一种无反光的虹膜信息测量系统的制作方法

文档序号:16997376发布日期:2019-03-02 01:28阅读:168来源:国知局
一种无反光的虹膜信息测量系统的制作方法
本发明涉及测量
技术领域
,特别涉及虹膜大小、形貌尺寸测量
技术领域

背景技术
:在虹膜采集测量时为了能够增大有效面积,需要将瞳孔缩小。目前常见的瞳孔缩小的方式包括在虹膜测量时进行补光,即利用一定光照,使得瞳孔进光量增大,从而引起生理性的瞳孔缩小。这一过程势必需要使用光源。然而眼球前面的晶状体是透明状物体,光源照射眼睛时会反射光源光线,从而在眼睛上形成光源的像,这种光源的像会影响虹膜的采集。当光源的像位置与虹膜重合时,虹膜信息将无法采集到,只能采集到一个高亮的光源像。为了防止这一问题,现有技术中通常通过调整光源、被采集虹膜、相机位置,从而使得光源的像位于非采集区域,例如位于瞳孔上,或位于虹膜边缘等。但是即使这样,光源的像依然会在一定程度上影响采集效果,并且需要复杂的调节过程才能使得光源的像位于指定位置。因此,现在急需一种能够给虹膜采集装置进行补光的装置,使得采集虹膜时不受光源在眼睛的反光影响,并且简单稳定。技术实现要素:鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种无反光的虹膜信息测量系统及采集系统。本发明提供了一种无反光的虹膜信息测量系统,包括光源,用于向非目标虹膜提供照明;隔离装置,用于防止光源的光进入目标虹膜;采集装置,用于采集目标虹膜信息;所述非目标虹膜和目标虹膜分别属于同一人的不同眼睛;测量装置,根据虹膜信息测量其尺寸。本发明还提供了一种无反光的虹膜信息采集系统,包括光源,用于向非目标虹膜提供照明;隔离装置,用于防止光源的光进入目标虹膜;采集装置,用于采集目标虹膜信息;所述非目标虹膜和目标虹膜分别属于同一人的不同眼睛。可选的,所述隔离装置包括挡板。可选的,所述隔离装置包括光束定向装置。可选的,采集装置为图像采集装置,用于提供采集区域,采集目标虹膜图像。可选的,图像采集装置从多个采集区域获得目标虹膜的不同方向的图像。可选的,所述挡板至少不透过特定特性的光。可选的,目标虹膜信息为目标虹膜的图像信息。可选的,采集多个图像时图像采集装置的位置至少满足相邻两个位置至少符合如下条件:h*(1-cosb)=l*sin2b;a=m*b;0<m<0.8其中l为图像采集装置到目标物的距离,h为采集到的图像中目标物实际尺寸,a为相邻两个位置图像采集装置光轴夹角,m为系数。可选的,采集多个图像时图像采集装置的相邻三个位置满足在对应位置上采集的三个图像至少均存在表示目标物同一区域的部分。本发明提供了一种无反光的虹膜信息采集系统,包括光源,用于向非目标虹膜提供照明;隔离装置,用于减弱光源的光进入目标虹膜;图像采集装置,用于采集目标虹膜图像信息;所述非目标虹膜和目标虹膜分别属于同一人的不同眼睛。可选的,所述隔离装置包括挡板。可选的,所述挡板至少不透过特定特性的光。可选的,所述隔离装置包括光束定向装置。可选的,该定向装置为光源外的定向装置、光源内的定向装置或光源转动装置。可选的,所述图像采集装置为单相机或单摄像机。可选的,图像采集装置沿中心轴旋转。可选的,图像采集装置从多个采集区域获得目标物的不同方向的图像。可选的,采集所述多个图像时图像采集装置的位置至少满足相邻两个位置至少符合如下条件:h*(1-cosb)=l*sin2b;a=m*b;0<m<0.8;其中l为图像采集装置到目标物的距离,h为采集到的图像中目标物实际尺寸,a为相邻两个位置图像采集装置光轴夹角,m为系数。可选的,采集所述多个图像时图像采集装置的相邻三个位置满足在对应位置上采集的三个图像至少均存在表示目标物同一区域的部分。发明点及技术效果1、现有技术存在这样的技术偏见:采集虹膜时必须使用光照使得瞳孔缩小,扩大虹膜采集面积,因此采集的同时需要对虹膜进行光照。而本发明克服上述技术偏见,首次提出不使用光源照射被采集虹膜的技术。2、首次在虹膜采集时发现人的一个眼睛接受光照时,另一只眼睛也会出现与被光照眼睛类似的反应,并首次意识到该现象可以用于虹膜采集时的补光过程,从而提出使用挡板阻挡光源的光进入目标虹膜的方式防止反光。3、现有补光系统均是通过控制光源像的位置、光源发光特点来防止被采集虹膜上光源的像不影响采集,本发明首次提出利用隔离装置减弱光源的光进入目标虹膜,防止出现光源像影响虹膜采集。4、首次意识到并提出由于相机体积导致多相机矩阵采集分辨率较低的技术问题,并不适用于虹膜采集。并提出通过在一定时间内形成虚拟相机矩阵的方式提高采集分辨率,分辨率可以达到像素级。附图说明通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:图1为本发明中实施例1的无反光的虹膜信息采集系统的示意图;图2为本发明中实施例1的无反光的虹膜信息采集系统的一种实现方式的示意图;图3为本发明中实施例1的无反光的虹膜信息采集系统的另一种实现方式的示意图;图4为本发明实施例2中一种虹膜3d信息采集/测量系统的示意图;图5位本发明实施例2中相机移动拍摄位置要求的示意图;图6为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的一种实现方式的示意图;图7为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的第二种实现方式的示意图;图8为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的第三种实现方式的示意图;图9为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的第四种实现方式的示意图;图10为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的第五种实现方式的示意图;图11为本发明实施例3中虹膜3d信息采集系统采用单相机旋转采集的第六种实现方式的示意图;图12为本发明实施例4中采用光线偏转采集虹膜3d信息采集系统的一种种实现方式的示意图;图13为本发明实施例4中采用光线偏转采集虹膜3d信息采集系统的第二种种实现方式的示意图;图14为本发明实施例4中采用光线偏转采集虹膜3d信息采集系统的第三种实现方式的示意图。201图像采集装置,500隔离装置,600光源,400处理器,301目标虹膜,302非目标虹膜,501隔离板,601左光源,602右光源,502光线定向装置,101轨道,100图像处理装置,102机械移动装置,202旋转轴,203转轴驱动装置,204升降装置,205升降驱动装置,4控制终端,211光线偏转单元,212光线偏转驱动单元,3目标物。具体实施方式下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。请参考图1至图5。实施例1(隔离物)包括图像采集装置201,隔离装置500,光源600,处理器400,目标虹膜301,非目标虹膜302为同一人的不同眼睛。图像采集装置201可以为多相机矩阵、固定单相机、摄像机、转动单相机等能够实现图像采集的设备。其用来采集目标虹膜301的图像。在进行二维虹膜采集时只需要采集虹膜二维图像,并将其送入处理器400中进行图像处理、测量和识别。但二维虹膜测量与识别已经无法满足目前高精度、高准确性的采集、测量、识别要求,因此本发明也提出利用虚拟相机矩阵实现三维虹膜采集。此时图像采集装置201将采集到的多张图片送入处理器400中进行图像处理合成(具体方法参见下述实施例),形成三维图像和点云数据。光源600用于向人眼提供光线,从而引起瞳孔缩小,扩大虹膜的面积。光源600可以为单光源,也可以为分布式光源。光源600可以为固定光照的光源,也可以为受控的智能光源。在进行虹膜采集时,为了能够增大有效面积,需要将瞳孔缩小。目前常见的瞳孔缩小的方式包括在虹膜测量时进行补光,即利用一定光照,使得瞳孔进光量增大,从而引起生理性的瞳孔缩小。这一过程势必需要使用光源。然而眼球前面的晶状体是透明状物体,光源照射眼睛时会反射光源光线,从而在眼睛上形成光源的像,这种光源的像会影响虹膜的采集。当光源600的像位置与虹膜重合时,虹膜信息将无法采集到,只能采集到一个高亮的光源像。本发明在目标虹膜301和非目标虹膜302之间设置隔离装置500,这里隔离装置500可以为隔离板501,其阻挡光源600的光进入目标虹膜301中,防止其在目标虹膜301上出现反射像。隔离板501的位置和大小可以根据光源600位置、目标虹膜位置设置,只要阻碍光源600的光进入目标虹膜501中即可。但同时,还要保证光源600的光能够进入非目标虹膜,从而引起人眼瞳孔缩小。例如隔离板501位于人眼两虹膜之间,光源600位于非目标虹膜302一侧,因此光源600的光进入非目标虹膜302中,而不进入目标虹膜301中。在非目标虹膜302一侧人眼感知到光线较强时,两只眼的瞳孔都会缩小,从而实现即使在目标虹膜301上没有光源600的光线,也能够引起目标虹膜301中心的瞳孔缩小,从而增大目标虹膜301的面积。隔离装置500可以为不透光的,防止光线进入目标虹膜中;也可以为半透光或者仅透过特定波长的光。例如隔离装置500可透绿光,但光源600为红光光源,此时隔离装置500可阻挡红光进入目标虹膜中。另外光源600可以为线偏振光源,此时隔离装置500为与偏振光偏振态垂直的偏振片。系统也可以存在两个光源600,分别为左光源601,右光源602,中间包括隔离板501。在左光源601发光时,图像采集装置201采集右侧虹膜图像,采集完毕后,在右光源602发光时,图像采集装置201采集左侧虹膜图像。非目标虹膜302和目标虹膜301分别属于同一人的不同眼睛。隔离装置500也可以为光线定向装置502,使得光源600的光线能够定向向非目标虹膜302照射,从而减少其进入目标虹膜301,从而防止在目标虹膜301上出现光源600的像。该定向装置502可以为光源外的定向装置,即光源600发光后,引导光线进入非目标虹膜302,例如可以为反射镜或透射镜。也可以为光源内的定向装置,即光源中发光单元发出的光被整形为特定方向的光进入非目标虹膜302中。同时还可以为光源转动装置,通过驱动光源转动,控制其发光方向只进入非目标虹膜302中。例如光源600为阵列式智能光源,可以通过调整每个光源发光强度和转动角度来实现非目标虹膜302被照亮,而目标虹膜301上没有光源的像。实施例2为解决上述技术问题,本发明的一实施例提供了一种虹膜3d信息获取/测量装置。如图4所示,具体包括:轨道101,图像采集装置201,图像处理装置100,机械移动装置102,图像采集装置201安装在机械移动装置102上,机械移动装置102可以沿轨道101移动,从而使得图像采集装置201的采集区域不断变化,在一段时间的尺度上形成了在空间不同位置的多个采集区域,构成采集矩阵,但在某一个时刻只有一个采集区域,因此采集矩阵是“虚拟”的。由于图像采集装置201通常由相机构成,也称为虚拟相机矩阵。但图像采集装置201也可以为摄像机、ccd、cmos、摄像头、带有图像采集功能的手机、平板及其他电子设备。上述虚拟矩阵的矩阵点由采集目标物图像时图像采集装置201的位置决定的,相邻两个位置至少满足如下条件:h*(1-cosb)=l*sin2b;a=m*b;0<m<1.5其中l为图像采集装置201到目标物(虹膜)的距离,通常为图像采集装置201在第一位置时距离所采集的目标物正对区域的距离,m为系数。h为采集到的图像中目标物实际尺寸,图像通常为图像采集装置201在第一位置时拍摄的图片,该图片中的目标物具有真实的几何尺寸(不是图片中的尺寸),测量该尺寸时沿着第一位置到第二位置的方向测量。例如第一位置和第二位置是水平移动的关系,那么该尺寸沿着目标物的水平横向测量。例如图片中能够显示出的目标物最左端为a,最右端为b,则测量目标物上a到b的直线距离,为h。测量方法可以根据图片中a、b距离,结合相机镜头焦距进行实际距离计算,也可以在目标物上标识出a、b,利用其它测量手段直接测量ab直线距离。a为相邻两个位置图像采集装置光轴夹角。m为系数。由于物体大小、凹凸情况各异,无法用严格公式限定a的取值,需要根据经验进行限定。根据大量实验,m的取值在1.5以内即可,但优选可以为0.8以内。具体实验数据参见如下表格:目标物m值合成效果合成率人体虹膜0.11、0.29、0.4非常好>90%人体虹膜0.48、0.65好>85%人体虹膜0.71、0.83比较好>80%人体虹膜0.92、1.0一般>70%人体虹膜1.15、1.23一般>60%人体虹膜1.3、1.43、1.54勉强合成>50%人体虹膜1.69难以合成<40%在目标物及图像采集装置201确定后,根据上述经验公式可以计算出a的值,根据a值即可确定虚拟矩阵的参数,即矩阵点之间的位置关系。在通常情况下,虚拟矩阵为一维矩阵,例如沿着水平方向排布多个矩阵点(采集位置)。但有些目标物体较大时,需要二维矩阵,那么在垂直方向上相邻的两个位置同样满足上述a值条件。一些情况下,即使根据上述经验公式,有些场合下也不易确定矩阵参数(a值),此时需要根据实验调整矩阵参数,实验方法如下:根据上述公式计算预测矩阵参数a,并按照矩阵参数控制相机移动至相应的矩阵点,例如相机在位置w1拍摄图片p1,移动至位置w2后拍摄图片p2,此时比较图片p1和图片p2中是否有表示目标物同一区域的部分,即p1∩p2非空(例如同时包含人眼角部分,但照片拍摄角度不同),如果没有则重新调整a值,重新移动至位置w2’,重复上述比较步骤。如果p1∩p2非空,则根据a值(调整或未调整的)继续移动相机至w3位置,拍摄图片p3,再次比较图片p1、图片p2和图片p3中是否有表示目标物同一区域的部分,即p1∩p2∩p3非空,请参考图5。再利用多张图片合成3d,测试3d合成效果,符合3d信息采集和测量要求即可。也就是说,矩阵的结构是由采集多个图像时图像采集装置201的位置决定的,相邻三个位置满足在对应位置上采集的三个图像至少均存在表示目标物同一区域的部分。在虚拟矩阵获得了多张目标物图像后,图像处理装置处理上述图像合成3d。利用相机拍摄的多个角度的多个图像合成3d点云或图像可以使用根据相邻图像特征点进行图像拼接的方法,也可以使用其它方法。图像拼接的方法包括:(1)对多个图像进行处理,提取各自的特征点;多个图像中各自的特征点的特征可以采用sift(scale-invariantfeaturetransform,尺度不变特征转换)特征描述子来描述。sift特征描述子具有128个特征描述向量,可以在方向和尺度上描述任何特征点的128个方面的特征,显著提高对特征描述的精度,同时特征描述子具有空间上的独立性。(2)基于提取的多个图像的特征点,分别生成人脸特征的特征点云数据和虹膜特征的特征点云数据。具体包括:(2-1)根据提取的多个图像中每幅图像各自的特征点的特征,进行多张图片的特征点的匹配,建立匹配的脸部特征点数据集;根据提取的多个图像中每幅图像各自的特征点的特征,进行多张图片的特征点的匹配,建立匹配的虹膜特征点数据集;(2-2)根据相机的光学信息、获取多个图像时的相机的不同位置,计算各个位置相机相对于特征点在空间上的相对位置,并根据相对位置计算出多个图像中的特征点的空间深度信息。同理,可以计算出多个图像中的特征点的空间深度信息。计算可采用光束平差法。计算特征点的空间深度信息可以包括:空间位置信息和颜色信息,即,可以是特征点在空间位置的x轴坐标、特征点在空间位置的y轴坐标、特征点在空间位置的z轴坐标、特征点的颜色信息的r通道的值、特征点的颜色信息的g通道的值、特征点的颜色信息的b通道的值、特征点的颜色信息的alpha通道的值等等。这样,生成的特征点云数据中包含了特征点的空间位置信息和颜色信息,特征点云数据的格式可以如下所示:x1y1z1r1g1b1a1x2y2z2r2g2b2a2……xnynznrngnbnan其中,xn表示特征点在空间位置的x轴坐标;yn表示特征点在空间位置的y轴坐标;zn表示特征点在空间位置的z轴坐标;rn表示特征点的颜色信息的r通道的值;gn表示特征点的颜色信息的g通道的值;bn表示特征点的颜色信息的b通道的值;an表示特征点的颜色信息的alpha通道的值。(2-3)根据多个图像匹配的特征点数据集和特征点的空间深度信息,生成目标物特征的特征点云数据。(2-4)根据特征点云数据构建目标物3d模型,以实现目标物点云数据的采集。(2-5)将采集到的目标物颜色、纹理附加在点云数据上,形成目标物3d图像。其中,可以利用一组图像中的所有图像合成3d图像,也可以从其中选择质量较高的图像进行合成。上述拼接方法只是有限举例,并不限于此,所有根据多幅多角度二维图像生成三维图像的方法均可以使用。实施例3(单轴旋转虹膜采集)小范围、小深度目标物3为横向尺寸与相机采集范围相比较小,且沿相机景深方向尺寸较小,即目标物3在深度方向信息较少。在这种应用场合下,虽然通过轨道、机械臂等方式大范围移动的单相机系统同样可以采集目标物3多角度图像从而合成3d点云或图像,但这些设备较为复杂,从而使得可靠性降低。并且大幅度的移动导致采集时间延长。并且由于体积较大,无法适用于很多场合(例如门禁系统)。而小范围、小深度目标物3具有自己特有的特点,其要求采集/测量设备体积小、可靠性高、采集速度快,特别是其对采集范围要求较低(大深度的目标物3则需要较大范围的采集,特别是需要相机处于不同位置才能够采集全部信息)。申请人首次提出该应用对象和场合,并针对其特点用最简洁的旋转装置即实现了目标物3的3d点云和图像采集,充分利用了该目标物3对采集范围要求小的特点。3d信息采集系统包括:图像采集装置201,用于通过图像采集装置201的采集区域与目标物3相对运动采集目标物3一组图像;采集区域移动装置,用于驱动图像采集装置201的采集区域与目标物3产生相对运动;采集区域移动装置为转轴装置,使得图像采集装置201沿一中心轴转动;参见图6至图11,图像采集装置201为一相机,相机通过固定安装在旋动座上的相机固定架上,旋动座下连接有旋转轴202,旋转轴202由转轴驱动装置203控制转动,转轴驱动装置203和相机均连接控制终端4,控制终端4用于控制转轴驱动装置203实施驱动和相机拍摄。此外,旋转轴202也可以直接与图像采集装置201固定连接,带动相机旋转。由于与传统的3d采集不同,本申请的实施目标物3虹膜属于小范围的3d物体。因此,无需对目标进行大范围复现,但需对其表面主要特征进行高精度的获取,测量和比对,即测量精度要求高。相机转动角度不需要过大,但需要保证转动角度的精确控制。发明通过在驱动旋转轴202和/或旋动座上设置角度获取装置,转轴驱动装置203驱动旋转轴202、相机按照设定的度数转动,角度获取装置测量转动度数并将测量结果反馈给控制终端4,与设定的度数进行比对,保证转动精度。转轴驱动装置203驱动旋转轴202转过两个或多个角度,相机在旋动座的带动下绕着中心轴沿着周向转动并完成不同角度的拍摄,将不同角度的拍摄的图像发送至控制终端4,终端对数据进行处理,并生成最终的三维图像。也可以发送至处理单元,实现3d的合成(具体合成方法参见下文图像拼接方法),处理单元可以为独立装置,也可以为与其它带有处理功能的装置,也可以为远程设备。其中,相机也可连接图像预处理单元,对图像进行预处理。目标物3为虹膜,相机转动过程中保证目标物3在拍摄的采集区域内。控制终端4可选为处理器、计算机、远程控制中心等。图像采集装置201可以替换为摄像机,ccd,红外相机等其他图像采集器件。同时,图像采集装置201可以整体安装在支架上,例如三脚架,固定平台等。转轴驱动装置203可选为无刷电机,高精密步进电机,角编码器,旋转电机等。参见图7,旋转轴202位于图像采集装置201下方,旋转轴202与图像采集装置201直接连接,此时中心轴与图像采集装置201相交;图8所示的中心轴位于图像采集装置201的相机的镜头一侧,此时,相机绕中心轴旋转并进行拍摄,旋转轴202与旋动座之间设置了旋转连接臂;图9所示的中心轴位于图像采集装置201的相机的镜头反向的一侧,此时,相机绕中心轴旋转并进行拍摄,旋转轴202与旋动座之间设置了旋转连接臂,且可以根据需要将连接臂设置为具有向上或向下弯曲的结构;图10所示中心轴位于图像采集装置201的相机的镜头反向的一侧,且中心轴为水平设置,该设置使得相机可以在垂直方向进行角度变换,可适应于垂直方向具有特定特征的目标物3拍摄,其中转轴驱动装置203驱动旋转轴202转动,带动摆动连接臂上下运动;图11所示的转轴驱动装置203还包括升降装置204和用于控制升降装置204运动的升降驱动装置205,升降驱动装置205与控制终端4连接,增加了3d信息采集系统的拍摄区域范围。该3d信息采集系统占用空间小,拍摄效率较需要大范围移动相机的系统明显提高,特别适用于小范围、小深度目标高精度3d信息获取的应用场景。实施例4(光线偏转虹膜采集)参见图12和14,虹膜3d信息采集系统包括:图像采集装置201,用于通过图像采集装置201的采集区域与目标物3相对运动采集目标物3一组图像;采集区域移动装置,用于驱动图像采集装置201的采集区域与目标物3产生相对运动;采集区域移动装置为光学扫描装置,使得图像采集装置201不移动或转动的情况下,图像采集装置201的采集区域与目标物3产生相对运动。参见图12,采集区域移动装置还包括光线偏转单元211,可选地,光线偏转单元211由光线偏转驱动单元212驱动,图像采集装置201为一相机,相机固定安装,其物理位置不发生变化,即不移动也不转动,通过光线偏转单元211使得相机的采集区域发生一定的变化,以实现目标物3与采集区域发生变化,该过程中,光线偏转单元211能够被光线偏转驱动单元212驱动使得不同方向的光线进入图像采集装置201。光线偏转驱动单元212可以为控制光线偏转单元211直线运动或转动的驱动装置。光线偏转驱动单元212和相机均连接控制终端4,控制终端4用于控制转轴驱动装置203实施驱动和相机拍摄。同样可以理解的是,由于与传统的3d采集技术不同,本申请的实施目标物3属于小范围的3d物体。因此,无需对目标进行大范围复现,但需对其表面主要特征进行高精度的获取,测量和比对,即测量精度要求高。因此本发明光线偏转单元211的位移量或转动量无需过大,但需要保证精度和目标物3在拍摄范围内的要求。发明通过在光线偏转单元211上设置角度获取装置和/或位移获取装置,当光线偏转驱动单元212驱动光线偏转单元211运动时,角度获取装置和/或位移获取装置测量转动度数和/或直线位移量并将测量结果反馈给控制终端4,与预先设定的参数进行比对,保证精度。当光线偏转驱动单元212驱动光线偏转单元211发生旋转和/或位移时,相机对应于光线偏转单元211的不同位置状态完成两个或多个拍摄,将两个或多个拍摄的图像发送至控制终端4,终端对数据进行处理,并生成最终的三维图像。其中,相机也可连接图像预处理单元,对图像进行预处理。控制终端4可选为处理器、计算机、远程控制中心等。图像采集装置201可以替换为摄像机,ccd,红外相机等其他图像采集器件。同时,图像采集装置201固定在安装平台上,位置固定不发生变化。光线偏转驱动单元212可选为无刷电机,高精密步进电机,角编码器,旋转电机等。参见图12,光线偏转单元211为反射镜,可以理解的是,根据测量需要可以设置一个或多个反射镜,光线偏转驱动单元212可以相应地设置一个或多个,并控制平面镜角度发生变化使得不同方向的光线进入图像采集装置201;图13所示的光线偏转单元211为透镜组,透镜组中的透镜可设置为一个或多个,光线偏转驱动单元212可以相应地设置一个或多个,并控制透镜角度发生变化使得不同方向的光线进入图像采集装置201;图14所示光线偏转单元211包括多面转镜。另外,光线偏转单元211可以为dmd,即利用电信号可以控制dmd反射镜的偏转方向,从而使得不同方向的光线进入图像采集装置201。而且由于dmd尺寸非常小,因此能够显著地缩小整个设备的尺寸,并且由于dmd可以高速转动,因此极大地提高了测量和采集速度。这也是本发明的发明点之一。可以理解,虽然上述两个实施例分开撰写,但是同时实现相机转动和光线偏转也是可以的。包括3d信息采集系统的3d信息测量装置,其中3d信息采集系统获取3d信息,将信息发送至控制终端4,控制终端4对获取的信息进行计算分析得出目标物3上全部特征点的空间坐标。其中包括,3d信息图像拼接模块,3d信息预处理模块,3d信息算法选择模块,3d信息计算模块,空间坐标点3d信息重建模块。上述模块用于对3d信息采集系统获取的数据进行计算处理并生成测量结果,其中测量结果可以为3d点云图像。测量包括长度、轮廓、面积、体积等几何参数。包括3d信息采集系统的3d信息比对装置,其中3d信息采集系统获取3d信息,将信息发送至控制终端4,控制终端4对获取的信息进行计算分析得出目标物3上全部特征点的空间坐标,并与预设值进行比对,判断被测目标的状态。除前述3d信息测量装置中的模块外,3d信息比对装置还包括预设3d信息提取模块,信息比对模块,比对结果输出模块和提示模块。比对装置可以对被测目标物3的测量结果与预设值进行比对,以便于生产结果审查及再次加工。对于比对结果中发现被测目标物3与预设值存在偏差明显大于阈值的情况,发出警告提示。目标物3的配套物生成装置,其可以实现3d信息采集系统获得的目标物3的至少一个区域的3d信息生成与目标物3相应区域相配合的配套物。具体为,本发明应用于运动器械或医疗辅助器械生产,人体结构存在个体差异,因此,统一的配套物无法满足每个人的需求,本发明3d信息采集系统获取某人肘部图像,将其三维结构输入配套物生成装置,用于生产便于其肘部恢复康复的肘部支撑套。配套物生成装置可以为工业塑型机、3d打印机或其他所有本领域那些技术人员可以理解生产设备。其配置本申请的3d信息采集系统以实现快速定制化生产。虽然本发明给出了上述多种应用(测量、比对、生成),但可以理解,本发明可以独立作为3d信息采集设备。一种3d信息获取方法,包括:s1.在图像采集装置201的采集区域与目标物3相对运动过程中,图像采集装置201采集目标物3一组图像;s2采集区域移动装置通过如下两种方案之一驱动图像采集装置201的采集区域与目标物3产生相对运动:s21.采集区域移动装置为转轴装置,使得图像采集装置201沿一中心轴转动;s22.采集区域移动装置为光学扫描装置,使得图像采集装置201不移动或转动的情况下,图像采集装置201的采集区域与目标物3产生相对运动。利用相机拍摄的多个角度的多个图像合成3d点云或图像可以使用根据相邻图像特征点进行图像拼接的方法,也可以使用其它方法。图像拼接的方法包括:(1)对多个图像进行处理,提取各自的特征点;多个图像中各自的特征点的特征可以采用sift(scale-invariantfeaturetransform,尺度不变特征转换)特征描述子来描述。sift特征描述子具有128个特征描述向量,可以在方向和尺度上描述任何特征点的128个方面的特征,显著提高对特征描述的精度,同时特征描述子具有空间上的独立性。(2)基于提取的多个图像的特征点,分别生成人脸特征的特征点云数据和虹膜特征的特征点云数据。具体包括:(2-1)根据提取的多个图像中每幅图像各自的特征点的特征,进行多张图像的特征点的匹配,建立匹配的脸部特征点数据集;根据提取的多个图像中每幅图像各自的特征点的特征,进行多张图像的特征点的匹配,建立匹配的虹膜特征点数据集;(2-2)根据相机的光学信息、获取多个图像时的相机的不同位置,计算各个位置相机相对于特征点在空间上的相对位置,并根据相对位置计算出多个图像中的特征点的空间深度信息。同理,可以计算出多个图像中的特征点的空间深度信息。计算可采用光束平差法。计算特征点的空间深度信息可以包括:空间位置信息和颜色信息,即,可以是特征点在空间位置的x轴坐标、特征点在空间位置的y轴坐标、特征点在空间位置的z轴坐标、特征点的颜色信息的r通道的值、特征点的颜色信息的g通道的值、特征点的颜色信息的b通道的值、特征点的颜色信息的alpha通道的值等等。这样,生成的特征点云数据中包含了特征点的空间位置信息和颜色信息,特征点云数据的格式可以如下所示:x1y1z1r1g1b1a1x2y2z2r2g2b2a2……xnynznrngnbnan其中,xn表示特征点在空间位置的x轴坐标;yn表示特征点在空间位置的y轴坐标;zn表示特征点在空间位置的z轴坐标;rn表示特征点的颜色信息的r通道的值;gn表示特征点的颜色信息的g通道的值;bn表示特征点的颜色信息的b通道的值;an表示特征点的颜色信息的alpha通道的值。(2-3)根据多个图像匹配的特征点数据集和特征点的空间深度信息,生成目标物3特征的特征点云数据。(2-4)根据特征点云数据构建目标物3d模型,以实现目标物3点云数据的采集。(2-5)将采集到的目标物3颜色、纹理附加在点云数据上,形成目标物3d图像。其中,可以利用一组图像中的所有图像合成3d图像,也可以从其中选择质量较高的图像进行合成。实施例5在形成矩阵时,还需要保证相机在矩阵点时拍摄的物体大小在画面中的比例合适,且拍摄照片清晰。那么在形成矩阵的过程中,相机在矩阵点时需要进行变焦和对焦。(1)变焦在相机拍摄目标物后,估测目标物在相机画面的比例,并与预定值进行比较。过大或者过小都需要进行变焦。变焦方法可以为:利用额外的位移装置在图像采集装置201的径向上移动图像采集装置201,使得图像采集装置201可以靠近或远离目标物体,从而保证在各个矩阵点,目标物在画面中占比保持基本不变。还包括测距装置,可以测量图像采集装置201到物体的实时距离(物距)。可以将物距、目标物在画面中的占比、焦距三者关系数据列成表格,根据焦距、目标物在画面中的占比查表确定物距应该的大小,从而确定矩阵点。在一些情况下,在不同矩阵点目标物或目标物的区域相对相机变化,也可以通过调整焦距来实现目标物在画面中的占比保持恒定。(2)自动对焦在形成虚拟矩阵的过程中,测距装置实时测量相机到物体的距离(物距)h(x),并将测量结果发送给图像处理装置100,图像处理装置100查物距-焦距表,找到对应的焦距值,向相机201发出对焦信号,控制相机超声波马达驱动镜头移动进行快速对焦。这样,可以在不调整图像采集装置201的位置,也不大幅度调整其镜头焦距的情况下,实现快速对焦,保证图像采集装置201拍摄照片清晰。这也是本发明的发明点之一。当然,除了测距方式进行对焦外,也可以采用图像对比度比对的方式进行对焦。本发明中目标物可以为一实体物体,也可以为多个物体组成物。目标物的3d信息包括3d图像、3d点云、3d网格、局部3d特征、3d尺寸及一切带有目标物3d特征的参数。本发明里所谓的3d、三维是指具有xyz三个方向信息,特别是具有深度信息,与只有二维平面信息具有本质区别。也与一些称为3d、全景、全息、三维,但实际上只包括二维信息,特别是不包括深度信息的定义有本质区别。本发明所说的采集区域是指图像采集装置(例如相机)能够拍摄的范围。本发明中的图像采集装置可以为ccd、cmos、相机、摄像机、工业相机、监视器、摄像头、手机、平板、笔记本、移动终端、可穿戴设备、智能眼镜、智能手表、智能手环以及带有图像采集功能所有设备。例如,在一种具体的实施方式中,无反光的虹膜信息采集系统采用市售工业相机wp-uc2000,其具体参数如下表所示:处理器或控制终端采用市售计算机,如dell/戴尔precision3530,具体参数如下:机械移动装置采用定制移动导轨系统tm-01,具体参数为:云台:三轴云台,预留相机机械接口,计算机控制接口;导轨:弧形导轨,与云台机械连接;伺服电机:品牌:纵维,型号:130-06025,额定扭矩:6n·m,编码器类型:2500线增量式,线长:300cm,额定功率:1500w,额定电压:220v,额定电流:6a,额定转速:2500rpm;控制方式:通过pc控制或者是其他方式控制。以上实施例获得的目标物多个区域的3d信息可以用于进行比对,例如用于身份的识别。首先利用本发明的方案获取人体面部和虹膜的3d信息,并将其存储在服务器中,作为标准数据。当使用时,例如需要进行身份认证进行支付、开门等操作时,可以用3d获取装置再次采集并获取人体面部和虹膜的3d信息,将其与标准数据进行比对,比对成功则允许进行下一步动作。可以理解,这种比对也可以用于古董、艺术品等固定财产的鉴别,即先获取古董、艺术品多个区域的3d信息作为标准数据,在需要鉴定时,再次获取多个区域的3d信息,并与标准数据进行比对,鉴别真伪。以上实施例获得的目标物多个区域的3d信息可以用于为该目标物设计、生产、制造配套物。例如,获得人体头部3d数据,可以为人体设计、制造更为合适的帽子;获得人体头部数据和眼睛3d数据,可以为人体设计、制造合适的眼镜。以上实施例获得的目标物的3d信息可以用于对该目标物的几何尺寸、外形轮廓进行测量。在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(dsp)来实现根据本发明实施例的基于可见光相机的生物特征四维数据采集装置中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1