技术编号:21826510
提示:您尚未登录,请点 登 陆 后下载,如果您还没有账户请点 注 册 ,登陆完成后,请刷新本页查看技术详细信息。本发明涉及计算机视觉领域,具体涉及一种基于改进深度残差网络的弱监督目标检测方法。背景技术目标检测是机器视觉的基本问题,在视频监控、无人驾驶等场景都有广泛应用。随着深度学习的兴起,近年来涌现了大量优秀的目标检测模型。然而,基于强监督学习的目标检测结果严重依赖于目标标注的准确性,而目标标注的结果很容易受到主观判断的影响。随着深度学习的不断发展,目标标注的成本变得越来越高。训练一个高准确率的检测模型需要大量的以包围框形式精细标注的图片数据作为模型监督条件,需要花费大量的人力物力。如何利用低成本的图像标...
注意:该技术已申请专利,请尊重研发人员的辛勤研发付出,在未取得专利权人授权前,仅供技术研究参考不得用于商业用途。
该专利适合技术人员进行技术研发参考以及查看自身技术是否侵权,增加技术思路,做技术知识储备,不适合论文引用。
请注意,此类技术没有源代码,用于学习研究技术思路。