本发明涉及可用于吸收制品的吸收结构,诸如尿布、失禁短内裤、训练裤、尿布固定器和衬垫、卫生服装等等。具体地,本发明涉及一种表现出期望的消费者特性的吸收结构。
背景技术:
用于吸收流体的吸收制品目的是使消费者感到舒适。这在传统上代表在增加吸收的同时使用较薄的材料。增加的舒适性也可通过在吸收芯中使用通道和切口以形成可包括吸收芯的移除部分的柔性区来实现。增加舒适性的目标是形成一种吸收制品,所述吸收制品对消费者而言是服装样的同时仍然保护消费者。
传统上,在消费者穿着吸收制品并且流体进入该制品时,吸收芯和制品的结构特性改变并降解。这是因为,取决于吸收制品的组成,在传统上材料将丧失其结构完整性或变得较不具有柔性,在其吸收流体时集中在一起并且不能保持其形状。另外,在穿着的情况下,许多吸收制品可变得对消费者而言更明显,使得其意识到他们正在使用吸收制品并且该制品正在变化并且可能不再像原来那样良好地起作用。
结构完整性的丧失或柔韧性的丧失或不能保持形状和压缩恢复导致舒适性和保护之间的折衷。丧失结构完整性的吸收芯结构趋于丧失湿弹性,从而导致消费者丧失对产品的保护和吸收能力的信心。由于其组成而丧失柔韧性的吸收芯可变得不舒适,因为它们不再是服装样的。因此,需要创建一种吸收芯,其平衡舒适性和保护性,使得它可处理后续侵入但消费者不感觉到产品将不保护他们和/或使用起来不舒适。
在穿着时吸收性结构(或制品)对身体引起的机械压缩的响应被称为其集中压缩响应。集中压缩可能是与穿着吸收制品相关联的总体舒适度方面的一个重要因素。理想地,测量集中压缩响应将允许确定压缩吸收结构所需的峰值力以及确定可用于驱动产品形状恢复的储存能或在使用时压缩制品后的“恢复能”,关于穿着期间的吸收结构的集中压缩,可能难以预测消费者在使用吸收性物品时将会进行的所有可能的运动和位置。这些可影响消费者是否感觉到吸收物品和/或发现吸收性物品是否舒适。因此期望开发出一种用于评估吸收制品或吸收制品的部分或吸收芯结构的集中压缩响应的方法,其提供对吸收制品在穿着期间的压缩的指示。
此外,需要创建一种吸收结构,其在使用前具有足够柔性并且仍然能够在多次侵入之后保持其结构完整性,如由多次测试循环之后吸收结构的恢复能所表现的。
此外,需要创建一种用于形成一种吸收结构的方法,所述吸收结构在吸收流体时变得柔韧或保持其柔韧性,从而允许根据消费者的需要对产品建模。
技术实现要素:
本发明描述了一种吸收结构,其包括一个或多个吸收层,其中所述吸收结构表现出介于约30克和约150克之间的第一循环峰值力压缩。所述吸收结构还表现出介于0.1mj和2.8mj之间的第五循环干恢复能。
本发明描述了一种吸收结构,其包括一个或多个吸收层,其中所述吸收结构表现出介于约30克和约150克之间的第一循环峰值力压缩。所述吸收结构还表现出介于0.1mj和2.8mj之间的第五循环干恢复能,和介于0.6mj和5.0mj之间的第五循环湿恢复能。
附图说明
虽然本说明书通过特别指出并清楚地要求保护本发明主题的权利要求书作出结论,但据信由以下说明结合附图可更容易地理解本发明,其中:
图1为吸收制品的顶视图。
图2为沿线2-2截取的图1的吸收制品的横截面图。
图3为沿线3-3截取的图1的吸收制品的横截面图。
图4为吸收制品的顶视图。
图5为沿线5-5截取的图4的吸收制品的横截面图。
图6为沿线6-6截取的图4的吸收制品的横截面图。
图7为沿线7-7截取的图4的吸收制品的横截面图。
图8为图5的一部分的放大视图。
图9为吸收制品的顶视图。
图10为沿线10-10截取的图9的吸收制品的横截面图。
图11为沿线11-11截取的图9的吸收制品的横截面图。
图12为代表性hipe泡沫块的sem。
图13为图12的sem的放大视图。
图14为图12的sem的横截面图。
图15为具有开孔泡沫块的异质块体的sem。
图16为图15的一部分的放大视图。
图17为异质块体的顶视图图像。
图18是进行集中压缩测试的设备的示意图。
图19a-b是进行集中压缩测试的设备的示意图。
图20a-b是得自集中压缩测试方法的代表性曲线。
具体实施方式
如本文所用,术语“双组分纤维”是指由至少两种不同的聚合物从各自的挤出机挤出但纺在一起形成一根纤维的纤维。双组分纤维有时也称为共轭纤维或多组分纤维。聚合物横跨双组分纤维的横截面被布置在大体上恒定定位的不同区中并沿着双组分纤维的长度连续延伸。例如,这种双组分纤维的构型可以是例如皮/芯型排列,其中一种聚合物被另一种聚合物围绕,或者可以是并列型排列、饼式排列、或“海岛型”排列。
如本文所用,术语“双成分纤维”是指由至少两种聚合物从相同的挤出机作为共混物挤出而形成的纤维。双成分纤维不具有被布置在相对恒定定位的、与纤维横截面交叉的不同区中的各种聚合物组分,并且各种聚合物沿着纤维的整个长度通常不是连续的,而是通常为随机开始和结束的成形原纤。双成分纤维有时也被称为多成分纤维。
在以下描述中使用了术语“纤维素纤维”。纤维素纤维包括基于纤维素的天然存在的纤维,例如棉、亚麻布等。木浆纤维为根据本发明的纤维素纤维的一个示例。衍生自纤维素的人造纤维诸如再生纤维素,例如,粘胶纤维或部分或完全乙酰化的纤维素衍生物(例如乙酸纤维素或三醋酸纤维)也可认为是根据本发明的纤维素纤维。
本文术语“一次性的”用来描述不旨在被洗涤或换句话讲作为制品而再次保存或再次使用的制品(即它们旨在于单次使用后就丢弃,并且可能将其回收、堆肥处理,或换句话讲以与环境相容的方式处理)。包含根据本发明的吸收结构的吸收制品可例如为卫生巾、卫生护垫、成人失禁产品、尿布、或被设计成吸收身体流出物的任何其它产品。本文将结合典型的吸收制品诸如卫生巾来描述本发明的吸收结构。通常,此类制品可包括液体可渗透的顶片、底片以及顶片和底片中间的吸收芯。
如本文所用,“可包覆元件”是指可由泡沫包覆的元件。可包覆元件可以是例如一根纤维、一组纤维、一簇、或两个孔之间的一段膜。应当理解,本发明涵盖其它元件。
如本文所用,“纤维”是指可为纤维结构的一部分的任何材料。纤维可以是天然的或合成的。纤维可以是吸收性的或非吸收性的。
如本文所用,“纤维结构”是指可分解成一根或多根纤维的材料。纤维结构可以是吸收性的或吸附性的。纤维结构可表现出毛细管作用以及多孔性和渗透性。
如本文所用,术语“固定”是指移动或运动的减少或消除。
如本文所用,术语“熔喷法”是指如下形成纤维的方法,其中将熔融热塑性材料通过多个细小的、通常圆形的冲模毛细管挤出,作为熔融线或长丝进入会聚的高速且通常受热的气体(例如,空气)流中,以拉细熔融热塑性材料的长丝以减小其直径。其后,熔喷纤维由高速气体物流运载并沉积在收集面上(常常在仍然发粘时),以形成无规分散的熔喷纤维的纤维网。
如本文所用,术语“单组分”纤维是指仅使用一种聚合物由一个或多个挤出机形成的纤维。这不旨在排除由一种聚合物形成的纤维,为了着色、抗静电特性、润滑、亲水性等原因,向该聚合物中加入了少量的添加剂。这些添加剂例如用于着色的二氧化钛一般以小于约5重量%,并且更典型地约2重量%的量存在。
如本文所用,术语“非圆形纤维”描述具有非圆形横截面的纤维,并且包括“异形纤维”和“毛细管道纤维”。此类纤维可为实心的或中空的,并且它们可为三叶形、δ形,并且可为在它们的外表面上具有毛细管道的纤维。毛细管道可具有各种横截面形状,诸如“u形”、“h形”、“c形”和“v形”。一种实用的毛细管道纤维为t-401,命名为4dg纤维,其购自fiberinnovationtechnologies(johnsoncity,tn)。t-401纤维为聚对苯二甲酸乙二醇酯(pet聚酯)。
如本文所用,术语“非织造纤维网”是指具有夹层的单根纤维或纺线的结构但不呈如织造织物或针织织物中的重复图案的纤维网,该织造织物或针织织物通常不具有无规取向的纤维。非织造纤维网或织物已由多种方法形成,例如诸如电纺法、熔喷法、纺粘法、水刺法、水缠绕法、气流成网和粘结粗梳纤维网法,包括粗梳热粘结。非织造织物的基重通常用克/平方米(gsm)表示。层压纤维网的基重是组成层和任何其它添加部件的组合基重。纤维直径通常表示为微米;纤维尺寸也可表示为旦尼尔,其为每纤维长度的重量的单位。取决于纤维网的最终用途,适用于本发明的制品的层压纤维网的基重可在约10gsm至约100gsm的范围内。
如本文所用,术语“峰值力”涉及压缩期间吸收结构的柔韧性的指示。较低的“峰值力”表示更具柔性的吸收结构或吸收制品。
如本文所用,术语“聚合物”一般包括但不限于均聚物、共聚物,例如嵌段、接枝、无规和间规共聚物、三元共聚物等,以及它们的共混物和修饰物。此外,除非另外具体地限制,否则术语“聚合物”包括材料的所有可能的几何构型。所述构型包括但不限于全同立构、无规立构、间同立构和无规对称。
如本文所用,术语“恢复能”涉及吸收结构或吸收产品能够保持或恢复原始形状的程度的指示。更具体地,“恢复能”是吸收结构或吸收产品在压缩之后将对消费者的身体和/或服装进行的工作量的量度。不受理论的约束,恢复能的上限应当是压缩能,即从消费者的身体/服装移除时完全恢复的产品。1次循环和20次循环之间的干恢复能应当小于新产品的干压缩能的250%。
如本文所用,“纺粘纤维”是指以如下方法形成的小直径的纤维:将熔融的热塑性材料从喷丝头的多个精细的且通常为圆环形的毛细管挤出成为长丝,然后将挤出的长丝直径快速减小。当纺粘纤维被沉积在收集面上时通常不发粘。纺粘纤维一般是连续的并具有大于7微米,并且更具体地介于约10和40微米之间的平均直径(来自具有至少10根纤维的样本尺寸)。
如本文所用,“测试循环”是指集中压缩测试的循环。
如本文所用,“层”或“层”涉及一个或多个层,其中所述层内的组分紧密结合但不需要粘合剂、压力粘结、热焊接、压力和热粘结的组合、水刺缠结、针刺、超声波粘结、或本领域已知的类似粘结方法,使得单独的组分可不与层完全分离但不影响其它组分的物理结构。技术人员应当理解,尽管层之间不需要单独的粘结,但可根据预期用途使用粘结技术以提供附加的完整性。
如本文所用,“簇”或“chad”是指非织造纤维网的纤维的离散的整体延伸部。每个簇可包括从纤维网表面向外延伸的多根环状、对准的纤维。每个簇可包括从纤维网表面向外延伸的多根非环状纤维。每个簇可包括作为两个或更多个一体化非织造纤维网的纤维的整体延伸部的多根纤维。
如本文所用,“使用循环”涉及在吸收结构从干状态过渡到饱和湿状态时,所述吸收结构的使用持续时间。
虽然已经举例说明和描述了本发明的具体实施方案,但是对于本领域技术人员来说显而易见的是,在不脱离本发明的实质和范围的情况下可作出各种其它改变和5修改。
发明内容
本发明涉及柔性的并且在使用时保持其弹性的吸收结构。所述吸收结构还在使用循环期间增加体积少于250%,从而获得在使用期间保持弹性、堆积体积和舒适性的柔性产品。
所述吸收结构可包括一个或多个吸收层。吸收结构可以为异质块体。在一个实施方案中,吸收芯结构为两层体系,其中上层为异质块体层,其包含一个或多个可包覆元件和一个或多个离散的开孔泡沫块。上层异质块体层可以为如上文所定义的层。下层为吸收层,其包含超吸收聚合物。吸收芯结构可包括包含超吸收聚合物的吸收层下方的附加层。
吸收芯结构可包括异质块体层,如2014年5月5日提交的美国专利申请61/988,565;2015年2月13日提交的美国专利申请62/115,921;或美国专利申请62/018,212中所公开的那些。异质块体层具有深度、宽度和高度。
吸收结构可包括吸收芯或吸收芯元件20,诸如以下美国专利号中所述的那些:2012年9月11日授权的8,263,820,2012年2月28日授权的8,124,827。
吸收结构可具有基底层。吸收结构的基底层可有利地包括基本上不含纤维素纤维的纤维材料。所谓吸收芯的某个层“基本上不含”纤维素纤维,是指在本发明的情形中该层不应在其内部结构中包括任何显著量的纤维素纤维。尽管可存在于指定层的外表面上例如存在于指定层和邻近层(其可为例如包裹芯28的外层)之间的接触面处的纤维素纤维在某些情况下会偶然且略微地透入指定层的结构中,但不应认为此类情况是显著的。基于所述吸收芯的指定层的干重计,显著量可对应于小于10重量%,小于5重量%,小于3重量%,或小于1重量%。基底层100也可具有25g/m2至120g/m2,或35g/m2至90g/m2的基重。
吸收结构可具有热塑性材料的热塑性层。热塑性材料可整体包括单一热塑性聚合物或热塑性聚合物的共混物。当通过astmmethodd-36-95“ringandball”测定时,所述聚合物具有在50℃至300℃范围内的软化点,或者作为另外一种选择热塑性组合物可为热熔性粘合剂,其包括与其它热塑性稀释剂诸如增粘树脂、增塑剂和添加剂诸如抗氧化剂组合的至少一种热塑性聚合物。
热塑性聚合物通常可具有大于10,000的分子量(mw)和通常低于室温的玻璃化转变温度(tg)。在热熔体中聚合物的典型浓度在20-40重量%的范围内。多种热塑性聚合物可适用于本发明。此类热塑性聚合物通常可为对水不敏感的。示例性聚合物可为包括a-b-a三嵌段结构、a-b两嵌段结构和(a-b)n径向嵌段共聚物结构的(苯乙烯)嵌段共聚物,其中a嵌段可为通常包含聚苯乙烯的非弹性体聚合物嵌段,并且b嵌段可为不饱和共轭双烯或(部分)氢化的此类变体。b嵌段通常可为异戊二烯、丁二烯、乙烯/丁烯(氢化丁二烯)、乙烯/丙烯(氢化异戊二烯)、以及它们的混合物。
可采用的其它合适的热塑性聚合物为茂金属聚烯烃,它们为利用单一位点或茂金属催化剂制备的乙烯聚合物。其中至少一种共聚单体可与乙烯聚合以制备共聚物、三元共聚物或更高级的聚合物。同样适用可为无定形聚烯烃或无定形聚α-烯烃(apao),其为c2-c8α烯烃的均聚物、共聚物或三元共聚物。
所述树脂可通常具有低于5,000的mw和通常高于室温的tg,热熔态树脂的典型浓度可以在30-60%的范围内。增塑剂具有通常小于1,000的低mw和在室温以下的tg,典型浓度为0-15%。
通常为热熔性粘合剂的热塑性材料可以纤维形式存在于整个芯中,并可用已知方法提供,即粘合剂可被纤维化。通常,所述纤维可具有1-100微米的平均厚度和5mm至50cm的平均长度。具体地讲,可提供热塑性材料(通常为例如热熔性粘合剂)的层,以便包括网状结构。
为了改善热塑性材料对基底层或任何其它层,具体地讲任何其它非织造层的粘附性,此类层可用辅助粘合剂进行预处理。
吸收结构可具有吸收性聚合物材料。不受理论的束缚,据信此类材料(甚至在溶胀状态,即已经吸收了液体时)基本上不阻碍液体流过整个材料,具体地讲在用吸收性聚合物材料的盐水流动传导率(sfc)所表示的所述材料的渗透性又大于10,20,30或40sfc单位时,其中1sfc单位为1×10-7(cm3×s)/g。盐水流动传导率为本领域所熟知的参数,并将根据ep752892b中所公开的测试进行测量。
吸收结构可以为异质块体。异质块体具有深度、宽度和高度。吸收结构可用作吸收制品的任何部分,包括例如吸收芯的一部分、用作吸收芯、和/或用作吸收制品的顶片,所述吸收制品诸如卫生巾、卫生护垫、棉塞、阴唇间装置、伤口敷料、尿布、成人失禁制品等,其旨在用于吸收体液,诸如经液或血液或阴道排泄物或尿液。可在用于吸收和保持流体的任何产品(包括表面擦拭物)中使用该吸收结构。该吸收结构可用作纸巾。在本发明的上下文中,示例性吸收制品为一次性吸收制品。
吸收结构可为包括可包覆元件和泡沫块的一个或多个部分的异质块体。泡沫块的离散部分为开孔泡沫。泡沫可为高内相乳液(hipe)泡沫。
吸收结构可以为吸收制品的吸收芯,其中吸收芯包括异质块体,所述异质块体包括纤维和被固定在异质块体中的泡沫的一个或多个离散部分。
在本发明的以下描述中,制品的表面或其每个部件的表面在使用中面向穿着者方向称为面向穿着者的表面。相反,在使用中面向衣服方向的表面称为面向衣服的表面。因此,本发明的吸收制品以及其任何元件例如诸如吸收芯均具有面向穿着者的表面和面向衣服的表面。
本发明涉及一种吸收结构,其包含整合到异质块体中的一个或多个离散的开孔泡沫块,该异质块体包括一个或多个可包覆元件,它们整合到一个或多个开孔泡沫中,使得两者可相互缠结。
开孔泡沫块可包括介于1体积%至99体积%之间的异质块体,诸如5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%或95体积%的异质块体。
异质块体可具有存在于可包覆元件之间、可包覆元件和包覆元件之间、以及包覆元件之间的空隙空间。空隙空间可包含气体,诸如空气。空隙空间可表示介于固定体积量的异质块体的总体积的1%和95%之间,诸如固定体积量的异质块体的总体积的5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%。
异质块体内开孔泡沫块和空隙空间的组合可表现出介于10g/g至200g/g异质块体之间的吸收性,诸如介于20g/g和190g/g异质块体之间的吸收性,诸如30g/g、40g/g、60g/g、80g/g、100g/g、120g/g、140g/g、160g/g、180g/g或190g/g异质块体的吸收性。可根据edana非织造物吸收法10.4-02对吸收性进行定量。
开孔泡沫块为在异质块体内且在整个异质块体上相互缠结的离散的泡沫块,由此使得开孔泡沫包覆可包覆元件中的一者或多者,例如诸如块体内的纤维。开孔泡沫可聚合在可包覆元件周围。
离散的开孔泡沫块可包覆多于一个可包覆元件。可包覆元件可作为一束包覆在一起。另选地,可通过离散的开孔泡沫块包覆多于一个可包覆元件,而不接触另一个可包覆元件。
离散的开孔泡沫块可被固定,使得在吸收结构的使用期间,离散的开孔泡沫块在异质块体内不改变位置。
多个离散的开孔泡沫可被固定,使得在吸收结构的使用期间,离散的开孔泡沫块在异质块体内不改变位置。
一个或多个离散泡沫块可被固定在异质块体内,使得在300转/分钟下旋转30秒之后,一个或多个离散泡沫块不改变位置。
开孔泡沫块可为离散的。开孔泡沫块被视为离散的,因为它们在整个异质块体中并非连续的。在整个异质块体中并非连续的表示在异质块体中的任何给定点处,开孔吸收泡沫在异质块体的纵向平面、竖直平面和侧向平面的横截面中的至少一者上是不连续的。对于异质块体中的给定点,吸收泡沫在横截面的侧向平面和竖直平面上可为连续的或者可为不连续的。对于异质块体中的给定点,吸收泡沫在横截面的纵向平面和竖直平面上可为连续的或者可为不连续的。对于异质块体中的给定点,吸收泡沫在横截面的纵向平面和侧向平面上可为连续的或者可为不连续的。
当开孔泡沫在异质块体的纵向平面、竖直平面和侧向平面的横截面中的至少一者上是不连续的时,可包覆元件或开孔泡沫块中的一者或两者在整个异质块体中可为双连续的。
开孔泡沫块可位于异质块体中的任何点处。泡沫块可被元件围绕,该元件构成可包覆元件。泡沫块可位于异质块体的外周边,使得泡沫块的仅一部分与异质块体的元件缠结。
开孔泡沫块可在接触流体时膨胀以形成离散开孔泡沫块的通道。在通过流体膨胀之前,开孔泡沫块可以接触或可以不接触。
开孔泡沫可在聚合之前整合到可包覆元件上。开孔泡沫块可部分聚合,之后浸渍到可包覆元件之中或之上,使得它们变得相互缠结。浸渍到可包覆元件之中或之上之后,处于液态或固态的开孔泡沫聚合以形成一个或多个开孔泡沫块。可使用任何已知的方法聚合开孔泡沫,包括例如热、紫外线和红外线。在油包水开孔泡沫乳液的聚合之后,将所得的开孔泡沫用含水相饱和,需要除去该含水相以获得基本上干燥的开孔泡沫。可使用压料辊和真空装置除去饱和含水相或脱水。使用压料辊也可减少异质块体的厚度,使得异质块体将保持较薄,直到缠绕在异质块体中的开孔泡沫块暴露于流体。
取决于期望的泡沫密度、聚合物组成、比表面积或孔尺寸(也称为泡孔尺寸),开孔泡沫可被制成具有不同的化学组成、物理特性或两者。例如,根据化学组成,开孔泡沫可具有0.0010g/cc至约0.25g/cc,或者0.002g/cc至约0.2g/cc、或者约0.005g/cc至约0.15g/cc、或者约0.01g/cc至约0.1g/cc、或者约0.02g/cc至约0.08g/cc、或者约0.04g/cc的密度。
开孔泡沫孔尺寸的范围可为平均直径1至800μm,例如介于50μm和700μm之间、介于100μm和600μm之间、介于200μm和500μm之间、介于300μm和400μm之间。
泡沫块可具有相对均一的泡孔尺寸。例如,一个主表面上的平均泡孔尺寸可大致相同或相比于相对主表面变化不大于10%。泡沫的一个主表面上的平均泡孔尺寸可不同于相对表面。例如,在热固性材料的发泡过程中,泡孔结构底部处的一部分泡孔塌缩而导致在一个表面上具有较小平均泡孔尺寸的情况并不少见。泡孔尺寸可基于下文所述的方法来确定。由本发明制得的泡沫是相对开孔的。这是指泡沫的单个泡孔或孔与邻接的泡孔基本上是无阻挡连通的。此类基本上开孔泡沫结构中的泡孔具有泡孔间的开口或窗口,它们足够大,使得流体容易在泡沫结构内从一个泡孔传输到另一个泡孔。为了本发明的目的,如果泡沫中平均直径至少1μm尺寸的泡孔有至少约80%与至少一个相邻泡孔流体连通,则将该泡沫视为是“开孔的”。
除了是开孔的之外,泡沫还是充分亲水性的以使得泡沫吸收含水流体,例如可通过在聚合之后将残留的亲水表面活性剂或盐留在泡沫中、通过精心选择的后聚合泡沫处理程序(如下文所述)或两者的组合,赋予泡沫的内表面亲水性。
例如,当用于某些吸收制品中时,开孔泡沫可为柔性的并且表现出适当的玻璃化转变温度(tg)。tg代表聚合物的玻璃态与橡胶态之间的转变中点。
对于在大约环境温度条件下使用的泡沫,区域的tg可小于约200℃或小于约90℃。tg可小于50℃。
开孔泡沫块可以任何合适的方式分布在整个异质块体中。开孔泡沫块可沿竖直轴线异型分布,使得较小的块位于较大的块上方。另选地,所述块可异型分布,使得较小的块在较大的块下方。开孔块可沿竖直轴线异型分布,使得它们沿轴线尺寸交替。
开孔泡沫块可沿纵向轴线异型分布,使得较小的块位于较大的块前面。另选地,所述块可异型分布,使得较小的块在较大的块后面。开孔块可沿纵向轴线异型分布,使得它们沿轴线尺寸交替。开孔泡沫块可沿横向轴线异型分布,使得块的尺寸沿横向轴线从小到大或从大到小。另选地,开孔块可沿横向轴线异型分布,使得它们沿轴线尺寸交替。
开孔泡沫块可基于开孔泡沫块的一个或多个特征沿纵向轴线、横向轴线或竖直轴线中的任一者异型分布。开孔泡沫块在异质块体内异型分布的特征可包括例如吸收性、密度、泡孔尺寸、以及它们的组合。
开孔泡沫块可基于开孔泡沫的组成沿纵向轴线、横向轴线或竖直轴线中的任一者异型分布。开孔泡沫块可在异质块体的前部具有表现出期望特征的一种组成并且在异质块体的后部具有被设计成表现出不同特征的不同组成。开孔泡沫块的异型分布关于之前提到的轴线或取向中的任一者可为对称或非对称的。
开孔泡沫块可以任何合适的形式沿异质块体的纵向轴线和横向轴线分布。当从顶部平面视图观察时,开孔泡沫块可以形成一种设计或形状的方式分布。开孔泡沫块可以形成条带、椭圆、正方形、或任何其它已知形状或图案的方式分布。
可根据异质块体的预期用途优化分布。例如,相对于蛋白质性流体诸如经液的吸收,对于含水流体诸如尿液(用于尿布时)或水(用于纸巾时)的吸收,可选择不同的分布。此外,可针对用途诸如投配活性物质或使用泡沫作为加强元件对分布进行优化。
可在一个异质块体中使用不同类型的泡沫。例如,一些泡沫块可为聚合hipe,而其它块可由聚氨酯制成。所述块可基于它们的特性定位于块体内的特定位置,以优化异质块体的性能。
泡沫块在组成上可类似,但仍然表现出不同特性。例如,在使用hipe泡沫时,一些泡沫块可为薄的直到润湿,而其它泡沫块可能已经在异质块体内膨胀。
泡沫块和可包覆元件可经过选择以彼此互补。例如,表现出高渗透性和低毛细作用的泡沫可包覆表现出高毛细作用的元件,以将流体芯吸通过异质块体。应当理解,其中泡沫块彼此互补或其中泡沫块和可包覆元件均表现出类似特性的其它组合是可能的。
使用多于一个异质块体可能发生异型分布,其中每个异质块体具有一种或多种类型的泡沫块。多个异质块体可分层,使得对于包括多个异质块体的总体产品,泡沫基于开孔泡沫块的一个或多个特征沿纵向轴线、横向轴线或竖直轴线中的任一者异型分布。此外,各异质块体可具有不同的可包覆元件,泡沫附接至所述可包覆元件。例如,第一异质块体可具有包覆非织造物的泡沫颗粒,而邻近第一异质块体的第二异质块体可具有包覆膜或膜的一个表面的泡沫颗粒。
开孔泡沫可由聚合物配方制成,所述聚合物配方可包括任何合适的热塑性聚合物,或热塑性聚合物的共混物,或热塑性聚合物和非热塑性聚合物的共混物。
适用于泡沫聚合物配方的聚合物或基础树脂的示例包括苯乙烯聚合物,诸如聚苯乙烯或聚苯乙烯共聚物或其它链烯基芳族聚合物;聚烯烃,包括烯烃的均聚物或共聚物,诸如聚乙烯、聚丙烯、聚丁烯等;聚酯,诸如聚对苯二甲酸亚烷基二醇酯;以及它们的组合。聚苯乙烯树脂的可商购获得的示例为dow
助剂和增容剂可用于使此类树脂共混。还可采用交联剂来增强机械特性、发泡性和膨胀性。交联可通过若干装置(包括电子束)或通过化学交联剂(包括有机过氧化物)进行。聚合物侧基的使用、在聚合物结构内掺入链以防止聚合物结晶、玻璃化转变温度的降低、降低给定聚合物的分子量分布、调节熔体流动强度和粘弹特性(包括聚合物熔体的伸长粘度)、嵌段共聚合、将聚合物共混、以及聚烯烃均聚物和共聚物的使用均已用于改善泡沫的柔韧性和发泡性。均聚物可被工程化成具有弹性和结晶区域。也可利用间同立构、无规立构和全同立构聚丙烯、此类聚合物和其它聚合物的共混物。合适的聚烯烃树脂包括低密度(包括线性低密度)、中密度和高密度聚乙烯和聚丙烯,它们通常使用ziegler-natta或phillips催化剂制备并且是相对线性的;通常更具发泡性的是具有支化聚合物链的树脂。全同立构丙烯均聚物和共混物使用基于茂金属的催化剂制备。包括烯烃弹性体。使用ziegler-natta或茂金属催化剂制备的乙烯和a-烯烃共聚物可产生具有延展性的软质柔性泡沫。也可利用与a-烯烃交联的聚乙烯和各种乙烯离聚物树脂。乙基-乙酸乙烯酯共聚物与其它聚烯烃型树脂一起使用可产生软质泡沫。各种聚合物的常用改性剂也可与链基反应以获得合适的官能团。合适的烯基芳族聚合物包括烯基芳族化合物和可共聚的烯键式不饱和共聚单体的烯基芳族均聚物和共聚物,包括占很小比例的非烯基芳族聚合物以及它们的共混物。也可使用离聚物树脂。
可采用的其它聚合物包括天然和合成的有机聚合物,包括纤维素聚合物、甲基纤维素、聚乳酸、聚乙烯酸、聚丙烯酸酯、聚碳酸酯、基于淀粉的聚合物、聚醚酰亚胺、聚酰胺、聚酯、聚甲基丙烯酸甲酯、以及共聚物/聚合物共混物。可添加橡胶改性的聚合物诸如苯乙烯弹性体、苯乙烯/丁二烯共聚物、乙烯弹性体、丁二烯、以及聚丁烯树脂、乙烯-丙烯橡胶、epdm、epm、以及它们的其它橡胶均聚物和共聚物,以增强柔软性和手感。烯烃弹性体也可用于此类目的。也可添加橡胶,包括天然橡胶、sbr、聚丁二烯、乙烯丙烯三元共聚物、以及硫化橡胶(包括tpv)以改善类似橡胶的弹性。
热塑性泡沫吸收性可通过用自发的水凝胶(通常已知为超吸收剂)发泡来增强。超吸收剂可包括下列物质的碱金属盐:聚丙烯酸;聚丙烯酰胺;聚乙烯醇;乙烯马来酸酐共聚物;聚乙烯醚;羟丙基纤维素;聚乙烯吗啉酮;乙烯基磺酸、聚丙烯酸酯、聚丙烯酰胺、聚乙烯基吡啶的聚合物和共聚物;等等。其它合适的聚合物包括水解丙烯腈接枝淀粉、丙烯酸接枝淀粉、羧甲基纤维素、异丁烯马来酸酐共聚物、以及它们的混合物。另外的合适的聚合物包括无机聚合物,诸如聚磷腈等。此外,热塑性泡沫生物可降解性和吸收性能够通过用基于纤维素和基于淀粉的组分诸如木材和/或植物纤维纸浆/微粉发泡而增强。
除了这些聚合物中的任一种之外,泡沫聚合物配方还可或另选地包括两嵌段、三嵌段、四嵌段或其它多嵌段热塑性弹性体和/或柔性共聚物,诸如基于聚烯烃的热塑性弹性体,包括无规嵌段共聚物,包括乙烯-a-烯烃共聚物;嵌段共聚物,包括氢化丁二烯-异戊二烯-丁二烯嵌段共聚物;立构嵌段聚丙烯;接枝共聚物,包括乙烯-丙烯-二烯三元共聚物或乙烯-丙烯-二烯单体(epdm)、乙烯-丙烯无规共聚物(epm)、乙丙橡胶(epr)、乙烯-乙酸乙烯酯(eva)、和乙烯丙烯酸甲酯(ema);以及苯乙烯嵌段共聚物,包括二嵌段和三嵌段共聚物诸如苯乙烯-异戊二烯-苯乙烯(sis)、苯乙烯-丁二烯-苯乙烯(sbs)、苯乙烯-异戊二烯-丁二烯-苯乙烯(sibs)、苯乙烯-乙烯/丁烯-苯乙烯(sebs)、或苯乙烯-乙烯/丙烯-苯乙烯(seps),其可以商标
如本文所用,三嵌段共聚物具有aba结构,其中a表示类型a的若干重复单元,并且b表示类型b的若干重复单元。如上所述,苯乙烯嵌段共聚物的几个示例为sbs、sis、sibs、sebs和seps。在这些共聚物中,a嵌段是聚苯乙烯并且b嵌段是橡胶状组分。一般来讲,这些三嵌段共聚物具有可从低到数千至高到数十万的分子量,并且基于三嵌段共聚物的重量计,苯乙烯含量可在5%至75%的范围内。二嵌段共聚物类似于三嵌段,但具有ab结构。合适的二嵌段包括苯乙烯-异戊二烯二嵌段,其具有大致为三嵌段分子量的一半的分子量并且具有相同的a嵌段与b嵌段比率。具有不同的a与b嵌段比率或比三嵌段共聚物的一半更大或更高的分子量的二嵌段可适于改善泡沫聚合物配方,以便通过聚合物挤出法生产低密度、软质、柔性、吸收性的泡沫。
适当地,泡沫聚合物配方包括至多达约90重量%的聚苯乙烯、以及至少10重量%的热塑性弹性体。更具体地,泡沫聚合物配方可包括介于约45重量%和约90重量%之间的聚苯乙烯,以及介于约10重量%和约55重量%之间的热塑性弹性体。另选地,泡沫聚合物配方可包括介于约50重量%和约80重量%之间的聚苯乙烯,以及介于约20重量%和约50重量%之间的热塑性弹性体。例如,泡沫聚合物配方可包括等量的聚苯乙烯和热塑性弹性体。
泡沫聚合物配方可包括约40重量%至约80重量%的聚苯乙烯,以及约20重量%至约60重量%的热塑性弹性体。泡沫聚合物配方可包括约50重量%至约70重量%的聚苯乙烯,以及约30重量%至约50重量%的热塑性弹性体。
增塑剂可包括在泡沫聚合物配方中。增塑剂是赋予柔韧性、拉伸性和加工性的化学试剂。增塑剂的类型影响泡沫凝胶性能、发泡剂抗迁移性、泡孔结构(包括细泡孔尺寸)以及开孔的数量。增塑剂通常具有低分子量。由增塑剂的掺入所导致的聚合物链移动性和自由体积的增加通常导致tg下降,并且增塑剂有效性常常由这一量度来表征。基于石油的油、脂肪酸和酯通常被使用并充当外增塑剂或溶剂,因为它们在结晶时不化学键合于聚合物上而是仍然在聚合物基质中保持完整。
增塑剂通过使泡孔之间的膜减薄而将泡孔连通性提高到在泡孔之间产生孔隙连接的程度;因此,增塑剂增加开孔含量。适宜地,增塑剂以介于泡沫聚合物配方的约0.5重量%和约10重量%之间,或约1重量%和约10重量%之间的量被包括。在发泡过程中,增塑剂以不断增大的浓度逐渐且小心地计量加入到泡沫聚合物配方中,因为一次添加太多的增塑剂会产生泡孔不稳定性,从而导致泡孔塌缩。
合适的增塑剂的示例包括聚乙烯,乙烯-乙酸乙烯酯、矿物油、棕榈油、蜡、基于醇和有机酸的酯、萘油、石蜡油、以及它们的组合。合适增塑剂的可商购获得的示例为在乙烯的催化聚合反应时产生的短链聚乙烯;因为其低分子量而常常被称为“蜡”。这种低密度的高度支化聚乙烯“蜡”以商标
为了使泡沫用于个人护理和医用产品应用以及许多吸收性擦拭制品和非个人护理制品中,泡沫必须满足严格的化学和安全准则。许多增塑剂经fda批准用于包装材料。这些增塑剂包括:柠檬酸乙酰基三丁酯;柠檬酸乙酰基三乙酯水杨酸对叔丁基苯基酯;硬脂酸丁酯;丁基邻苯二甲酰基甘醇酸丁酯;癸二酸二丁酯;邻苯二甲酸二(2-乙基己酯);邻苯二甲酸二乙酯;己二酸二异丁酯;邻苯二酸二异辛酯;二苯基-2-乙基己基磷酸酯;环氧化大豆油;乙基邻苯二甲酰基甘酸乙酯;一油酸甘油酯;柠檬酸单异丙酯;柠檬酸单、二和三硬脂酸酯;甘油三乙酸酯(三乙酸甘油酯);柠檬酸三乙酯;以及3-(2-异烯酰基)-1,2-环氧丙烷。
用作热塑性弹性体的相同材料也可用作增塑剂。例如,上述
将软质、柔性聚合物诸如热塑性弹性体发泡到低密度是难以实现的。添加增塑剂使得发泡到低密度甚至更难以实现。本发明的方法通过在泡沫聚合物配方中包含表面活性剂来克服这一困难。表面活性剂使泡孔稳定化,从而抵消泡孔塌缩,同时保持开孔结构。泡孔的这一稳定化产生泡孔均匀性并实现了泡孔结构的控制。除了使包含增塑的热塑性弹性体聚合物的泡沫制剂发泡到低密度之外,表面活性剂还提供可润湿性以使所得泡沫体能够吸收流体。
泡沫块可由热塑性吸收泡沫诸如聚氨酯泡沫制成。热塑性泡沫可包含表面活性剂和增塑剂。通常通过至少一种多异氰酸酯组分和至少一种多元醇组分的反应形成聚氨酯聚合物。多异氰酸酯组分可包含一种或多种多异氰酸酯。多元醇组分可包含一种或多种多元醇。多元醇的浓度可参照总多元醇组分进行表示。多元醇或多异氰酸酯的浓度可另选地参照总聚氨酯浓度进行表示。各种脂族和芳族多异氰酸酯在本领域已有所描述。用于形成聚氨酯泡沫的多异氰酸酯通常具有介于2和3之间的官能度。官能度可不大于约2.5。
泡沫可由至少一种芳族多异氰酸酯制成。芳族多异氰酸酯的示例包括具有单个芳族环的那些,诸如甲苯2,4和2,6-二异氰酸酯(tdi)和亚萘1,5-二异氰酸酯;以及具有至少两个芳族环的那些,诸如二苯甲烷4,4'-、2,4'-和2,2'-二异氰酸酯(mdi)。
泡沫可由一种或多种(例如芳族)聚合多异氰酸酯制得。聚合多异氰酸酯通常具有大于单体多异氰酸酯(不含重复单元)但小于聚氨酯预聚物的(重均)分子量。因此,聚氨酯泡沫来源于至少一种不含氨基甲酸酯键的聚合多异氰酸酯。换句话讲,聚氨酯泡沫来源于聚合异氰酸酯,该聚合异氰酸酯不为聚氨酯预聚物。聚合多异氰酸酯在重复单元之间包含其它连接基团,诸如异氰尿酸酯基团、缩二脲基团、碳二亚胺基团、脲酮亚胺基团、脲二酮基团等,如本领域已知的。
一些聚合多异氰酸酯可称为“改性的单体异氰酸酯”。例如,纯的4,4'-亚甲基二苯基二异氰酸酯(mdi)是熔点为38℃且当量重量为125g/当量的固体。然而,改性的mdi在38℃时呈液体,并且具有更高的当量重量(例如,143g/当量)。据信熔点和当量重量的差异是较小聚合程度的结果,例如通过包含如上所述的连接基团。
包括改性的单体异氰酸酯的聚合多异氰酸酯可包括单体与聚合物种类(包括低聚物种类在内)组合的混合物。例如,据报道聚合mdi包含25-80%单体4,4'-亚甲基二苯基二异氰酸酯以及包含3-6环的低聚物及其它少量异构体,例如2,2'异构体。
与预聚物相比,聚合多异氰酸酯通常具有较低的粘度。本文所用的聚合物异氰酸酯通常具有在25℃下不大于约300厘泊并且在一些实施方案中在25℃下不大于200厘泊或100厘泊的粘度。在25℃下粘度通常为至少约10厘泊、15厘泊、20厘泊或25厘泊。
聚合物多异氰酸酯的当量重量也通常低于预聚物的当量重量。本文所用的聚合物异氰酸酯通常具有不大于约250g/当量并且在一些实施方案中不大于200g/当量或175g/当量的当量重量。在一些实施方案中,当量重量为至少130g/当量。
聚合多异氰酸酯的平均分子量(mw)也通常低于聚氨酯预聚物。本文使用的聚合异氰酸酯通常具有不大于约500da,并且在一些实施方案中不大于450、400或350da的平均分子量(mw)。聚氨酯可衍生自单种聚合异氰酸酯或聚合异氰酸酯的共混物。因此,100%的异氰酸酯组分为一种或多种聚合异氰酸酯。大部分异氰酸酯组分可以为单种聚合异氰酸酯或聚合异氰酸酯的共混物。在这些实施方案中,至少50重量%、60重量%、70重量%、75重量%、80重量%、85重量%或90重量%的异氰酸酯组分是聚合异氰酸酯。
一些示例性多异氰酸酯包括例如以商标“rubinate1245”购自huntsmanchemicalcompany(thewoodlands,tx)的聚合mdi二异氰酸酯;和以商标“suprasec9561”购自huntsmanchemicalcompany的改性的mdi异氰酸酯。
使前述异氰酸酯与多元醇反应来制备聚氨酯泡沫材料。聚氨酯泡沫是亲水性的,使得泡沫吸收含水液体,具体地讲体液。聚氨酯泡沫的亲水性通常通过使用具有高环氧乙烷含量的异氰酸酯反应性组分诸如聚醚多元醇来提供。
可用的多元醇的示例包括二羟基或三羟基醇类(例如,乙二醇、丙二醇、甘油、己三醇和三乙醇胺)和环氧烷(例如,环氧乙烷、环氧丙烷和环氧丁烷)的加合物[例如,聚环氧乙烷、聚环氧丙烷和聚(环氧乙烷-环氧丙烷)共聚物]。具有高环氧乙烷含量的多元醇也可通过如本领域中已知的其它技术来制备。合适的多元醇通常具有100da至5,000da的分子量(mw)并且具有2至3的平均官能度。
聚氨酯泡沫通常衍生自具有环氧乙烷(例如,重复)单元的至少一种聚醚多元醇(或换句话讲是其反应产物)。聚醚多元醇通常具有至少10重量%、15重量%、20重量%或25重量%并且通常不大于75重量%的环氧乙烷含量。此类聚醚多元醇具有高于多异氰酸酯的官能度。平均官能度可以为约3。聚醚多元醇通常具有在25℃下不大于1000厘泊,并且在一些实施方案中不大于900厘泊、800厘泊、或700厘泊的粘度。聚醚多元醇的分子量通常为至少500da或1000da,并且在一些实施方案中不大于4000da或3500da、或3000da。此类聚醚多元醇通常具有至少125、130或140的羟基数目。例示性多元醇包括例如以商标“cdb-33142polyetherpolyol”、“carpolgp-5171”从carpentercompany(richmond,va)获得的聚醚多元醇产品。
如前所述,具有较高亚乙基氧含量和不大于5500、或5000、或4500、或4000、或3500、或3000da的分子量(mw)的一种或多种聚醚多元醇可以为聚氨酯泡沫的主要或唯一的聚醚多元醇。例如,此类聚醚多元醇占总多元醇组分的至少50重量%、60重量%、70重量%、80重量%、90重量%、95重量%或100重量%。因此,聚氨酯泡沫可包含至少25重量%、30重量%、35重量%、40重量%、45重量%或50重量%的衍生自此类聚醚多元醇的聚合单元。
可将具有较高亚乙基氧含量的一种或多种聚醚多元醇与其它多元醇结合使用。其它多元醇可占总多元醇组分的至少1、2、3、4、或5重量%。此类其它多元醇的浓度通常不超过总多元醇组分的40、或35、或30、或25、或20、或15、或10重量%,即不超过聚氨酯的20重量%、或17.5重量%、或15重量%、或12.5重量%、或10重量%、或7.5重量%、或5重量%。例示性的其它多元醇包括:可以商品名“carpolgp-700polyetherpolyol”获自carpentercompany,richmond,va的聚醚多元醇产品(化学文摘号25791-96-2),和可以商品名“arcole-434”获自bayermaterialscience,pittsburgh,va的聚醚多元醇产品(化学文摘号9082-00-2)。此类任选的其它多元醇可包含聚丙烯(例如,重复)单元。
聚氨酯泡沫一般具有至少10重量%、11重量%或12重量%并且不大于20重量%、19重量%、或18重量%的环氧乙烷含量。聚氨酯泡沫可具有不大于17或16重量%的亚乙基氧含量。
多异氰酸酯和多元醇组分的种类和量选择成使得聚氨酯泡沫相对较软但有弹性。这些特性可例如通过压陷力挠曲和压缩永久变形进行表征,如根据实施例中所述的测试方法所测定的。聚氨酯泡沫在50%下可具有小于75n的压陷力挠曲。压陷力挠曲在50%下可小于70n、或65n、或60n。聚氨酯泡沫在65%下可具有小于100n的压陷力挠曲。压陷力挠曲在65%下可小于90n、或80n、或70n、或65n、或60n。压陷力挠曲通常在50%或65%下可以为至少30n或35n。50%挠度下的压缩永久变形可为零并且通常为至少0.5、1或2%并且通常不大于35%。50%挠度下的压缩永久变形可以不大于30%、或25%、或20%、或15%、或10%。
聚氨酯泡沫可包含已知且常用的形成聚氨酯的催化剂,例如有机锡化合物和/或胺类催化剂。催化剂可以聚氨酯的0.01至5重量%的量使用。胺类催化剂通常为叔胺。适宜的叔胺的示例包括单胺,诸如三乙胺、和二甲基环己基胺;二胺,诸如四甲基乙二胺和四甲基己二胺;三胺,诸如四甲基胍;环状胺,诸如三亚乙基二胺、二甲基哌啶和甲基吗啉;醇胺,诸如二甲基氨基乙醇、三甲基氨基乙基乙醇胺、和羟乙基吗啉;醚胺,诸如双二甲基氨基乙基乙醇;二氮杂双环烯烃,诸如l,5-二氮杂双环(5,4,0)十一烯-7(dbu)和l,5-二氮杂双环(4,3,0)壬烯-5;以及二氮杂双环烯烃的有机酸盐,诸如dbu的酚盐、2-乙基己酸盐和甲酸盐。这些胺可单独或组合使用。胺类催化剂可以以不大于聚氨酯的4、3、2、1或0.5重量%的量使用。
聚氨酯通常包括表面活性剂以稳定泡沫。本领域已对各种表面活性剂进行了描述。可采用硅氧烷表面活性剂,所述硅氧烷表面活性剂包含任选地与亚丙基氧(例如重复)单元组合的亚乙基氧(例如重复)单元,例如以商标“dabcodc-198”从airproducts商购获得的。亲水性表面活性剂的浓度可通常在聚氨酯的约0.05至1或2重量%的范围内。
聚氨酯泡沫可包含各种添加剂,诸如表面活性物质、泡沫稳定剂、泡孔调节剂、延迟催化反应的封端剂、阻燃剂、增链剂、交联剂、内含和外施脱模剂、填充剂、颜料(二氧化钛)、着色剂、荧光增白剂、抗氧化剂、稳定剂、水解抑制剂以及抗真菌和抗细菌物质。此类其它添加剂通常总体以在聚氨酯的0.05重量%至10重量%的范围内的浓度来利用。
吸收泡沫的颜色可以为白色。某些受阻胺稳定剂可导致吸收泡沫变色,例如黄变。吸收泡沫可不含二苯基胺稳定剂和/或吩噻嗪稳定剂。
吸收泡沫可为着色的(即,除白色之外的颜色)。白色或有色吸收泡沫可在至少一种组分中包括颜料。颜料可与多元醇载体组合并且在聚氨酯泡沫制造期间添加至多元醇液体料流中。可商购获得的颜料包括例如得自milliken(spartansburg,southcarolina)的dispersitechtm2226白、dispersitechtm2401紫、dispersitechtm2425蓝、dispersitechtm2660黄和dispersitechtm28000红以及得自ferro(cleveland,ohio)的
在制备聚氨酯泡沫时,使多异氰酸酯组分与多元醇组分反应,使得异氰酸酯基团与羟基总数的当量比不大于1比1。可使组分反应,使得存在过量的羟基基团(例如过量的多元醇)。异氰酸酯基团与羟基基团总数的当量比可以为至少0.7比1。例如,该比率可为至少0.75:1或至少0.8:1。
聚合物(例如聚氨酯)泡沫的亲水性(例如多元醇)组分提供期望的泡沫吸收容量。因此,泡沫可不含超吸收聚合物。此外,聚氨酯泡沫不含胺或亚胺络合剂,诸如氮丙啶、聚氮丙啶、聚乙烯胺、羧基-甲基化聚氮丙啶、膦酰基-甲基化聚氮丙啶、季铵化聚氮丙啶和/或二硫代氨基甲酸酯化的(dithiocarbamitized)聚氮丙啶;如例如在us6,852,905和u.s.6,855,739中所述的。
聚合物(例如聚氨酯)泡沫通常具有至少100、150、200、或250gsm且通常不大于500gsm的平均基重。平均基重可以不大于450或400gsm。聚合的(例如聚氨酯)泡沫的平均密度通常为至少3lbs/ft3、3.5lbs/ft3或4lbs/ft3且不大于7lbs/ft3。
开孔泡沫为由聚合高内相乳液(hipe)制备的热固性聚合泡沫,也称为聚hipe。为形成hipe,将含水相和油相以介于约8:1和140:1之间的比率组合。含水相与油相的比率可介于约10:1和约75:1之间,含水相与油相的比率可介于约13:1和约65:1之间。该术语为“水比油”或w:o比率并且可用于测定所得聚hipe泡沫的密度。如上所述,油相可包含单体、共聚单体、光引发剂、交联剂、乳化剂以及任选组分中的一种或更多种。水相可包含水和一种或多种组分,诸如电解质、引发剂或任选组分。
可由组合的含水相和油相来形成开孔泡沫,其方式为通过使这些组合相在混合室或混合区中经受剪切搅拌。使组合的含水相和油相经受剪切搅拌以产生具有所需尺寸的含水小滴的稳定hipe。引发剂可存在于含水相中,或者可在泡沫制备过程中或在形成hipe之后引入引发剂。乳液制备过程产生hipe,其中含水相小滴分散至一定程度,使得所得hipe泡沫具有期望的结构特征。含水相和油相组合在混合区中的乳化可涉及使用混合或搅拌装置,诸如叶轮,方式为通过使组合的含水相和油相以赋予所需剪切所必要的速率通过一系列静态混合器,或两者的组合。一旦形成,然后可将hipe从混合区取出或泵出。一种使用连续方法来形成hipe的方法描述于以下专利中:1992年9月22日公布的美国专利5,149,720(desmarais等人);1998年10月27日公布的美国专利5,827,909(desmarais);以及2002年4月9日公布的美国专利6,369,121(catalfamo等人)。
可在完全聚合之前将乳液从混合区中抽出或泵出并且浸渍到块体中或块体上。一旦完全聚合,泡沫块和元件就相互缠结,使得包括块体的元件将离散的泡沫块二等分并且使得离散的泡沫块的部分包覆包括异质块体的一个或多个元件的部分。
在聚合之后,所得泡沫块用含水相饱和,需要除去该含水相以获得基本上干燥的泡沫块。可通过使用压缩来挤压泡沫块,使其不含大部分的含水相,例如,通过使包括泡沫块的异质块体运行穿过一对或多对压料辊。可将夹紧辊定位成使得它们将含水相挤压出泡沫块。夹紧辊可为多孔的,并且具有从内侧施加的真空,使得它们有助于将含水相抽出泡沫块。压料辊可成对定位,使得第一压料辊位于液体可透过的带(诸如具有孔或由网状材料组成的带)的上方,第二相对压料辊面向第一压料辊并且位于液体可透过的带的下方。所述对中的一个(例如第一夹紧辊)可被加压,而另一个(例如第二夹紧辊)可被排空,以便将含水相吹出和抽出泡沫。也可加热压料辊以有助于除去含水相。压料辊可应用于非刚性泡沫,即通过压缩泡沫块将不会破坏它们的壁的泡沫。
代替压料辊或与压料辊组合,可通过将泡沫块传送穿过干燥区来除去含水相,泡沫块在干燥区被加热、暴露于真空或热与真空暴露的组合。可例如通过使泡沫穿过强制通风烘箱、红外烘箱、微波烘箱或无线电波烘箱来施加热。泡沫干燥的程度取决于应用。可除去大于50%的含水相。在干燥过程中可除去大于90%的含水相,在其它实施方案中可除去大于95%的含水相。
开孔泡沫可由聚合具有高内相乳液(hipe)的连续油相的单体制成。hipe可具有两个相。一个相为具有单体和乳化剂的连续油相,所述单体经聚合以形成hipe泡沫,所述乳化剂用以帮助稳定hipe。油相也可包括一种或多种光引发剂。单体组分可按油相的重量计以约80%至约99%并且在某些实施方案中以约85%至约95%的量存在。可溶于油相并且适于形成稳定的油包水乳液的乳化剂组分可按油相的重量计以约1%至约20%的量存在于油相中。乳液可在约10℃至约130℃并且在某些实施方案中约50℃至约100℃的乳化温度下形成。
一般来讲,单体将包含按油相的重量计约20%至约97%的至少一种基本上水不溶性的一官能丙烯酸烷基酯或甲基丙烯酸烷基酯。例如,这种类型的单体可包括c4-c18丙烯酸烷基酯和c2-c18甲基丙烯酸烷基酯,诸如丙烯酸乙基己酯、丙烯酸丁酯、丙烯酸己酯、丙烯酸辛酯、丙烯酸壬酯、丙烯酸癸酯、丙烯酸异癸酯、丙烯酸十四烷基酯、丙烯酸苄基酯、丙烯酸壬基苯酯、甲基丙烯酸己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸辛酯、甲基丙烯酸壬酯、甲基丙烯酸癸酯、甲基丙烯酸异癸酯、甲基丙烯酸十二烷基酯、甲基丙烯酸十四烷基酯和甲基丙烯酸十八烷基酯。
油相也可具有按油相的重量计约2%至约40%,并且在某些实施方案中约10%至约30%的基本上水不溶性的多官能交联丙烯酸烷基酯或甲基丙烯酸烷基酯。添加这种交联共聚单体或交联剂以向所得hipe泡沫赋予强度和弹性。该类型交联单体的示例可具有含两个或更多个活化丙烯酸酯、甲基丙烯酸酯基团、或它们的组合的单体。该基团的非限制性示例包括1,6-己二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、1,12-十二烷基二甲基丙烯酸酯、1,14-十四烷二醇二甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、新戊二醇二丙烯酸酯(2,2-二甲基丙二醇二丙烯酸酯)、己二醇丙烯酸酯甲基丙烯酸酯、葡萄糖五丙烯酸酯、脱水山梨糖醇五丙烯酸酯等。交联剂的其它示例包含丙烯酸酯和甲基丙烯酸酯部分的混合物,诸如乙二醇丙烯酸酯-甲基丙烯酸酯和新戊二醇丙烯酸酯-甲基丙烯酸酯。在混合的交联剂中甲基丙烯酸酯:丙烯酸酯基团的比率可按需从50:50变化至任何其它比率。
可将按油相的重量计约0重量%至约15重量%,在某些实施方案中约2重量%至约8重量%的任何第三基本上水不溶性的共聚单体添加到油相中以改变hipe泡沫的特性。
可能希望“韧化”单体,从而向所得hipe泡沫赋予韧性。这些包括诸如苯乙烯、氯乙烯、偏二氯乙烯、异戊二烯和氯丁二烯等单体。不受理论的约束,据信此类单体有助于在聚合期间稳定hipe(也称为“固化”),以提供更均匀且更好成形的hipe泡沫,从而导致更好的韧性、拉伸强度、耐磨损性等。也可加入单体以赋予阻燃性,如2000年12月12日公布的美国专利6,160,028(dyer)中所公开的那样。可添加单体以赋予颜色(例如乙烯基二茂铁)、荧光特性、抗辐射性、对辐射不透明性(例如四丙烯酸铅)来分散电荷、反射入射红外线、吸收无线电波、在hipe泡沫支柱上形成可润湿表面、或用于hipe泡沫中的任何其它期望特性。在一些情况下,这些附加单体可减慢hipe转变成hipe泡沫的总进程,如果要赋予期望特性那么折衷权衡就是必要的。因此,此类单体可用于减缓hipe的聚合速率。该类型单体的示例可包括苯乙烯和氯乙烯。
油相还可包含用于稳定hipe的乳化剂。用于hipe中的乳化剂可包括:(a)支链c16-c24脂肪酸的脱水山梨糖醇单酯;直链不饱和c16-c22脂肪酸;和直链饱和c12-c14脂肪酸,如脱水山梨糖醇单油酸酯、脱水山梨糖醇一肉豆蔻酸酯和脱水山梨糖醇单酯、脱水山梨糖醇单月桂酸酯、双甘油单油酸酯(dgmo)、聚甘油单异硬脂酸酯(pgmis)和聚甘油一肉豆蔻酸酯(pgmm);(b)支链的c16-c24脂肪酸的聚甘油单酯、直链的不饱和c16-c22脂肪酸或直链的饱和c12-c14脂肪酸,如双甘油一油酸酯(例如c18:1脂肪酸的双甘油单酯)、双甘油一肉豆蔻酸酯、双甘油一异硬脂酸酯和双甘油单酯;(c)支链的c16-c24醇的双甘油一脂族醚、直链的不饱和c16-c22醇和直链的饱和c12-c14醇、以及这些乳化剂的混合物。参见1995年2月7日公布的美国专利5,287,207(dyer等人)和;1996年3月19日公布的美国专利5,500,451(goldman等人)。可用的另一种乳化剂是聚甘油琥珀酸酯(pgs),它由烷基琥珀酸酯、甘油和三甘油形成。
可将此类乳化剂及其组合加入油相中,使得它们可构成按油相的重量计约1%与约20%之间,在某些实施方案中约2%至约15%,并且在某些其它实施方案中约3%至约12%。也可使用助乳化剂,以提供对泡孔尺寸、泡孔尺寸分布和乳液稳定性的附加控制,尤其是在例如高于约65℃的高温下。助乳化剂的示例包括磷脂酰胆碱和含磷脂酰胆碱的组合物、脂族甜菜碱、长链c12-c22二脂族季铵盐、短链c1-c4二脂族季铵盐、长链c12-c22二烷酰基(烯酰基)-2-羟乙基、短链c1-c4二脂族季铵盐、长链c12-c22二脂族咪唑啉季铵盐、短链c1-c4二脂族咪唑啉季铵盐、长链c12-c22单脂族苄基季铵盐、长链c12-c22二烷酰基(烯酰基)-2-氨乙基、短链c1-c4单脂族苄基季铵盐、短链c1-c4单羟基脂族季铵盐。二牛油基二甲基铵甲基硫酸盐(dtdmams)可用作共乳化剂。
油相可包含按油相的重量计介于约0.05%和约10%之间,并且在某些实施方案中介于约0.2%和约10%之间的光引发剂。较低量的光引发剂使光能够更好地穿透hipe泡沫,这能够使聚合更深入hipe泡沫。然而,如果聚合在含氧环境中进行,则应有足够的光引发剂来引发聚合并且克服氧的抑制。光引发剂可对光源作出迅速有效的反应,从而产生自由基、阳离子和能够引发聚合反应的其它物质。用于本发明中的光引发剂可吸收约200纳米(nm)至约800nm,在某些实施方案中约200nm至约350nm波长的紫外光。如果光引发剂在油相中,那么合适类型的油溶性光引发剂包含苄基缩酮、a-羟烷基苯酮、a-氨基烷基苯酮和酰基膦氧化物。光引发剂的示例包括2,4,6-[三甲基苯甲酰二膦]氧化物与2-羟基-2-甲基-1-苯基丙-1-酮的组合(二者50:50的共混物由cibaspecialitychemicals(ludwigshafen,germany)以商品名
hipe的分散含水相可具有水,并且也可具有一种或多种组分,诸如引发剂、光引发剂、或电解质,其中在某些实施方案中,一种或多种组分至少部分地为水溶性的。
含水相的一种组分可为水溶性电解质。水相可包含按含水相的重量计约0.2%至约40%,某些实施方案中约2%至约20%的水溶性电解质。电解质使主要油溶的单体、共聚单体和交联剂也溶于含水相的趋势最小化。电解质的示例包括碱土金属(诸如钙或镁)的氯化物或硫酸盐,以及碱金属(诸如钠)的氯化物或硫酸盐。此类电解质可包含缓冲剂以用于控制聚合过程中的ph,该缓冲剂包括诸如磷酸盐、硼酸盐和碳酸盐、以及它们的混合物的无机抗衡离子。水溶性单体也可用于含水相中,示例为丙烯酸和乙酸乙烯酯。
可存在于含水相中的另一种组分是水溶性自由基引发剂。基于存在于油相中的可聚合单体的总摩尔数计,引发剂能够以至多约20摩尔%的量存在。基于存在于油相中的可聚合单体的总摩尔数计,引发剂可以约0.001摩尔%至约10摩尔%的量存在。合适的引发剂包括过硫酸铵、过硫酸钠、过硫酸钾、2,2'-偶氮双(n,n'-二亚甲基异丁基脒)二盐酸盐和其它合适的偶氮引发剂。为降低可堵塞乳化体系的过早聚合的可能性,可恰好在乳化结束后或接近乳化结束时向单体相中添加引发剂。
存在于含水相中的光引发剂可为至少部分水溶性的,并且可构成介于约0.05重量%和约10重量%之间,并且在某些实施方案中介于约0.2重量%和约10重量%之间的含水相。较低量的光引发剂使光能够更好地穿透hipe泡沫,这能够使聚合更深入hipe泡沫。然而,如果聚合在含氧环境中进行,则应有足够的光引发剂来引发聚合并且克服氧的抑制。光引发剂可对光源作出迅速有效的反应,从而产生自由基、阳离子和能够引发聚合反应的其它物质。用于本发明中的光引发剂可吸收波长约200纳米(nm)至约800nm,在某些实施方案中约200nm至约350nm,并且在某些实施方案中约350nm至约450nm的紫外光。如果光引发剂在含水相中,则合适类型的水溶性光引发剂包括二苯甲酮、苯偶酰和噻吨酮。光引发剂的示例包括2,2'-偶氮二[2-(2-咪唑啉-2-基)丙烷]二盐酸盐;脱水2,2'-偶氮二[2-(2-咪唑啉-2-基)丙烷]二硫酸盐;2,2'-偶氮二(1-亚氨基-1-吡咯烷-2-乙基丙烷)二盐酸盐;2,2'-偶氮二[2-甲基-n-(2-羟乙基)丙酰胺];2,2'-偶氮二(2-甲基丙脒)二盐酸盐;2,2'-二羧甲氧基二亚苄基丙酮、4,4'-二羧甲氧基二亚苄基丙酮、4,4'-二羧甲氧基二亚苄基环己酮、4-二甲氨基-4'-羧甲氧基二亚苄基丙酮;以及4,4'-二磺酰基甲氧基二亚苄基丙酮。可用于本发明的其它适宜的光引发剂列于1989年4月25日公布的美国专利4,824,765(sperry等人)中。
除前述组分之外,其它组分也可包含在hipe的含水相或油相中。示例包括抗氧化剂,例如受阻酚、受阻胺光稳定剂;增塑剂,例如邻苯二甲酸二辛酯、癸二酸二壬酯;阻燃剂,例如卤化烃、磷酸盐、硼酸盐、无机盐,诸如三氧化锑或磷酸铵或氢氧化镁;染料和颜料;荧光剂;填料块,例如淀粉、二氧化钛、炭黑或碳酸钙;纤维;链转移剂;气味吸收剂,例如活性炭颗粒;溶解的聚合物;溶解的低聚物;等等。
异质块体包括可包覆元件和离散的泡沫块。可包覆元件可为纤维网,诸如非织造物、纤维结构、气流成网纤维网、湿法成网纤维网、高蓬松非织造物、针刺纤维网、水刺纤维网、纤维丝束、织造纤维网、针织纤维网、植绒纤维网、纺粘纤维网、分层纺粘/熔喷纤维网、粗梳纤维网、纤维素纤维和熔喷纤维的共成形纤维网、短纤维和熔喷纤维的共成形纤维网、以及为它们的分层组合的分层纤维网。
可包覆元件可为例如常规吸收材料,诸如绉纱纤维素填料、松散纤维素纤维、也称为透气毡的木浆纤维、以及纺织品纤维。可包覆元件也可以是纤维,例如诸如合成纤维、热塑性微粒或纤维、三组分纤维、以及双组分纤维,例如诸如具有以下聚合物组合的皮/芯型纤维:聚乙烯/聚丙烯、聚乙酸乙基乙烯基酯/聚丙烯、聚乙烯/聚酯、聚丙烯/聚酯、共聚酯/聚酯等。可包覆元件可以是以上列出的材料的任何组合和/或单独或组合的多个以上列出的材料。可包覆元件可为疏水的或亲水的。可包覆元件可被处理成疏水的。可包覆元件可被处理成亲水的。
异质块体的组成纤维可由诸如聚乙烯、聚丙烯、聚酯、以及它们的共混物的聚合物构成。纤维可为纺粘纤维。纤维可为熔喷纤维。纤维可包含纤维素、人造丝、棉、或其它天然材料或聚合物与天然材料的共混物。纤维也可包含超吸收材料,诸如聚丙烯酸酯或合适材料的任何组合。纤维可以是单组分、双组分、和/或双成分、非圆形的(例如,毛细管道纤维),并且可具有的主横截面尺寸(例如,圆纤维的直径)在0.1-500微米的范围内。非织造前体纤维网的组成纤维也可为不同纤维类型的混合物,这些不同纤维类型在诸如化学(例如聚乙烯和聚丙烯)、组分(单-和双-)、旦尼尔(微旦尼尔和>20旦尼尔)、形状(即毛细管和圆形)等特征方面不同。成分纤维的范围可为约0.1旦尼尔至约100旦尼尔。
在一个方面,已知的制备时吸收材料纤维网可被视为是始终均匀的。所谓均质是指吸收材料纤维网的流体处理特性不依赖于位置,而是在纤维网的任何区域处均基本上均匀。均匀性的特征可在于例如密度、基重,使得纤维网的任何具体部分的密度或基重与纤维网的平均密度或基重基本上相同。借助本发明的设备和方法,均质纤维吸收材料纤维网被改性,使得它们不再是均质而是异质的,使得纤维网材料的流体处理特性依赖于位置。因此,就本发明的异质吸收材料而言,纤维网在离散位置处的密度或基重可与纤维网的平均密度或基重显著不同。本发明的吸收纤维网的异质性质通过使得离散部分高度可渗透而其它离散部分具有高毛细管作用而使得渗透性或毛细管作用的负面作用能够被最小化。同样,渗透性与毛细管作用之间达成折衷,使得可实现递送相对较高的渗透性但不会降低毛细管作用。
异质块体还可包括吸入流体并形成水凝胶的超吸收材料。这些材料通常能够吸收大量体液并在适度压力下保留它们。异质块体可包括分散在合适载体中的此类材料,所述材料诸如呈绒毛或硬化纤维形式的纤维素纤维。异质块体可包括热塑性颗粒或纤维。所述材料,并且具体地热塑性纤维,可由多种热塑性聚合物制成,所述聚合物包括聚烯烃诸如聚乙烯(例如pulpex.rtm.)和聚丙烯、聚酯、共聚酯、以及任何前述材料的共聚物。
取决于所需的特征,合适的热塑性材料包括被制成亲水的疏水纤维,诸如衍生自例如聚烯烃诸如聚乙烯或聚丙烯、聚丙烯酸化物、聚酰胺、聚苯乙烯等的经表面活性剂处理或经二氧化硅处理的热塑性纤维。疏水热塑性纤维的表面可用表面活性剂诸如非离子表面活性剂或阴离子表面活性剂处理来变得亲水,例如用表面活性剂喷涂纤维、将纤维浸入表面活性剂,或在生产热塑性纤维时将表面活性剂包括为聚合物熔体的一部分。在熔融和重新凝固时,表面活性剂将趋于保持在热塑性纤维的表面处。合适的表面活性剂包括非离子表面活性剂,诸如由iciamericas,inc.(wilmington,del.)制造的brij76和以商标pegosperse.rtm.由glycochemical,inc.(greenwich,conn.)出售的多种表面活性剂。除了非离子表面活性剂外,也可使用阴离子表面活性剂。这些表面活性剂可以例如每平方厘米热塑性纤维约0.2克至约1克的含量施用到热塑性纤维。
合适的热塑性纤维可由单一聚合物(单组分纤维)制成,或者可由一种以上的聚合物(例如,双组分纤维)制成。包括外皮的聚合物经常在与包括芯的聚合物不同(通常较低)的温度下熔融。因此,这些双组分纤维由于外皮聚合物的熔融而提供热粘结,同时保持芯聚合物的所需强度特性。
用于本发明的合适的双组分纤维可包括具有以下聚合物组合的皮/芯型纤维:聚乙烯/聚丙烯、聚乙酸乙基乙烯基酯/聚丙烯、聚乙烯/聚酯、聚丙烯/聚酯、共聚酯/聚酯等。可用于本文的尤其合适的双组分热塑性纤维是具有聚丙烯或聚酯芯以及具有较低熔融温度的共聚酯、聚乙酸乙基乙烯基酯或聚乙烯外皮的那些(例如danaklon.rtm.、celbond.rtm.或chisso.rtm.双组分纤维)。这些双组分纤维可以同心或偏心。如本文所用,术语“同心”和“偏心”是指外皮在贯穿双组分纤维的横截面区域上具有均匀还是不均匀的厚度。在以较低的纤维厚度提供较大的压缩强度时,偏心双组分纤维可为期望的。适用于本文的双组分纤维可为非卷曲的(即,不弯曲的)或卷曲的(即,弯曲的)。双组分纤维可通过典型的纺织方法进行卷曲,例如诸如填充线盒方法或齿轮卷曲方法以获得主要二维的或“平坦的”卷曲。
双组分纤维的长度可取决于纤维和纤维网成形方法期望的特定特性而不同。通常,在气流成网纤维网中,这些热塑性纤维的长度为约2mm至约12mm长,诸如约2.5mm至约7.5mm长、或约3.0mm至约6.0mm长。非织造纤维可介于5mm和75mm长之间,诸如10mm长、15mm长、20mm长、25mm长、30mm长、35mm长、40mm长、45mm长、50mm长、55mm长、60mm长、65mm长、或70mm长。这些热塑性纤维的特性也可通过改变纤维的直径(厚度)进行调节。这些热塑性纤维的直径通常以旦尼尔(克/9000米)或分特(克/10000米)进行定义。在气流成网制备机中使用的合适双组分热塑性纤维具有的分特可在约1.0至约20的范围内,诸如约1.4至约10分特、或约1.7至约7分特。
这些热塑性材料的压缩模量,尤其是热塑性纤维的压缩模量,也可为重要的。热塑性纤维的压缩模量不但受它们的长度和直径的影响,而且受制成它们的一种或多种聚合物的组成和特性、所述纤维的形状和构型(例如同心的或偏心的、卷曲的或非卷曲的)、以及类似因素的影响。这些热塑性纤维的压缩模量的差异可用于改变相应的热粘结纤维基质的特性,尤其是密度特征。
异质块体也可包括通常不用作粘结剂纤维但改变纤维网的机械特性的合成纤维。合成纤维包括乙酸纤维素、聚氟乙烯、聚偏1,1-二氯乙烯、丙烯酸树脂(诸如奥纶)、聚乙酸乙烯酯、不可溶的聚乙烯醇、聚乙烯、聚丙烯、聚酰胺(诸如尼龙)、聚酯、双组分纤维、三组分纤维、它们的混合物等等。这些合成纤维可包括例如聚酯纤维诸如聚对苯二甲酸乙二醇酯(例如dacron.rtm.和kodel.rtm.)、高熔融卷曲聚酯纤维(例如kodel.rtm.431,由eastmanchemicalco.制造)亲水性尼龙(hydrofil.rtm.)等等。合适的纤维也可亲水化疏水纤维,诸如衍生自例如聚烯烃诸如聚乙烯或聚丙烯、聚丙烯酸类、聚酰胺、聚苯乙烯、聚氨酯等的经表面活性剂处理或经二氧化硅处理的热塑性纤维。在非粘结热塑性纤维的情况下,它们的长度可取决于这些纤维期望的具体特性而不同。通常,它们的长度为约0.3cm至7.5cm,诸如约0.9cm至约1.5cm。合适的非粘结热塑性纤维可具有的分特在约1.5至约35的范围内,例如约14至约20分特。虽然是结构化的,包含泡沫块的异质块体的总吸收容量应当与块体的设计载荷和预期用途相适应。例如,当用于吸收制品时,异质块体的尺寸和吸收容量可进行变化以适应诸如失禁衬垫、卫生护垫、日用卫生巾或夜用卫生巾之类的不同用途。异质块体也可包括有时用于吸收纤维网的其它任选组分。例如,强化稀松布可定位于异质块体的相应层内,或相应层之间。
由本发明制成的包含开孔泡沫块的异质块体可用作吸收制品中的吸收芯或吸收芯的一部分,所述吸收制品诸如女性卫生制品,例如垫、卫生护垫和棉塞;一次性尿布;失禁制品,例如垫、成人尿布;家庭护理制品,例如擦拭物、垫、毛巾;以及美容护理制品,例如垫、擦拭物,和皮肤护理制品,诸如用于毛孔清洁的。
异质块体可被用作吸收制品的吸收芯。吸收芯可具有相对薄的,小于约5mm的厚度,或小于约3mm,或小于约1mm的厚度。本文中还考虑具有大于5mm的厚度的芯。厚度可通过利用本领域已知的用于在0.25psi的均匀压力下进行的任何方法沿着吸收结构的纵向中心线测量中点处的厚度来测定。吸收芯可包含如本领域已知的吸收胶凝材料(agm),包括agm纤维。
可将异质块体成形或切割成某种形状,其外边缘限定周边。另外,异质块体可以是连续的,使得其可自身卷起或绕起,其中包括或不包括将异质块体划分成预成形节段的预成形的切割线。当用作吸收芯时,异质块体的形状可为大致矩形、圆形、卵形、椭圆形等。吸收芯可相对于吸收制品的纵向中心线和横向中心线大致居中。吸收芯的轮廓可使得更多吸收材料靠近吸收制品的中心设置。例如,吸收芯可以本领域已知的多种方式在中间较厚而在边缘处逐渐变薄。
申请人已经发现,吸收结构可在整个使用循环中表现出增加的压缩能。异质块体在润湿时表现出表示介于100%和最高至200%之间,例如诸如,介于100%和180%之间,介于110%和170%之间,介于120%和160%之间,介于125%和150%之间,或介于130%和150%之间的干压缩能的压缩能(以毫焦(mj)为单位测量)。这种令人惊奇的结果允许形成一种近似服装样的产品,其在干燥时在使用期间变化,使得制品在润湿时的压缩能增加。
干压缩能介于湿压缩能量测量值的10%和99%之间,例如介于15%和80%之间、介于20%和75%之间,介于25%和70%之间,例如湿压缩能量测量值的30%、35%、40%、45%、50%、60%或65%。湿压缩能在样品加载有7ml的10%盐水溶液时计算。
恢复能是芯/产品可保持或恢复原始形状以向产品与身体接触面提供更大覆盖面积的程度–更具体地讲,芯/产品将对消费者的身体和服装进行的工作量的指标。恢复能的上限应当为干状态下的第1次循环压缩能。如通过集中压缩测试所测量的,第五循环恢复能可用作产品在其使用时的量度。在干状态和湿状态下对其进行测试允许观察到在使用时在流体被产品吸收之前和之后吸收结构如何反应。
不受理论的束缚,申请人已经发现压缩能和恢复能、峰值力以及芯/产品厚度全部均是表现出吸收产品将如何贴合、感觉和保护的重要分量-将讨论每个分量的比例以解释其在递送这些有益效果方面的作用。
如前所述,峰值力是吸收结构的柔韧性的指示。不受理论的束缚,申请人已经发现较低的峰值力使得吸收产品更具“服装样”。当根据集中压缩测试与适当的第五循环恢复能范围平衡时,产品可以是“服装样”的,并且仍然能够在使用期间保持其形状,但不对消费者造成集中或舒适度问题。如通过集中压缩测试所测量的,第1次循环压缩能是测量“磨合”产品使其更自然适形于并贴合她的身体所需的努力的量度。恢复能的上限应当是干状态下的第1次循环压缩能-优选该能量接近压缩能上限,但不牺牲芯/产品的最终舒适度。
上表列出了表现出期望的特性的本发明的多个实施例。
(发明a-发明d)。发明a-c表示由开孔泡沫包覆的异质块体。发明b-c已经经历了附加的固态成形。发明d表示使用agm的改善的芯体系。前有技术e-g表示当前市场上可得的吸收结构,包括传统的hipe芯层结构(现有技术g)。
申请人已经发现期望的产品能够在15次使用中表现出期望的特性同时具有小于200%的厚度变化与介于30克和150克之间的第1次循环干峰值力(pf)和介于0.1mj和2.8mj之间的第5次循环干恢复能的组合。厚度变化可介于1%和200%之间,介于10%和100%之间,或介于20%和80%之间。吸收结构可表现出介于0.1mj和2.8mj之间,例如0.2mj和2.5mj之间,0.5mj和2.0mj之间,20或0.9mj和1.5mj之间的干循环的第五循环恢复能。申请人已经发现具有介于0.1mj和2.8mj之间的第五干循环恢复能来表示使用期间的改善的恢复,从而允许产品保持足够的结构,同时仍然是柔性和服装样的。申请人已经发现表现出介于30克和150克之间的干循环的第一循环峰值力的吸收结构具有足够的柔韧性和最小必要的结构水平。吸收结构可表现出介于30克和150克之间,诸如介于40克和120克之间,介于45克和100克之间,或介于50克和80克之间的干循环的第一循环峰值力。由于其与柔韧性和堆积体积的关联性,芯厚度是服装或裤样吸收制品在穿着时将如何的高度消费者相关的指示。具有较少厚度的芯/产品在裤与身体接触面处占较少空间,并且更具柔性,即可如裤自然地移动那样更自由地移动。
如表1所示(本发明示例b-c),可通过使用固态成形,例如环轧来影响材料。已知用于将大致平面的纤维网变形成三维结构的成形装置用于本发明中,以将制备时吸收材料改性成具有相对较高渗透性而无显著的对应毛细管压力降低的吸收材料。成形装置可包括一对互相啮合的辊,通常为具有互相啮合的脊或齿及凹槽的钢辊。然而,预期也可利用用于实现成形的其它装置,诸如2005年6月30日公布的us2005/0140057中公开的变形辊和帘布(cord)排列。因此,本文一对辊的所有公开内容视为等同于辊和帘布,并且详述两个互相啮合辊的受权利要求书保护的排列被视为等同于互相啮合的辊和帘布,其中帘布用作配对的互相啮合的辊的脊。本发明的这对互相啮合的辊可被视为等同于辊及相互啮合元件,其中互啮合元件可为另一个辊、帘布、多个帘布、皮带、柔软的纤维网或捆带。同样,据信其它已知的成形技术也能够生产具有一定程度的相对较高渗透性而无显著的毛细管压力相应降低的吸收材料,已知的成形技术诸如起绉、颈缩/加固、压波形、压花、扣断(buttonbreak)、热销冲压等。利用辊的成形方法包括“环轧”、“self”或“self’ing”工艺,其中self代表结构化类弹性膜(structuralelasticlikefilm),诸如“微结构化类弹性膜”和“滚刀开孔”(rka);如2011年5月3日授予zhao等人的美国专利7,935,207中所述。与成形方法相关的其它参考文献包括2001年3月20日授权的mcfall等人的美国专利6,203,654,和2002年6月25日授权的mcfall等人的美国专利6,410,820。异质块体表现出使用循环期间的增加的压缩能。异质块体可表现出小于第1次循环初始能量的50%的从第1次循环到第20次循环的能量变化。异质块体可表现出小于初始干能量的20%的从干到湿的压缩能变化。
如上表所示,异质块体(发明a-c)表现出介于0.9mj和2mj之间的第5次循环恢复能,例如0.98、1.1、1.2、1.3、1.4和1.5mj。
吸收结构可用作吸收制品的一部分。吸收结构可用作吸收制品的吸收芯。吸收结构可用作吸收制品的吸收芯的一部分。可将多于一个吸收结构组合,其中每个吸收结构与至少一个其它吸收结构的不同之处是可包覆元件的选择或其开孔泡沫块的特征。可结合两种或更多种吸收结构以形成吸收芯。吸收结构还可包括顶片和底片。
吸收结构可被用作吸收制品的顶片。吸收结构可与吸收芯组合或可仅与底片组合。
吸收结构可与任何其它类型的吸收层组合,例如诸如纤维素层、包含超吸收胶凝材料的层、吸收性气流成网纤维层、或吸收泡沫层。本文考虑了未列出的其它吸收层。
可利用吸收结构本身来吸收流体而无需将其置入吸收制品内。
该吸收制品可包括液体可渗透的顶片。适用于本文的顶片可包括织造材料、非织造材料、和/或由液体不可透过的聚合物膜形成的三维网,该液体不可透过的聚合物膜包括液体可透过的小孔。用于本文的顶片可为单层或可具有多个层。例如,面向且接触穿着者的表面可由具有小孔的膜材料提供,该小孔用来促进从面向穿着者的表面朝吸收结构的液体传送。此类液体可透过的开孔膜是本领域熟知的。它们提供有弹力的三维纤维状结构。上述膜已被详细公开于例如us3929135、us4151240、us4319868、us4324426、us4343314、us4591523、us4609518、us4629643、us4695422或wo96/00548中。包括吸收结构的实施方案的图1至图17的吸收制品也可包括底片和顶片。底片可用于防止被吸收和容纳在吸收结构中的流体润湿接触吸收制品的材料诸如内衣裤、裤、睡衣、内衣、以及衬衫或夹克,从而可充当对流体传送的屏障。底片也可允许至少水蒸汽、或水蒸汽和空气两者透过其转移。
尤其当吸收制品用作卫生巾或卫生护垫时,所述吸收制品还可具有裤扣紧部件,所述扣紧部件提供将制品附接至内衣的部件,例如底片的面向衣服的表面上的女性内裤粘固剂。还可在卫生巾的侧边上提供旨在围绕内衣的裆部边缘折叠的护翼或侧翼。
图1为卫生巾10的平面图,所述卫生巾10包括顶片12、底片(未示出)、位于顶片12和底片之间的吸收芯16、纵向轴线24、以及横向轴线26。吸收芯16由异质块体18构成,所述异质块体18包括元件30和包覆异质块体18的至少一个元件30的一个或多个离散的泡沫块20。如图1所示,元件30为纤维22。将顶片的一部分切割以便显示下面的部分。
图2和图3为分别沿纵向轴线24贯穿切割竖直平面2-2和沿横向轴线26贯穿切割竖直平面3-3所得的图1所示的衬垫的横截面。如图2和图3中可以看到,吸收芯16处于顶片12和底片14之间。如图2和图3的实施方案中所示,离散的泡沫块20遍布在整个吸收芯中并且包覆异质块体18的元件30。离散的泡沫块20可延伸超出可包覆元件,以形成异质块体的外表面的一部分。另外,离散的泡沫块可完全在吸收芯的异质块体内相互缠结。包含气体的空隙28位于纤维22之间。
图4为示出本发明的一个实施方案的卫生巾10的平面图。卫生巾10包括顶片12、底片(未示出)、位于顶片12和底片之间的吸收芯16、纵向轴线24、以及横向轴线26。吸收芯16由异质块体18构成,所述异质块体18包括元件30和包覆异质块体18的至少一个元件30的一个或多个离散的泡沫块20。如图4所示,元件30为纤维22。将顶片的一部分切割以便显示下面的部分。如图4所示,离散的泡沫块20沿异质块体的轴线例如诸如纵向轴线可为连续的。另外,离散的泡沫20可被布置在异质块体中形成一条线。离散的泡沫块20被示出邻近异质块体18的顶部,但是也可定位在异质块体18的任何竖直高度处,使得可包覆元件30可定位在一个或多个离散泡沫块20的上方或下方。图5、图6和图7为分别贯穿切割竖直平面5-5、6-6和7-7所得的图4所示的衬垫的横截面。竖直平面5-5平行于衬垫的横向轴线并且竖直平面6-6和7-7平行于纵向轴线。如图5至图7中可以看到,吸收芯16处于顶片12和底片14之间。如图5的实施方案中所示,离散的泡沫块20遍布在整个吸收芯中并且包覆异质块体18的元件30。如图6所示,离散的泡沫块20可为连续的并且沿异质块体延伸。如图7所示,异质块体沿吸收芯的线横截面(linecrosssection)可不具有任何离散的泡沫块。包含气体的空隙28位于纤维22之间。
图8为在图5上通过虚线圆圈80指示的图5的一部分的缩放视图。如图8所示,异质块体18包括离散的泡沫块20和呈纤维22形式的可包覆元件30。包含气体的空隙28位于纤维22之间。
图9为示出本发明的一个实施方案的卫生巾10的平面图。卫生巾10包括顶片12、底片(未示出)、位于顶片12和底片之间的吸收芯16、纵向轴线24、以及横向轴线26。吸收芯16由异质块体18构成,所述异质块体18包括元件30和包覆异质块体18的至少一个元件30的一个或多个离散的泡沫块20。如图9所示,元件30为纤维22。将顶片的一部分切割以便显示下面的部分。如图9所示,离散的泡沫块20可形成图案,例如诸如棋盘状栅格。
图10和图11为分别贯穿切割竖直平面10-10和11-11所得的图9所示的衬垫的横截面。如图10和图11中可以看到,吸收芯16处于顶片12和底片14之间。如图10和图11的实施方案中所示,离散的泡沫块20遍布在整个吸收芯中并且包覆异质块体18的呈纤维22形式的元件30。包含气体的空隙28位于纤维22之间。图12至图16为在包括非织造纤维22的异质块体18内相互缠结的hipe泡沫块20的sem显微照片。图12示出在15x放大倍数下拍摄的sem显微照片。如图12所示,离散的hipe泡沫块20和呈纤维22形式的元件30相互缠结。hipe泡沫块20包覆异质块体18的一根或多根纤维22。异质块体18的纤维22穿过hipe泡沫块20。包含气体的空隙28位于纤维22之间。
图13示出在50x放大倍数下的图12的吸收芯。如图13所示,hipe泡沫块20包封一根或多根纤维22的一部分,使得纤维一分为二穿过hipe泡沫块20。hipe泡沫块20包覆纤维,使得所述块不能在吸收芯内自由地在周围运动。如图13所示,空腔32可存在于包覆泡沫20内。空腔32可包含可包覆元件30的一部分。
图14示出在15x放大倍数下拍摄的离散的hipe泡沫块的横截面的另一个sem显微照片。如图14所示,hipe泡沫块20可延伸超出异质块体18的元件30,以形成异质块体18的外表面的一部分。hipe泡沫块20包覆异质块体18的一根或多根纤维22。吸收芯的纤维穿过hipe泡沫块。包含气体的空隙28位于纤维22之间。
图15示出在18x的放大倍数下拍摄的异质块体18的另一个sem显微照片。如图15所示,hipe泡沫块20可被定位在异质块体18的外表面下方,使得其不形成异质块体18的外表面的部分并且被纤维22和包含气体的空隙28所围绕。可在泡沫块20内形成一个或多个空腔32。
图16示出在300x的放大倍数下拍摄的图15的异质块体的sem显微照片。如图16所示,异质块体18具有开孔泡沫块20,所述开孔泡沫块20包覆呈纤维22形式的一个或多个可包覆元件30。如图16所示,空腔32可存在于包覆泡沫20内。空腔32可包含可包覆元件30的一部分。如图所示,空腔32具有介于纤维22的横截面表面积的1.0002倍和900,000,000倍之间或者介于开孔泡沫块20中的泡孔36的横截面表面积的1.26倍和9,000,000倍之间的横截面表面积。图17为异质块体18的摄影图像,所述异质块体具有包括非织造纤维网的可包覆元件30和包覆可包覆元件
30的开孔泡沫块20。如摄影图像中所示,开孔泡沫块沿异质块体的侧向轴线、纵向轴线或竖直轴线中的至少一者是离散的。如图17中所示,当使用者从上方观察时,离散的开孔泡沫块可形成图案。
a.一种吸收结构,其包括一个或多个吸收层,其中所述吸收结构表现出介于约30克和约150克之间的第一循环峰值力压缩;其中所述吸收结构还表现出介于0.1mj和2.8mj之间的第五循环干恢复能。
b.根据段a所述的吸收结构,其中所述吸收结构表现出介于0.6mj和5.0mj之间的第五循环湿恢复能。
c.根据段a或b所述的吸收结构,其中所述吸收结构厚度从干到湿的变化介于0%和175%之间。
d.根据段a-c中任一项所述的吸收结构,其中当从干到湿测量时,所述吸收结构在第一循环期间表现出峰值力的增加。
e.根据段a-d中任一项所述的吸收结构,其中所述吸收结构包含按体积计少于30%的纤维。
f.一种吸收制品,其包括根据段a-e中任一项所述的吸收结构。
g.根据段a-d中任一项所述的吸收结构,其中所述吸收结构包括吸收性聚合物材料层。
h.根据段g所述的吸收结构,其中所述吸收性聚合物材料层具有小于250g/m2的基重。
i.根据段a-h中任一项所述的吸收结构,其中所述吸收结构的一个或多个层基本上不含纤维素纤维。
j.根据段a-i中任一项所述的吸收结构,其中所述吸收结构包含异质块体。
k.根据段j所述的吸收结构,其中对于固定体积,所述异质块体包括至少5%的离散的开孔泡沫块。
l.根据段j-k中任一项所述的吸收结构,其中所述异质块体包括可包覆元件,所述可包覆元件选自:绉纱纤维素填料、松散纤维素纤维、木浆纤维(也被称为透气毡)、纺织纤维、合成纤维、人造丝纤维、气流成网、吸收性纤维、热塑性颗粒或纤维、三组分纤维、双组分纤维、毛簇、非织造物、纤维结构、气流成网纤维网、湿法成网纤维网、高蓬松非织造物、针刺纤维网、水刺纤维网、纤维丝束、织造纤维网、针织纤维网、植绒纤维网、纺粘纤维网、分层纺粘/熔喷纤维网、粗梳纤维网、纤维素纤维和熔喷纤维的共成形纤维网、短纤维和熔喷纤维的共成形纤维网、分层纤维网以及它们的组合。
m.根据段j-l中任一项所述的吸收结构,其中对于固定体积,所述异质块体包括介于10%和99%之间的气体。
n.根据段k所述的吸收结构,其中所述离散的开孔泡沫块包括hipe泡沫。
o.根据段k所述的吸收结构,其中所述离散的开孔泡沫块沿纵向轴线和横向轴线中的至少一个是连续的。
p.一种吸收结构,其包括一个或多个吸收层,其中所述吸收结构表现出介于约30克和约150克之间的第一循环峰值力压缩;其中所述吸收结构还表现出介于0.1mj和2.8mj之间的第五循环干恢复能。并且其中所述吸收结构表现出介于0.6mj和5.0mj之间的第五循环湿恢复能。
q.根据段p所述的吸收结构,其中所述吸收结构厚度从干到湿的变化介于0%和175%之间。
r.根据段p或q所述的吸收结构,其中当从干到湿测量时,所述吸收结构在第一循环期间表现出峰值力的增加。
s.根据段p-r中任一项所述的吸收结构,其中所述吸收结构包括吸收性聚合物材料层。
t.根据段p-s中任一项所述的吸收结构,其中所述吸收结构包含异质块体。
使用sem成像进行孔径计算用于评估面积的方法:
样本制备
第一步是制备样品以使用sem成像:从初始样品中将异质块体部分切割成约1.5cm×4cm的条。这些条随后被切成多个部分。每个部分应包含完整的复合材料。应使用剃刀刀片,诸如vwrsingleedgeindustrial,0.009”厚的外科碳钢或等同物,在室温下(购自vwrscientific,radnorpennsylvania,usa)对条进行切割。在将条切成多个部分后,使用双面cu胶带将这些部分粘附在底座上,使部分面朝上,并且溅射au涂覆。
分析
使用在高真空度模式下运行的sem,诸如feiquanta450(购自feicompany,hillsboro,or,usa),利用介于3和5kv之间的加速电压和大约12-18mm的工作距离获得二次电子(secondaryelectron,se)图像。这种方法假定分析人员熟悉sem操作,以便获得具有足够对比度的图像。
观察sem样本
样本应在25或50x放大倍数下进行观察。通过异质块体内的不同部分辨别不同的孔径范围。不同部分表现出不同的孔/孔径/开口面积/固相与气相的关系。选择该部分的放大倍数以能够清楚地观察该部分,并且能够辨别固相与气相。
在25x的放大倍数下进行具有不同孔径范围的部分的测定。在最低纤维沿z方向定位的点处将异质块体sem分成上部部分和下部部分。随后将每个部分分成三部分。这形成三个部分,并且第一上部部分和第一下部部分共享边界。将第二上部部分的孔径范围与第二下部部分的孔径范围进行比较。第三下部区域可与第二上部区域和第二下部区域进行比较以确定是否存在另外的孔径范围。第三上部区域可与第二上部区域和第二下部区域进行比较以确定是否存在另外的孔径范围。对于视野中最大的十个孔测定孔径范围,并使用能够分析sem图像的软件。
集中压缩测试
样品的集中压缩在使用负荷传感器的定速伸长张力检验器(合适的仪器为使用testworks4.0软件的mtsalliance,可购自mtssystemscorp.(edenprairie,mn),或等同物)上测量,被测量的力在所述负荷传感器的极限值的10%至90%内。所有测试均在控制在23℃±3℃和50%±2%相对湿度的室中进行。测试可湿或干地进行。
底部固定夹具3000由各自安装在其自身可移动平台3002a,3002b上的各自100mm宽的两个匹配样品夹具3001组成。该夹具有110mm长的“刀刃”3009,其紧贴1mm厚的硬橡胶面3008夹持(如图18所示)。当闭合时,夹具与其对应平台的内侧齐平。将夹具对齐,使得其将未聚集的样品保持水平并正交于张力检验器的拉轴。将平台安装在轨道3003上,这允许其从左到右水平移动并锁定到位。导轨具有接头3004,该接头与张力检验器的安装件兼容,该安装件能够水平地并正交于张力检验器的拉轴固定平台。上夹具2000是圆柱形活塞2001,其具有70mm的总长度与25.0mm的直径。接触表面2002是平坦的,没有曲率。活塞2001具有接头2003,该接头与负荷传感器上的安装件兼容,该安装件能够正交于张力检验器的拉轴固定活塞。
在测试之前,样品在23℃±3℃和50%±2%的相对湿度下调理至少2小时。在测试整个制品时,从制品面向衣服侧上的任何女性内裤粘固剂中移除剥离纸。轻轻地将滑石粉施加在粘合剂上以减轻任何粘性。如果有箍,用剪刀将其除去,注意不破坏产品的顶片。将制品面向身体的表面朝上放在工作台上。在制品上确定纵向中线和横向中线的交点。使用矩形切割模具,切割纵向方向上100mm乘以横向方向上80mm的样品,其中心位于中线的交点。当仅测试制品的吸收主体时,将吸收主体置于工作台上并如其将整合到制品中那样取向,即识别面向身体的表面以及侧向轴线和纵向轴线。使用矩形切割模具,切割纵向方向上100mm乘以横向方向上80mm的样品,其中心位于中线的交点。可对样品进行湿分析和干分析。干样品不需要进一步准备。湿样品定量投放两种测试溶液中的一种:10.00ml±0.01ml的0.9重量/体积%盐水溶液(即稀释至1l去离子水的9.0gnacl)或7.00ml±0.01ml10重量/体积%盐水溶液(稀释至1l去离子水的100.0gnacl)。使用校准的eppendorf型移液器添加剂量,在大约3秒的时间段内使流体扩散在样品的整个面向身体的表面上。在施用剂量后15.0min±0.1min测试湿样品。
对张力检验器编程以使负荷传感器归零,然后以2.00mm/秒使上夹具下降直至活塞的接触表面接触样品,并在负荷传感器处读取0.02n。归零夹头。将系统编程为以2.00mm/秒使夹头下降15.00mm,然后立即以2.00mm/秒使夹头上升15.00mm。该循环重复总共五次循环,各循环之间不具有延迟。在所有压缩/解压缩循环期间均以100hz收集数据。
左平台3002a距上活塞的侧面2.5mm(距离3005)定位。将左平台锁定在该位置中。该平台3002a将在整个实验中保持静止。平台3002b距静态夹具50.0mm对齐(距离3006)。使上探针2001上升,使其将不干扰加载样品。打开两个夹具。参见图19a,放置样品,其中其纵向边缘(即100mm长边缘)在夹具内。在样品侧向居中的情况下,牢固地紧固两个边缘。参见图19b,使右平台3002b朝向静态平台3002a移动20.0mm的距离。允许样品随可移动平台定位向上弓起。手动降低探针2001直至底部表面高于弯曲样品顶部约1cm。
开始测试并收集所有五个循环的位移(mm)相对于力(n)数据。对于所有循环分别绘制力(n)相对于位移(mm)的图。代表性曲线示于图20a中。由曲线记录每个循环的最大压缩力,精确到0.01n。第一循环和第二循环之间的恢复%计算为(td-e2)/(td-e1)*100,其中td为总位移,并且e2为超过0.02n的第二压缩曲线上的延伸部。记录并精确到0.01%。以类似的方式,第一循环和其它循环之间的恢复%计算为(td-ei)/(td-e1)*100,并且记录并精确到0.01%。参见图20b,循环1的压缩能计算为压缩曲线下面积(即面积a+b),并且记录并精确到0.1mj。循环1的能量损失计算为压缩曲线和解压缩曲线之间的面积(即面积a),并且记录并精确到0.1mj。循环1的恢复能计算为解压缩曲线下面积(即面积b),并且记录并精确到0.1mj。以类似的方式,计算其它循环中每一个的压缩能(mj)、能量损失(mj)和恢复能(mj),并且记录并精确到0.1mj。对于每个样品,分析总共五(5)个平行测试并记录每个参数的算术平均值。所有结果均具体记录为干或湿,包括测试液体(0.9%或10%)。
本文所公开的量纲和值不应理解为严格限于所引用的精确数值。相反,除非另外指明,否则每个这样的量纲旨在表示所述值以及围绕该值功能上等同的范围。例如,公开为“40mm”的量纲旨在表示“约40mm”。
本文所公开的作为范围端值的值不应被理解为严格限于所引用的精确数值。相反,除非另外指明,每个数值范围均旨在表示所引用的值和所述范围内的任何整数。例如,被公开为“1至10”的范围旨在表示“1,2,3,4,5,6,7,8,9以及10”。
在本发明的具体实施方式中引用的所有文件的相关部分以引用方式并入本文;对于任何文件的引用均不应被理解为承认其是有关本发明的现有技术。当本文件中术语的任何含义或定义与以引用方式并入的文件中相同术语的任何含义或定义相冲突时,应当服从在本文件中赋予该术语的含义或定义。
虽然已举例说明和描述了本发明的具体实施方案,但是对于本领域技术人员来说显而易见的是,在不脱离本发明实质和范围的情况下可作出多个其它变化和修改。因此,本文旨在于所附权利要求中涵盖属于本发明范围内的所有这些变化和修改。