本公开一般涉及用于基于超声通道数据来追踪镜面反射体以及基于镜面反射体的位置和定向中的至少一个来执行动作的超声成像系统与方法。
背景技术:
常规超声波束形成技术假定接收到的声音反射是来自在大体上所有方向中反射超声能量的漫反射体。当对患者中软组织成像时,该假定证明是有用且有效的。然而,镜面反射的根本物理显著不同于漫反射的。镜面反射是从用超声能量声照射硬级别表面而获得的类似镜子的反射。当对金属物体成像时,包括介入装置和可植入装置,镜面反射是常见的。替代在大体上所有方向中反射超声能量(正如和漫反射的情况一样),镜面反射在反射波束的反射的角度等于入射的角度的位置通常非常强,且在大多数其它位点(location)镜面反射生成非常少的信号。
镜面反射体可有助于在靠近该镜面反射体的区域中成像伪像,包括模糊伪像。如果镜面反射体足够薄(thin),则它还可以有助于振铃伪像,其是从在镜面反射体内被来回反射的超声波中产生的。模糊伪像和振铃伪像都可使任何所得到的超声图像退化,且在极端情况中,它们甚至可引起临床医生基于该超声数据做出不准确的结论。
使用超声成像来追踪介入装置(诸如导管、引导线(guide wire)、针以及其它装置,其通常是镜面反射体)的实时位置是值得期望的。常规超声成像系统当镜面反射体垂直于系统的换能器阵列时可接收到来自镜面反射体的非常强的反射信号。在其中镜面反射体被定位成使得反射超声能量中非常少的或没有击中换能器阵列的情形中,将不可能对该镜面反射体进行成像。然而,依据还有的其它情形,被镜面反射的超声能量中的一些可击中阵列。这将导致在仅仅几个通道(对应于其中入射的角度等于反射的角度的元件)中的非常强烈的信号。然而,在所有的其它通道中,将会有从该镜面反射体接收到的非常少的超声信号。标准波束形成技术假定反射体表现为漫反射体。照此,标准波束形成技术通常将来自多个通道的信号进行求和(sum),以便形成超声图像。尽管该手段已证明对软组织以及其中被成像的材料表现类似漫反射体的其它情况非常有效,但它在对镜面反射体进行成像时是无效的(ineffective)。除了其中入射的角度等于反射的角度的元件,镜面反射体将不会贡献显著的信号给元件。如果常规波束形成技术被应用到包括镜面反射的超声数据,则在求和过程期间镜面反射体的贡献倾向变得最小化。因此,常规波束形成技术对于成像镜面反射体是无效的。
在超声成像系统上显示介入装置的位置经常是值得期望的。常规系统可使用外部追踪系统,诸如电磁追踪系统或光学追踪系统,来实时确定介入装置的位点。然而,使用外部追踪系统给整个系统添加了额外的费用以及复杂度。另外,如果示出介入装置的位点和/或轨迹的数据要被实时地显示,则超声系统要求配置成与追踪系统进行接口。
使用针导(needle guide)起到保持探测器(probe)相对于正被成像的针在不变的相对位置中的固定装置的作用,也是被已知的。尽管该技术对于对针进行成像是有效的,但组合了探测器与针的针导体积较大(bulkier),且比独立的针潜在地更加难以调遣(maneuver)。另外,该技术对追踪被完全布置在患者内的其它类型的介入装置不起作用。
因为这些和其它原因,期望一种用于追踪镜面反射体和基于镜面反射体的位置和/或定向来执行动作的改进的方法与超声成像系统。
技术实现要素:
以上所提到的缺点、劣势、以及问题在本文中被解决,这将通过阅读和理解下列的说明被理解。
在一实施例中,一种用包括处理器和显示装置的超声成像系统来进行超声成像的方法包括采集超声通道数据、以及用所述处理器识别带有镜面反射体特性(signature)的超声通道数据的子集。所述方法包括用所述处理器在所述超声通道数据的所述子集上实现镜面反射体处理技术以计算镜面反射体的位置和定向中的至少一个。所述方法包括用所述处理器基于所述镜面反射体的所述位置和所述定向中的至少一个来执行动作。
在一实施例中,一种超声成像系统,包括探测器、显示装置、与所述探测器电子通信的接收器、以及与所述接收器和所述显示装置电子通信的处理器。所述处理器配置成接收来自所述接收器的超声通道数据,且识别带有镜面反射体特性的所述超声通道数据的子集。所述处理器配置成在所述超声通道数据的所述子集上实现镜面反射体处理技术以计算镜面反射体的位置和定向中的至少一个。所述处理器配置成基于所述镜面反射体的所述位置和所述定向中的至少一个来执行动作。
在另一个实施例中,一种用包括处理器和显示装置的超声成像系统在患者内进行超声成像的方法,包括在患者中感兴趣的区域内操控(manipulate)介入装置。所述方法包括采集所述感兴趣的区域的超声通道数据,以及当所述介入装置被操控时实时地执行下列的步骤。用所述处理器识别带有镜面反射体特性的所述超声通道数据的子集。用所述处理器在所述超声通道数据的所述子集上实现镜面反射体处理技术以计算所述介入装置的位置和定向中的至少一个。依据求和技术对所述超声通道数据进行波束形成,以生成超声图像。用所述处理器生成所述镜面反射体的增强表示(representation),且在所述超声图像上显示所述增强图像以示出所述介入装置的所述位置。
本发明的各种其它特征、目的、和优势将从附图以及其详细的描述中对本领域中那些技术人员变得显而易见。
附图说明
图1是依照一实施例的超声成像系统的示意图;
图2是依照一实施例的方法的流程图;
图3是依照一实施例的镜面反射和漫反射的示意表示;
图4是依照一实施例的镜面反射的示意表示;
图5是依照一实施例的方法的流程图;
图6是依照一实施例的增强图像的示意表示;
图7是依照一实施例的增强图像的示意表示;
图8是依照一实施例的增强图像的示意表示;
图9是依照一实施例的增强图像的示意表示;
图10依照一实施例的方法的流程图;以及
图11是依照一实施例的成像配置的示意表示。
具体实施方式
在下列的详细描述中,对形成它的一部分的附图进行参考,且其中可被实践的具体实施例作为图示被示出。这些实施例被充分详细地描述,以使本领域中那些技术人员能够实践实施例,且要被理解的是,在不偏离实施例的范围的情况下,其它实施例可被利用,且逻辑的、机械的、电的以及其它改变可被做出。因此,下列的详细描述不是要被作为限制本发明的范围。
图1是依照一实施例的超声成像系统100的示意图。超声成像系统100包括驱动探测器106内的元件104来发射脉冲超声信号到组织(没有被示出)中的传送器102和传送波束形成器101。探测器106可以是线性阵列、相控阵列、弯曲的阵列、机械3D探测器、或2D矩阵阵列探测器、或依据各种实施例的任何其它类型的超声探测器。依据示范的一示范实施例,探测器106可以是2D矩阵阵列探测器,以允许在方位角(azimuth)和俯仰角(elevation)二者方向中的全操纵(steer)。脉冲超声信号从组织(像血细胞或肌肉组织)中的结构被背散射,以产生回到元件104的回声。所述回声被元件104转换成电信号、或超声通道数据,且所述电信号被接收器108接收。对于本公开来说,术语“超声通道数据”将被定义成包括在波束形成之前来自多个不同通道的数据。超声通道数据可因此指来自或探测器106或接收器108的数据。处理器110接收来自接收器108的超声通道数据。处理器110可包括一个或更多处理器,包括下列中的任何一个或更多:图形处理单元(GPU)、微处理器、中央处理单元(CPU)、数字信号处理器(DSP)、或能够执行逻辑运算的任何其它类型的处理器。处理器110可包括软件波束形成器,但应当领会到,在其它实施例中,处理器110可与软件波束形成器分离。如上面所陈述的,处理器110接收来自接收器108的超声通道数据。处理器110然后将恰当的延迟应用到超声通道数据,以便聚焦在感兴趣的区域或体积内的具体位点上。处理器110可配置成在超声通道数据上执行回顾的(retrospective)传送波束形成。
处理器110可依据超声通道数据上的多个可选择的超声模态来适应于执行一个或更多处理操作。超声通道数据可在扫描段时间期间当回声信号被接收时来被实时地处理。对于本公开来说,术语“实时”被定义成包括不带任何有意延迟来执行的程序(procedure)。例如,一实施例可以7-20帧/秒的实时帧速率采集并显示数据。然而,应当理解,实时帧速率可依赖于花费用来采集数据的每一个帧的时间的长度。因此,当采集相对大的区域或体积的数据时,实时帧速率可能较慢。因而,一些实施例可具有大大快于20帧/秒的实时帧速率,而其它实施例可具有慢于7帧/秒的实时帧速率。数据可在扫描段时间期间临时被存储在缓冲器(没有被示出)中,且在实况(live)或离线操作中以不那么实时地被处理。本发明的一些实施例可包括多个处理器(没有被示出),和/或多核处理器来处置处理任务。
依据其它实施例(没有被示出),图1中示出的处理器110可用两个或更多独立的组件来代替。例如,一实施例可包括处理器以及独立的软件波束形成器(没有被示出),它们都在接收器108和控制器116之间并行。依据该实施例,处理器和软件波束形成器都将接收来自接收器108的超声通道数据。软件波束形成器将,例如执行波束形成操作,且处理器将执行涉及超声通道数据中镜面反射体的识别的计算。依据一实施例,处理器可在数据中计算镜面反射体的位置和定向,且将指定任何镜面反射体的位置和/或定向的坐标传送到控制器116。依据另一个实施例,软件波束形成器可基于超声通道数据生成图像,且处理器可产生二次图像。该二次图像可,比如包括示出镜面反射体的表示的信息。控制器116可将该二次图像显示为在标准超声图像的顶部上的覆盖图,或者该二次图像可代替标准超声图像的或一些或所有。显示涉及任何镜面反射体的信息的各种方式将在下文中依据各种实施例被描述。
依据一些示范实施例,探测器106可包含用来进行传送和/或接收波束形成中的一些或所有的组件。例如,传送波束形成器101、传送器102、接收器108以及处理器110中的所有或部分可被置于探测器106内。术语“扫描(scan或scanning)”也可在本公开中被用来指通过传送和接收超声信号的过程来进行数据采集。另外,术语“数据”或“超声通道数据”可在本公开中被用来指用超声成像系统采集的或一个或更多数据集。用户接口115可被用来控制超声成像系统100的操作,包括控制患者数据的输入、改变扫描或显示参数、以及诸如此类。
超声成像系统100也包括控制器116,用来控制传送波束形成器101、传送器102、以及接收器108。依据一些实施例,控制器116可控制处理器110。依据其它实施例,处理器110可以是控制器116的子组件(sub-component)。依据其它实施例,处理器110可直接输出用于显示的图像到存储器120或到显示装置118,而不是如图1中所示将处理的数据传送到控制器116。参照回图1,控制器116与探测器106电子通信。控制器116可控制探测器106来进行数据采集。控制器116控制元件104中的哪些是活动的以及从探测器106发射的波束的形状。控制器116也与显示装置118电子通信,且控制器116可将超声通道数据处理成用于在显示装置118上显示的图像。对于本公开来说,术语“电子通信”可被定义成既包括有线的也包括无线的连接。依据一实施例,控制器116可包括中央处理器(CPU)。依据其它实施例,控制器116可包括能够实行处理功能的其它电子组件,诸如数字信号处理器、现场可编程门控阵列(FPGA)、或图形板(graphic board)。依据其它实施例,控制器116可包括能够实行处理功能的多个电子组件。
超声成像系统100可按例如10 Hz到30 Hz的帧速率来连续地采集超声通道数据。从超声通道数据生成的图像可按类似的帧速率来刷新。其它实施例可按不同的速率来采集和显示超声通道数据。例如,依赖于感兴趣的区域的尺寸以及预期的应用,一些实施例可按小于10 Hz或大于30 Hz的帧速率来采集超声通道数据。存储器120被包括,以用于存储用于在随后的时间显示的处理的图像帧。每一个图像帧可包括相关联的时间标记,指示采集的时间或相对时间来便于从存储器120中以恰当的次序取回。存储器120可包括任何已知的数据存储媒体。
可选择地,本发明的实施例可利用造影剂来实现。当使用超声造影剂(包括微泡(microbubble))时,对比成像生成身体中解剖结构以及血液流动的增强图像。在当使用造影剂,对超声通道数据进行采集之后,图像分析包括分离谐波和线性组分、增强谐波组分以及通过利用增强的谐波组分来生成超声图像。从接收的信号中的谐波组分的分离被使用适当的滤波器来执行。对于超声成像的造影剂的使用被本领域中那些技术人员所周知,且因此将不被进一步详细地描述。
在本发明的各种实施例中,超声通道数据可由处理器110通过其它或不同模式相关的(例如,B-模式、颜色多普勒、M-模式、颜色M-模式、频谱多普勒、弹性成像(Elastography)、TVI、应变、应变率、以及诸如此类)模块来处理,以形成2D或3D数据。例如,一个或更多模块可生成B-模式、颜色多普勒、M-模式、颜色M-模式、频谱多普勒、弹性成像、TVI、应变、应变率和其组合,以及诸如此类。图像波束和/或帧被存储且指示数据在被采集在存储器中的时间的计时信息可被记录。模块可包括,例如用来执行扫描转换操作以将图像帧从坐标波束空间转换到显示空间坐标的扫描转换模块。视频处理器模块可被提供,其从存储器读取图像帧并将图像帧实时地显示,而同时程序正在患者上被实行。视频处理器模块可将图像帧存储在图像存储器中,从其中图像被读取并且显示。
图2是依照一示范实施例的方法的流程图。该流程图的单个块体表示可依照方法200执行的步骤。另外的实施例可以不同的次序执行被示出的步骤和/或另外的实施例可包括图2中没有示出的另外的步骤。方法200的技术效果是基于镜面反射体的位置和定向中的至少一个的动作的执行。
现在参照图1和2,在步骤202,控制器116控制传送波束形成器101、传送器102、以及探测器106来对超声通道数据进行采集。超声通道数据可包括2D超声通道数据或3D超声通道数据。每一个通道可携带来自探测器106中的一个或更多元件104的数据。超声通道数据可沿着多条线在大体上垂直于探测器106的面的方向中被采集,或者所述线中的一些或所有可在或方位角或俯仰角方向中被操纵,使得所述线不垂直于探测器106的面。依据另一个实施例,未聚焦超声能量可被用来在步骤202期间采集超声通道数据。例如,除了各种类型的聚焦传送波束以外,平面波、球面波、或任何其它类型的未聚焦传送方案也可被用来在步骤202期间采集超声通道数据。控制器116可以,比如控制传送波束形成器101和传送器102发射在感兴趣的区域或体积内带有离散焦点的传送波束。紧接着,探测器106沿着每一条线接收反射的超声信号。接收器108接收在换能器阵列的活动的(active)接收孔(aperture)中来自所有的元件104的未处理或原始超声通道数据。处理器110可处理原始超声通道数据,以便在表示沿每一个扫描线的不同深度的多个不同的点形成像素或体素值。处理器110可以使用表示来自每一个通道的数据的原始超声通道数据。在接收到原始超声通道数据之后,软件波束形成器可将恰当的延迟应用到超声通道数据,以便聚焦在沿每一个扫描线的具体深度。处理器110也可模仿常规硬件波束形成器并且按照沿每一个扫描线的深度的函数来动态地聚焦接收波束。软件波束形成器可配置成执行多线采集(MLA)。例如,对于每一个传送线,处理器110可采集2、4、6、8或16个接收线。应当领会到,依照其它实施例,处理器110可对于每一个传送线采集不同数量的接收线。
依据另一个采集方案,控制器116可控制传送波束形成器101和传送器102传送带有不同焦点的两个或更多不同的波,使得视场内的每一个位点从至少两个不同的方向被声照射。因此,对于视场中的每一个位点,至少两个样本是从多个方向被采集的。处理器110可接收来自探测器106的超声通道数据,且将回顾的动态聚焦(RTF)应用到超声通道数据。当执行RTF时,处理器110将时间偏移应用到在每一个位点采集的两个或更多样本中的至少一个。在偏移已经被应用之后,处理器110可然后将样本进行组合。应用偏移允许样本被同相地组合,且处理器110因而能够使用基于两个或更多不同的传送事件(每一个带有不同的焦点)采集的样本来生成图像。依据另一个实施例,控制器116可控制传送波束形成器101发射未聚焦超声能量,诸如,例如平面波或球面波。
参照图2,在步骤204,处理器110识别带有镜面反射体特性的超声通道数据的子集。被用来识别超声通道数据的子集的技术将在下文中被详细地描述。
图3是镜面反射302和非镜面或漫反射306的示意表示。图3包括镜面反射302的图解表示、镜面波束分布图(profile)304、漫反射306的图解表示、以及漫射波束分布图308。镜面反射302的图解表示包括入射波束310和反射波束312。反射波束312具有等于入射的角度的反射的角度。漫反射包括入射波束314和多个反射波束316。所述多个反射波束316中的每一个被反射在起源于点318的不同方向中。应当注意,漫反射306中示出的表面被示出为崎岖不平且没有规律的,而镜面反射302中示出的表面被示出为平滑的。正如镜面反射302中所示出的一样,镜面反射同当表面平滑时是通常更加普遍的。
镜面波束分布图304示出带有相对高的振幅的明显的峰320。依据一些实施例,峰320的振幅可在与传送脉冲一样的一般相同的量级上。接收信号中的大多数位于峰的位点323的设定距离内。相反,漫射波束分布图308不具有明显的峰。替代的是,漫射波束分布图308参差不齐,且具有铺开在多个不同通道上的多个峰。如漫反射306中所示,由于每一个漫反射生成多个反射波束的事实,漫射波束分布图308包括多个局部最大值。
图4是依照一实施例的镜面反射的示意表示。图4包括换能器阵列400,其包括多个元件(没有被示出)。换能器阵列包括传送孔402,其包括第一多个换能器元件,以及接收孔404,其包括第二多个换能器元件。传送孔402中的所述第一多个元件被控制来发射传送波束410。传送波束形成器101和传送器102将延迟应用到传送孔402中的所述第一多个元件,以将传送波束410聚焦在点408,点408被示出在镜面反射体406的表面上。示范传送波束分布图413被示出在传送孔402中元件的上面。接收孔404接收反射波束414。尽管依据一示范实施例,传送波束分布图413一般是凸曲线,但接收波束分布图418具有明显的峰420,其比传送波束分布图413要窄。另外,图4中示出的接收波束分布图418包括两个局部最大值422。
参照回图2,在步骤204,处理器110识别带有镜面反射体特性的超声通道数据的子集。如关于图3和4所讨论的,漫反射体倾向产生漫反射,诸如漫反射300。被用超声能量声照射的漫反射体的每一个点一定程度上起到超声能量的未聚焦发射器的作用。正如被所述多个反射波束316所示出的一样,漫反射体倾向在所有方向中差不多均匀地反射超声能量。由于跨接收孔中所有通道的平均信号强度一般相同,且在漫射波束分布图308中示出的峰全部近似是相同高度,漫射波束分布图308反映了漫反射的全向性质。另外,漫射波束分布图308中的峰跨接收孔中的通道差不多均匀地分布。
正如先前所描述的,镜面反射302导致带有明显的峰320的镜面分布图304。当接收来自镜面反射体的回声时,接收通道将在通道的子集中示出类似于镜面波束分布图304的接收波束分布图。当对镜面反射体成像时,其它接收通道中的信号将通常非常低。因此,在步骤204,处理器110可分析镜面反射体特性的通道数据。镜面反射体特性可通过分析通道数据中接收信号的分布或方差来在通道数据中被识别。例如,对于单点的示范镜面反射体特性可包括对于通道中的大多数的相对低的信号值以及单峰(诸如图3中示出的峰320)。示出指示镜面反射体的峰的通道通常将对应于换能器阵列中空间上位于靠近彼此的元件。镜面波束分布图304,例如包括来自换能器阵列中邻近彼此的小数量的元件的峰320。用来识别带有镜面反射体特性的超声通道数据的子集的另一个方式是分析超声通道数据的方差。方差是每一个通道中的信号值离平均信号值有多远的衡量。方差通过下面的方程来描述:
其中,是方差,是跨所有通道的平均值,N是分布中的项、或通道的数目,且X是项的值或通道的信号值。依据一实施例,对于超声通道数据从其中被采集的每一个位点,平均值和通道的数目都可以被计算。
再参照图3,镜面波束分布图304包含比漫射波束分布图308高的多的方差。平均线324表示镜面分布图304的平均信号值,同时平均线326表示漫射分布图308的平均信号值。相比漫射波束分布图308,镜面波束分布图304包含相对高的方差。依据一实施例,处理器110可基于所有的超声通道数据确定平均方差,且然后用这个平均方差来识别带有高于该平均方差的方差的超声通道数据的子集。处理器110可附加地或备选地使用不同的技术来识别用于确定超声通道数据的特定子集是否表示镜面反射体的阈值。例如,所述阈值可基于经验数据或依据任何其它技术来确定。另外,其它实施例可使用另外的分析技术来识别带有镜面反射体特性的超声通道数据的子集。例如,其它算法可考虑局部最大值的相对间距以及峰宽,以便查看局部最大值是否匹配镜面分布图的形状和宽度的确立准则。应当被本领域中那些技术人员领会到的是,处理器110可在超声通道数据上实现其它的技术来识别镜面反射体特性。例如,处理器110可使用其它的度量,以便表征跨通道的振幅分布,其包括分析更高阶矩、计算多项式拟合参数、或识别超声通道数据中镜面反射体特性的任何其它统计技术。
在步骤204,处理器110可基于2D超声通道数据、3D超声通道数据、或4D(实时3D)超声通道数据来识别带有镜面反射体特性的超声通道数据的子集。尽管图3和4被引导向使用2D超声通道数据的实施例,但应当被本领域中那些技术人员领会到的是,处理器110可分析3D或4D超声通道数据,以便识别数据中一个或更多镜面反射体特性。例如,处理器110可在多个维度中分析通道数据,以基于通道数据来识别一个或更多镜面反射体特性。
参照回图2,在步骤206,处理器110实现镜面反射体处理技术来计算镜面反射体的位置和/或定向。正如关于图3先前所讨论的一样,关于镜面反射体302,反射的角度等于入射的角度。处理器110可基于在步骤204中识别的超声通道数据的子集来确定镜面反射体的位置。在示范处理技术中,处理器110识别镜面波束分布图304的峰的位点323。位点323对应通道,其进而对应接收反射波束的峰值的元件。依据其它实施例,处理器110可依据另一个技术确定接收波束的中心位点。例如,处理器110可对对应于分布中峰320的中心区域322中的所有信号值实现取平均功能。
在识别出换能器阵列上表示镜面反射的中心的元件或位点之后,使用已知的超声处理技术和关于各种组织中的声音的速度的充分确立的信息,处理器110可基于传送波束被从其中反射的位置以及波束的总飞行时间来计算镜面反射体的位置。以上所描述的技术将识别出镜面反射体的表面上单点的位点。依赖于传送的角度以及相对于阵列的镜面反射体的定向,计算沿镜面反射体的表面的多个点的位置可以是可能的。一旦多个点的位置已被识别,处理器110可使用这些点的位置来计算镜面反射体的反射表面的位置和/或定向。在诊断成像中,追踪镜面反射体,诸如导管、引导线、或针,常常是有用的。这些介入装置中的大多数主要是一维的。处理器110可基于计算的反射表面的位置和/或定向,来确定这些装置中的任何装置的位置和定向中的一个或二者。
在方法200的步骤208,处理器110基于在步骤206计算的位置和定向中的至少一个来执行动作。依据将在下文中描述的各种实施例,执行动作的步骤可包括许多不同的动作。
依据一实施例,动作可包括增强图像的生成与显示。图5是依照一示范实施例(其中动作包括生成和显示增强图像)的方法的流程图。流程图的单个块体表示依照方法500可执行的步骤。另外的实施例可以不同的次序来执行示出的步骤,和/或另外的实施例可包括图5中没有示出的另外步骤。方法500的技术效果是增强图像的显示。
在步骤502,控制器116控制超声通道数据的采集。在步骤504,处理器110识别带有镜面反射体特性的超声通道数据的子集。在步骤506,处理器110实现镜面反射体处理技术来识别带有镜面反射体特性的超声通道数据的子集。步骤502类似于步骤202,步骤504类似于步骤204,以及步骤506类似于步骤206,它们在图2中关于方法200被先前描述过了。步骤502、504、以及506将因此不另外详细地描述。
在步骤508,处理器110基于在步骤502期间采集的超声通道数据生成超声图像。图像可被基于任何类型的成像模式。依据一示范实施例,图像可以是B-模式图像。在步骤510,处理器110基于在步骤506期间计算的镜面反射体的位置和/或定向来生成增强图像。依据各种实施例的增强图像的具体细节以及示例将在下文中被描述。在步骤512期间,处理器110将增强图像显示在显示装置118上。
在步骤514,控制器116确定采集另外的超声通道数据是否是期望的。在实时超声采集与显示期间,在步骤514处的默认可以是采集另外的超声通道数据,直到用户停止积极地扫描视场。依据其它实施例,控制器116可按预设的或用户确定的间隔来采集另外的超声通道数据。如果采集另外的超声通道数据是期望的,则502、504、508、510、512、以及514的步骤被反复重复。如果采集另外的超声通道数据不被期望,则方法500可依据一实施例结束。
图6、7、8和9全部是依据各种实施例的、可依据方法500生成的增强图像的示例。图6是依照一实施例的增强图像600的示意表示。增强图像600包括超声图像602、线604、以及瞄准线(aim line)606。正如关于步骤508所描述的,该超声图像可以是B模式图像。
镜面反射体的增强表示可包括突出或指示镜面反射体的位置和/或定向的任何方式。镜面反射体的增强表示可包括来自下列选择中的一个或更多技术:在增强图像600上用线或曲线表示镜面反射体的位置和/或定向,以色彩对镜面反射体604的表示进行着色来将镜面反射体604的表示从超声图像602中区分,显示图标来指示镜面反射体的位置和定向,以及显示镜面图像。镜面反射体的增强表示可同依据常规超声成像模式从超声通道数据中生成超声图像的同时被联合显示。
图6中示出的镜面反射体604的增强表示包括线604,其可被着色来进一步将它与超声图像602相区别。依照一实施例,镜面反射体可以是针,且如果针被更深地插入到沿当前轨迹正被成像的组织中,则增强图像600可另外包括瞄准线606来指示针将要接触到的组织。瞄准线606在图6中被示出为直线,但其它实施例可包括与将跟随弯曲轨迹的介入装置相关联的弯曲瞄准线。用户可在关状态和开状态之间触发瞄准线606。其它实施例在增强图像中可不包括瞄准线606。
在另一个实施例中,增强图像可被用来向用户提供在导管尖将接触到肌肉或其它目标组织之前剩余距离的估计。例如,增强图像可包括导管的增强表示,其包括清晰定义的导管尖。该增强图像向用户提供在患者体内导管的更好显像。导管的增强表示可被用来,比如帮助指导用于治疗心房颤动或其它心脏不规则(irregularity)的实时EP消融(ablation)程序。增强图像可以选择地包括剩余在导管尖和目标肌肉组织之间的估计距离的大小或值。该估计距离可当导管的位置在EP消融程序之前或期间被调整时实时地被更新。应当领会到,导管尖显像可和依照其它实施例的、不同于EP消融的程序使用。
图7是依照一实施例的增强图像610的示意表示。增强图像610包括超声图像612和曲线614。曲线614可表示弯曲的镜面反射体(诸如介入装置)的位置和定向。镜面反射体614的增强表示可被着色以便于更加清晰地区别它与超声图像612。依据另一个实施例,镜面反射体614的增强表示可相比图像的非镜面部分用更高的反射率来绘制。参照图2和7二者,依据一实施例,在步骤208执行动作可包括从图像中移除或减少模糊伪像。模糊伪像通常呈现在邻近镜面反射体的区域或体积中。处理器110可以比如应用具体地移除或减少在靠近镜面反射体的预定区域中的模糊伪像的图像处理技术。图7包括镜面反射体614以及离该镜面反射体预定距离的区域616。在确定了镜面反射体614的位点之后,处理器110可计算区域616的位置。然后,处理器110可实现算法来减少或移除具体在区域616中的模糊伪像。当处理3D超声通道数据时,处理器110可识别在离镜面反射体614预定距离内的体积。依据另一个实施例,当实现配置成减少模糊伪像的算法时,处理器110可使用镜面反射体的位置作为种子位点。相比能够被应用到整个图像的算法,通过具体地将靠近镜面反射体的区域或体积作为目标以用于模糊减少算法,利用更加侵入性的图像处理技术来减少模糊的效应是可能的。这导致最终图像带有减少了的伪像以及改善的诊断效用。
图8是依照一实施例的增强图像620的示意表示。增强图像620包括超声图像622以及表示相对于超声图像镜面反射体的位置的图标624。依据其中镜面反射体是介入装置的一实施例,图标624可包括,例如介入装置的表示或模型。依赖于阵列和镜面反射体的位置,采集沿镜面反射体的表面的所有的点可是不可能的。然而,处理器110可能够使用在步骤506计算的位置和/或定向数据,以便将图标624定位在指示正被成像的组织内介入装置的位置和定向的超声图像622上的位置。依据一实施例,图标624可从查找表或从一些其它类型的存储器中选择。例如,图标可从带有具体介入装置的详细形状和特征的CAD文件中被生成。用户可能够从介入装置的列表中选择介入装置,或者处理器110可基于介入装置的被检测的表征(基于在步骤506计算的位置和定向数据)来从查找表中自动地选择最恰当的图标。依据一实施例,处理器110可能够依据已知绘制技术来绘制图标624,使得图标624的视角(perspective)关联于组织中介入装置的定向。
图9是依照一实施例的增强图像640的示意表示。增强图像640包括超声图像642以及叠加在超声图像642上的镜面图像。镜面图像可包括基于在步骤506期间计算的镜面反射体或多个镜面反射体的位置和定向数据来生成图像。依据另一个实施例,镜面图像可包括基于每一个像素表示镜面反射体的可能性的图像。概率可通过强度、颜色、不透明性、或任何其它的像素显示参数来表示。例如,如果像素非常有可能表示镜面反射体,则它可接收到高的强度值。如果像素不太可能表示镜面反射体,则它可接收到低的强度值。另外,如果关于像素是否表示镜面反射体或漫反射体有较少的确定性,则像素的强度和/或颜色可被给与中间的值。
在增强图像640中,镜面图像包括其有可能是镜面反射体的三个离散的形状。第一条线644、第二条线646、以及线648。镜面图像由第一条线644、第二条线646、以及第三条线648组成。如上面所讨论的,在其它实施例中,镜面图像也可包括对一定程度上有可能或一定程度上不太可能表示镜面反射体的面积或区域的指示。一种考虑镜面图像的备选方式是将它认为是基于每一个像素表示镜面反射体的概率的图像。
图10是依照一示范实施例的方法650的流程图,其中执行动作包括调整被探测器发射的波束朝向镜面反射体。流程图的单个块体表示依照方法650可执行的步骤。另外的实施例可以不同的次序来执行示出的步骤和/或另外的实施例可包括图10中没有示出的另外的步骤。方法650的技术效果是以一种方式操纵和/或聚焦被探测器发射的超声波束朝向镜面反射体,使得反射波束接触探测器的换能器阵列。
在步骤652,控制器116控制超声通道数据的采集。依据一实施例,超声通道数据可包括普通超声通道数据或超声通道数据可被采集为具体配置成检测镜面反射体的位置的侦察扫描的部分。在步骤654,处理器110识别带有镜面反射体特性的超声通道数据的子集。紧接着,在步骤656,基于被识别的超声通道数据的子集,处理器110实现镜面反射体处理技术来识别镜面反射体的位置和/或定向。步骤652、654、和656分别非常类似于关于图2先前被描述的步骤202、204、和206。步骤652、654、和656因此将不关于方法650被描述。
紧接着,在步骤658、控制器116确定采集另外的超声通道数据是否是期望的。如果采集另外的超声通道数据被期望,则方法650前进到步骤660。如果采集另外的超声通道数据不被期望,则方法结束。如果另外的超声通道数据被期望,则控制器116基于镜面反射体的计算位置和定向来调整波束。调整波束可包括或单独地或组合地调整多个波束参数。
图11是依照一实施例的成像配置的示意表示。成像配置包括换能器阵列702和镜面反射体704。成像配置示出第一传送波束706和第一反射波束708。注意,第一反射波束708没有接触换能器阵列710。由于第一反射波束708没有接触换能器阵列710,故不可能使用第一传送波束706和第一反射波束710来确定关于镜面反射体704的信息。然而,参照回图10,依赖于镜面反射体704和换能器阵列710的相对几何条件,调整波束以便得到关于镜面反射体704的更多信息可以是可能的。
例如,图11还包括第二传送波束712和第二反射波束714。第一传送波束706和第二传送波束712都在点716接触镜面反射体。然而,注意如何第二反射波束714接触换能器阵列702,而第一反射波束没有接触换能器阵列702。图11展示控制器116可在步骤670调整传送波束来确保反射波束接触换能器阵列的一个示范方式。另外,当对镜面反射体进行成像时,对于传送波束要被聚焦在镜面反射体上是值得期望的。通过使用在方法650的步骤656期间获得的关于镜面反射体的位置和/或定向的信息,控制器116可调整被指引适合于对镜面反射体进行成像的一个或更多随后波束的参数。在控制器116已对波束做出了任何必要的调整后,方法650可回到步骤652。步骤652、654、656、658、以及670可被反复执行如所期望或必要的多次。
其它实施例可用基于从先前采集的超声通道数据计算的镜面反射体的位置或定向信息来被具体地操纵和/或聚焦向镜面反射体的一个或更多帧,来对标准成像帧进行插帧。对于许多应用来说,将不必要或值得期望的在每个线期间传送被具体操纵向镜面反射体的波束。替代的是,传送朝向镜面反射的波束中的小百分比可以是更加可取的。依据一示范实施例,对于传送波束中的近似10%被具体操纵向镜面反射体是可值得期望的。传送波束中的其它90%可以是被适应于采集标准超声成像帧(诸如B模式或任何其它超声模式)的波束。应当被本领域中那些技术人员领会到的是,其它实施例可按与上面所描述的那个相比不同的比率,用被直接操纵向镜面反射体的帧来对标准帧进行插帧。被操纵向镜面反射体的帧的数量也可以是可调整的。例如,当对快速移动的镜面反射体进行成像或追踪时,使更多的帧被操纵向镜面反射体可以是有益的。另一方面,如果镜面反射体是相对固定的,则使采集的帧中较少比例成为被指引在镜面反射体的帧可以是更加值得期望的。
依据另一个实施例,执行动作(如方法200的步骤208中所示)可包括将镜面反射体的位置和/或定向信息发送到外部系统。该外部系统可以是,例如外科导航系统(surgical navigation system)。
既包括处理器又包括控制器的示范实施例在上面的公开中被描述。应当被本领域中那些技术人员领会到的是,如被处理器110和控制器116之一执行的上文中所描述的步骤中的任何步骤可依据其它实施例被处理器110和控制器116中的另一个来执行。另外,归于处理器110和控制器116中任一一个的处理任务可依据各种实施例跨任何数量的硬件组件来分布。
上面描述的实施例允许只基于超声通道数据对镜面反射体的检测、显示以及追踪。没有外部装置或追踪系统被要求来快速且准确地实时识别镜面反射体的位点。另外,先前描述的实施例允许更加准确的图像的显示。通过对镜面反射体肯定地识别,这些技术和系统允许用户以更高的置信度来解释带有镜面反射体的区域的图像。
该书面的描述使用示例来公开本发明,包括最佳模式,且还使本领域中任何技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何结合的方法。本发明的可取得专利之范围由权利要求来定义,且可包括本领域中那些技术人员想到的其它示例。如果它们具有不与权利要求的字面语言不同的结构元件,或如果它们包括与权利要求的字面语言有非本质差别的等同结构元件,则此类其它示例旨在位于权利要求的范围之内。