Toeplitz代数,Toeplitz algebra
1)Toeplitz algebraToeplitz代数
1.Denote by T~G+ and T~([G_+]) the associated Toeplitz algebras.记T~(G_+)和T~([G_+])为相应的Toeplitz代数
2.In this paper we study Toeplitz operator and Toeplitz algebra on discrete abelian group.研究了离散交换群上的Toeplitz算子和Toeplitz代数
3.This paper consists of three parts: Introductions of Hilbert C~*-modules, Topolog-ically graded Toeplitz cross sectional algebras over Fell bundles, The Primitive idealsand Invariant ideals of Toeplitz algebras.本文由以下三个部分组成:Hilbert C~*-模简介,Fell丛上的拓扑分次Toeplitz代数丛,Toeplitz代数的本原理想和不变理想。
2)Toeplitz algebraToeplitz算子代数
1.Let (G_1,E_1),(G_2,E_2)be two quasi-lattice ordered groups,and T_~(E_1),T_~(E_2) be the associated Toeplitz algebras.设(G_1,E_1),(G_2,E_2)为两个拟格序群,记■~(E_1),■~(E_2)为相应的Toeplitz算子代数。
2.Put GH = G+ H-1, and denote by TGH the corresponding Toeplitz algebra.H-1, 令TGH为相应的Toeplitz算子代数。
3.Let GH = Gt H-1 and gGH the associated Toeplitz algebra.设(G,G_+)为一个拟格序群,H为G_+的可传定向子集,令C_H=G_+·H~(-1),~H为相应的Toeplitz算子代数。
英文短句/例句

1.The Induced Ideals of Toeplitz Algebras;Toeplitz算子代数的诱导理想
2.An Invariant Ideal of Certain Toeplitz Algebra Which is not Diagonal InvariantToeplitz算子代数的非对角不变的不变理想
3.The Commutant of Analytic Toeplitz Operators;一类解析Toeplitz算子的换位代数
4.Toeplitz Operators and Hankel Operators on the Function Spaces函数空间上的Toeplitz算子及Hankel算子
5.Toeplitz Operator and Composition Operator on Analytic Function Space of Several Complex Variables;多变量解析函数空间上的Toeplitz算子与复合算子
6.Toeplitz Operators on the Spaces of Analytic Functions with Symmetric Measures由对称测度定义的解析函数空间上的Toeplitz算子
7.Dual Toeplitz Operators on the Polydisk;多圆盘上的对偶Toeplitz算子
8.Normality、Subnormality and Hyponormality of Toeplitz Operators and Products of Toeplitz Operators;正规、次正规、亚正规的Toeplitz算子及Toeplitz算子乘积
9.Dual Toeplitz Operators and Products of Hankel Operators in the Several Complex Variables;多变量的对偶Toeplitz算子及Hankel算子乘积
10.Reducing Subspace of Analytic Toeplitz Operators on N_(?)-Type Quotient Modules on the Torus;环面商模上Toeplitz算子的约化子空间
11.Dual Toeplitz Operators on the Orthogonal Complement of the Dirichlet Space;Dirichlet空间的正交补空间上的对偶Toeplitz算子
12.Dual TOEPLITZ Operators on the Orthogonal Complement of the FOCK Space;FOCK空间之正交补空间上的对偶TOEPLITZ算子
13.Products of Toeplitz Operators with Quasihomogeneous Symbols on the Bergman Space;Bergman空间上拟齐次Toeplitz算子的乘积
14.Compact Toepitz Operators on Weighted Bergman Space;加权Bergman空间上的紧Toeplitz算子
15.The Toeplitz Operator on Harmonic Bergman Space and Hardy Space;调和Bergman空间和Hardy空间上的Toeplitz算子
16.Toeplitz Operators with Quasihomogeneous Symbols of Positive Degree;正度拟齐次Toeplitz算子的乘积
17.The Compactness of Dual Toeplitz Operators on the Fock Space;Fock空间上对偶Toeplitz算子的紧性
18.Some Problems for Toeplitz Operators on Bergman Space of the Unit Ball单位球的Bergman空间上Toeplitz算子的若干问题
相关短句/例句

Toeplitz algebraToeplitz算子代数
1.Let (G_1,E_1),(G_2,E_2)be two quasi-lattice ordered groups,and T_~(E_1),T_~(E_2) be the associated Toeplitz algebras.设(G_1,E_1),(G_2,E_2)为两个拟格序群,记■~(E_1),■~(E_2)为相应的Toeplitz算子代数。
2.Put GH = G+ H-1, and denote by TGH the corresponding Toeplitz algebra.H-1, 令TGH为相应的Toeplitz算子代数。
3.Let GH = Gt H-1 and gGH the associated Toeplitz algebra.设(G,G_+)为一个拟格序群,H为G_+的可传定向子集,令C_H=G_+·H~(-1),~H为相应的Toeplitz算子代数。
3)Toeplitz cross sectional algebraToeplitz交错代数
1.Topologically graded Toeplitz cross sectional algebras over Fell bundles;Fell丛上的拓扑分次Toeplitz交错代数(英文)
4)dual Toeplitz algebra对偶Toeplitz代数
1.We also study the structure of the dual Toeplitz algebra and some spectral properties of the dual Toeplitz operators.给出了对偶Toeplitz算子的紧性和有界性的等价判别条件,研究了对偶Toeplitz代数的结构,以及算子的谱的性质。
5)universal Toeplitz algebra万有Toeplitz算子代数
1.In this note, the universal Toeplitz algebra UTG+ (G) associated to such a quasi-partial ordered group is constructed.相应于这样的一个拟偏序群(G,G+),构造了一个万有Toeplitz算子代数。
6)iterative Toeplitz迭代Toeplitz化
延伸阅读

代数的代数代数的代数algebraic algebra 代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.