不用炉子96。
如上面所讨论的那样,本发明的一个重要特征在于用适当的树脂浸透之前,纤维层被成型至复合材料制品的预型件形状。已经发现,如在浸渍时将纤维层已经成型,要确保纤维完全浸透是非常困难的,特别是在被成型的复合材料制品形状复杂时更是如此。但是,可以在成型至预型件时要将纤维层加热,于是将固化纤维层和至少使热塑性粘结纤维部份熔融,从而使构成的纤维保持在适当的位置,因此,当树脂基质注入预型件时,预型件中纤维并不因为注入的树脂的作用而变形,因此纤维将保持在它们的结构骨架位置中,从而确保最终产品的均匀纤维并得到均匀强度十分好的一致性产品。
预型件是的图3所示的预型件外形模具98中制造,模具98更好的是常用的通空气模具,该模具包括一种透气屏100,它具有被成型的预型件形状的轮廓,将一部份的纤维层放在屏100上面,把模具盖子102紧盖在它的壳体104上面,使二者之间确保不漏气,鼓风机106按箭头X的方向将空气循环,使纤维层依靠通过气体的力量呈现屏100的轮廓。虽然正常情况下使用的是空气,但在某些应用中,可能必需使用其它气体,通过模具的循环气体可被燃烧器108加热到足以使热塑性粘结材料熔融的温度(无论粘结材料或者应用在纤维层中的树脂),从而使纤维层在保持屏100外形轮廓下熔融。在最佳实施例中,用Vinyon
作为粘结纤维,空气将加热到约200°F或到粘结纤维的粘结点,即未在温度下,纤维具有粘性。
当然,纤维层的硬挺性将取决于粘结纤维的百分比和(或)用在纤维层中的热塑性树脂,高浓度的粘结纤维将得到较硬挺的预型件,该预型件在树脂注入阶段中能够经得起更大粘度的树脂,但是,高浓度的粘结纤维必定降低构成纤维的浓度,从而使由含高浓度粘结物质的纤维层形成的最终产品与由含低浓度粘结物质和相应的高浓度结构材料的纤维层形成的最终产品相比较,强度较低,并且,高浓度的粘结材料可能引起纤维层过分和不希望的缩率。我们希望在预型件板材形成的时候,不要过份的压缩,因此,可保持纤维层的多孔隙结构,从而在树脂注入阶段中,纤维可被树脂基质容易浸透。虽然其它不同于图3所示通气模具,如常用压制型模具,也可以使用,但必须小心纤维层不要被过份的压缩,尽管为了使纤维层呈现复杂的外形某些的压缩是不可避免的。
然后将预型件从预型模98移走并送到常用可变压缩树脂注入模具110,树脂注入模具110包括基体区段112,该基体区段带有具有被成形的最终复合材料制品外形的外形部位114,该外形部位114与盖子区段118的相应外形部位116相配合,盖子区段118可用液压的压力调节器传动机构120按预定的压力向外形部位114加压,在模具区段112和118之间界面的周缘上装有密封垫圈122,该密封垫圈带有圆周空间分布的树脂喷射咀124,排放孔126是用于排放过量的树脂,预型件被安放在外形部位114上,盖子区段118紧盖在密封垫圈122上面,外形区段114和116之间的间隙最好有足够大,使预型件能够放入模具,同时在盖子区段118紧盖在密封垫圈112后对预型件没有明显的压缩,然后将适当的树脂通过喷咀124注入,直至预型件的纤维之间的间隙被树脂完全浸透,并且有一些树脂开始从排放孔126排出。虽然一些树脂都能满足使用,例如可以用Epon
828树脂(Shell化学公司大量供应),但如上面所讨论的那样,树脂的粘度最好较低,使在树脂基质注入的作用下,纤维层不需要过分硬挺来防止变形。所以,应该挑选在室温下粘度低的树脂或者象上面提到的在加热到一定温度下具有足够低粘度的Epon
828树脂系列。如果必要,模具区段118和112可以加热,以帮助树脂固化,当预型件是被树脂透时(或在预型件树脂浸透之后,但在树脂硬化之前)盖子区段118在液压传动机构120的作用下对预型件进行压制,当它饱和时或在它饱和以后主即压缩预型件,从而增加构成的增强纤维浓度和增加最终产品的强度。因此,预型件最初是有孔隙的结构,很容易用树脂浸透,但是在预型件被浸透以后,操作树脂注入模具110,将产品压制成它的最终形状,同时增加增强纤维的浓度以得到一种具有可接受强度制品。
本发明已经叙述用人造结构纤维生产气流法无纺纤维层,该纤层是作为纤维增强复合材料制品的骨架材料,也能应用不同于人造短纤维的纤维,例如,可以应用短亚麻纤维复丝(Continous filimenttow),可以按美国专利4514880叙述的方法处理和混合。
下面的实施例仅作为例子来说明,而不是对本发明范围的限止。全部百分比均系重量比。
实施例1应用52.5%卷曲玻璃纤维、17.5%Compet
纤维和30%商品名称谓Vinyon
的聚酯粘结纤维,来制造一种无纺气流法纤维层,该纤维层按上面叙述的方法模压成预型件,然后,该预型件按上面叙的方法用适当的树脂浸透,最终产品在具有较好刚性和较好冲击强度的同时,在整个三维空间方向有可接受的强度。
实施例2按实施例1的方法制造和处理纤维层,但制造纤维层的原料是35%卷曲玻璃纤维,35%Compet
纤维和30%v inyon
的混合物,由这种纤维制得的复合材料比按实施例1制造的复合材料有稍大的冲击强度,这是因为Compet
纤维的含量较高,但是由于低百分比的玻璃纤维而使其具有较大的弹性。
实施例3按实施例1和2的方法制造的一种无纺气流法纤维层,但混合物的组成是70%卷曲的玻璃纤维和30%Vinyon
粘结纤维,假如预型件用上述的树脂浸渍以后,得到的复合材料有较好刚性,并且可以与已经投入市场的玻璃纤维结构相比较,但是由于缺少具有高冲击强度的纤维,得到的复合材料的冲击强度比较低。
实施例4按实施例1~3方法制造的一种无纺气流法纤维层,但混合物的组成是50%卷曲玻璃纤维和50%Vinyon
粘结纤维,由于粘结纤维的百分含量较高,得到的预型件的收缩率比含有低百分含量粘结纤维的预型件大,但其它方面的性质和实施例3相同。
实施例5按实施例1~4的方法制造的纤维层,但用商品名为Kerlar
的纤维代替玻璃纤维和Compet
纤维,得到的纤维层及由它制造的预型件或复合材料制品具有不同于玻璃纤维和Compet
纤维的Kerlar
冲击强度和弹性特性。
实施例6按实施例1~5的方法制造的纤维层,不用Vinyon
粘结纤维及任何粘结纤维,而采用聚醋酸乙烯树脂,任何由这种方式制造的纤维层的特性类似于上面讨论的实施例1~5中含有相应百分比的玻璃纤维、Compet
和(或)Kerlor
的纤维层。
虽然在上述说明书中已经讨论了一些特定的实施例,但本发明的范围应由下面的权利要求
书决定,而不受到这些实施例的限制。
权利要求
1.一种纤维增强复合材料的制造方法,其特征在于该方法包括从结构纤维和热塑性粘结材料形成无纺纤维层的步骤,当该无纺纤维层形成时,定向纤维以使纤维层中的纤维在三维空间随机交织,在加热至少至粘结纤维部份熔融时,压制纤维层以形成所需形状的预型件,向预型件注入树脂基质以充满纤维间的空隙。
2.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于所说的纤维层是用所说的结构纤维和一种热塑性粘结纤维构成的,该热塑性粘结纤维是加到纤维层中的热塑性材料。
3.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于热塑性粘结材料是一种在纤维层形成以后加到纤维层中的一种热塑性化合物。
4.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于所说的方法包括将纤维层加热至足以使纤维层稳定的较低的温度,以使纤维层在进一步处理时不致破裂,然后,在将纤维层形成具有所需形状的预型件时,将纤维层加热至较高的至少足以使部份粘结材料熔融的温度。
5.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于在将纤维层制成具有所需形状的预型件时,设有充分地压缩纤维层。
6.根据权利要求
5的纤维增强复合材料的制造方法,其特征在于将纤维层压制成具有所需形状的预型件时,是将纤维层放置在具有所需形状透气屏100上,然后,通过纤维层和透气屏100抽气,以使纤维层形成透气屏的外形。
7.根据权利要求
6的纤维增强复合材料的制造方法,其特征在于压制透气屏上的纤维层时,利用加热通过纤维层的气体的方法来对纤维层加热。
8.根据权利要求
6的纤维增强复合材料的制造方法,其特征在于预型件在压制完成以后被传送到树脂注入模具110,当预型件被放在树脂注入模具110处理时,将树脂基质注入预型件,当预型件的纤维被所说的树脂基质浸透时,该树脂注入模具压缩预型件以确保复合材料中构成纤维的浓度,并将复合材料压制成所需厚度。
9.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于将纤维层放置在外型模具中压制成具有所需形状的预型件时,将纤维层加热至少足以使部份粘结材料熔融,然后将预型件从外形模传送到树脂注入模110,并向预型件注入树脂基质。
10.根据权利要求
9的纤维增强复合材料的制造方法,其特征在于预型件中的纤维被树脂基质浸透时,树脂注入模110压缩预型件以增加复合材料中结构纤维的和将复合材料压制到所需的厚度。
11.根据权利要求
10的纤维增强复合材料的制造方法,其特征在于用外形模98压制所说的预型件时,没有充分地压缩纤维层。
12.根据权利要求
1的纤维增强复合材料的制造方法,其特征在于纤维层是将纤维在空气流中混合的,然后用所说的空气流用气动的方法将所说的纤维送到纤维凝集器39,并在纤维凝集器39上随机地沉积。
13.根据权利要求
12的纤维增强复合材料的制造方法,其特征在于该方法还包括调节空气流对于纤维凝集器39的方向,以控制沉积在纤维凝集器39上纤维的百分比。
14.根据权利要求
1的方法制造的纤维增强复合材料制品,包括一种无纺结构纤维的纤维层,所说的纤维是随机排列和三维空间中相互交织,其特征在于纤维层包括热塑性材料,该热塑性材料被加热到至少足以使部份热塑性材料溶融的温度,因此至少部份相互熔合主要构造短纤维和固化填充在纤维间的间隙中的树脂基质。
15.根据权利要求
14的纤维增强复合材料制品,其特征在于纤维层是二种纤维的混合物,第一种纤维刚性较好但冲击强度较小,第二种纤维具有高的冲击强度。
16.根据权利要求
15的纤维增强复合材料制品,其特征在于第一种纤维是玻璃纤维。
17.根据权利要求
15的纤维增强复合材料制品,其特征在于纤维层是一种纤维的混合物,第一种纤维的刚性较好但强度较低,第二种纤维具有高的冲击强度,第三种是其熔点比上述二种纤维的熔点低得多的粘结纤维。
18.根据权利要求
14的纤维增强复合材料,其特征在于所说的纤维层至少是二种具有不同的弹性和冲击强度类型纤维的混合物。
19.根据权利要求
14的纤维增强复合材料制品,其特征在于复合材料制品中纤维浓度大于制造该制品的纤维层中的纤维浓度。
20.根据权利要求
14的纤维增强复合材料制品,其特征在于所说的复合材料制品是模压制成的,并且有预定的纤维浓度和厚度。
专利摘要
一种用无纺气流法纤维层压制的纤维增强复合材料制品及其制造方法,该方法包括把用热塑性物质浸透或含有热塑性粘结纤维的气流法纤维层,在具有所需形状的通气模具98中加热纤维层至足以使其中部分热塑性物质熔融,并成型至具有承受树脂注入压力刚性的预型件;在将预型件送入树脂注入膜后,用适当的树脂基质将纤维中的空隙充满,然后压制成所需形状并具有预定厚度的制品,其中的纤维增强复合材料在三维空间方向有几乎相同的强度。
文档编号B29C43/12GK87102407SQ87102407
公开日1987年11月11日 申请日期1987年3月27日
发明者克拉克·阿尔顿·罗德曼, 爱德华特·科曼·霍莫诺夫, 拉德克利夫·威尔考克斯·法利, 爱德华特·爱伦·范格亨 申请人:联合公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1