一种神经网络稀疏化方法及装置与流程技术资料下载

技术编号:21548136

提示:您尚未登录,请点 登 陆 后下载,如果您还没有账户请点 注 册 ,登陆完成后,请刷新本页查看技术详细信息。

本发明涉及神经网络技术领域,尤其涉及一种神经网络稀疏化方法及装置。背景技术随着人工智能的快速发展,利用机器学习技术,如深度学习技术在诸如图像分类与检测,语音识别,自然语言处理等任务上取得了较好的效果,目前广泛落地于安防,医疗,广告传媒等诸多领域。在相关技术中,神经网络训练方法一般利用固定的神经网络进行训练,训练好之后的神经网络和计算机相结合来工作,但是二者结合使得计算机的运行速度变慢功耗也相对增加,因此需要对训练好的神经网络进行稀疏化处理以降低功耗,现有的神经网络稀疏化方法为在模型训练时使用dr...
注意:该技术已申请专利,请尊重研发人员的辛勤研发付出,在未取得专利权人授权前,仅供技术研究参考不得用于商业用途。
该专利适合技术人员进行技术研发参考以及查看自身技术是否侵权,增加技术思路,做技术知识储备,不适合论文引用。
请注意,此类技术没有源代码,用于学习研究技术思路。

详细技术文档下载地址↓↓

提示:您尚未登录,请点 登 陆 后下载,如果您还没有账户请点 注 册 ,登陆完成后,请刷新本页查看技术详细信息。
该分类下的技术专家--如需求助专家,请联系客服
  • 李老师:1.计算力学 2.无损检测
  • 毕老师:机构动力学与控制
  • 袁老师:1.计算机视觉 2.无线网络及物联网
  • 王老师:1.计算机网络安全 2.计算机仿真技术
  • 王老师:1.网络安全;物联网安全 、大数据安全 2.安全态势感知、舆情分析和控制 3.区块链及应用
  • 孙老师:1.机机器人技术 2.机器视觉 3.网络控制系统
  • 葛老师:1.机器人技术 2.计算机辅助技术
  • 张老师:1.内燃机燃烧及能效管理技术 2.计算机数据采集与智能算法 3.助航设备开发