本发明涉及手术器械技术领域,尤其是涉及一种喷气剥离系统中控制气体供给装置的气体流速调节装置及喷气剥离系统。
背景技术:
腹腔镜手术就是利用腹腔镜及其相关器械进行的手术。为使腹腔镜手术拥有足够空间操作,需持续灌注腹腔予二氧化碳气体建立人工气腹,人工气腹是腹腔镜手术必要的条件。
然而,现有的设备只能将气体灌注到腹腔中,而在腹腔镜手术操作中,在对深部腹腔脏器、组织脏器的侧面或背面进行解剖时,或者有炎症的脏器与周围组织之间存在紧密粘连需要分离时,或者解剖的脏器被重要的血管和神经等组织包绕时,现有的腹腔镜常规器械在进行解剖操作时往往较为困难,而单纯的对组织电切可能会造成意外出血,电灼伤或者对重要的脏器造成副损伤。在先技术没有针对深部腹腔脏器、组织脏器的侧面或背面的喷气分离设备,及针对喷气分离设备的喷气控制系统。
因此,针对上述问题本发明急需提供一种喷气剥离系统中控制气体供给装置的气体流速调节装置及喷气剥离系统。
技术实现要素:
本发明的目的在于提供一种喷气剥离系统中控制气体供给装置的气体流速调节装置及喷气剥离系统,通过气体流速调节装置和喷气剥离控制系统的设计以解决现有中存在的没有针对深部腹腔脏器、组织的侧面或背面、有炎症的脏器与周围组织之间存在紧密粘连时,无法有效的实现喷气分离,从而无法精确实现手术治疗的技术问题。
本发明提供一种喷气剥离系统中的控制气体供给装置的气体流速调节装置,包括依次连接且贯通的喷气剥离电切头、金属输气管,以及手柄;手柄一端通过气管与气体供给装置连通;
气管上连通有气动控制阀,用于控制气体供给装置向手柄输送一定流速的气体;
气管上还连通有气体流速传感器,用于对输送气体的流速进行实时监测,并将采集的气体流速值发送给控制器;
控制器,用于接收气体流速传感器采集的气体流速值,并将采集的气体流速值与预设气体流速阈值对比,并编辑成电信号发送给气动控制阀,以控制气体在气管内的流动速度;当采集的气体流速值超过或低于预设气体流速阈值时,控制器将采集的气体流速值转换为电信号并发送电信号气动控制阀,气动控制阀根据接收的电信号将气体流速调节到预设的气体流速阈值。
优选地,还包括手动输入气体流速采集模块,用于采集气体输出流速值,并将采集气体输出流速值发送给控制器;控制器,用于接收手动输入气体流速采集模块发送的气体输出流速值,并编辑成电信号发送给气动控制阀,气动控制阀根据接收的电信号控制气体供给装置输出的气体流速值与手动输入气体流速采集模块采集的气体输出流速值一致。
优选地,还包括显示模块;手动输入气体流速采集模块、气体流速传感器、显示模块均与控制器电连接,显示模块用于显示手动输入气体流速采集模块采集的气体流速值,显示气体流速传感器实时采集的气体流速值。
优选地,喷气剥离电切头包括金属管体;金属管体一端封闭,另一端设有与气体流道连通的进气端口,金属管体封闭处或/和紧靠金属管体封闭处的金属管体的外侧壁上开设有与气体流道连通的出气端口;气体流道的内直径由进气端口向出气端口逐渐减小。
优选地,金属管体从下到上依次包括连接段,与连接段顶部连接的过渡段,与过渡段顶部连接的弯折段,过渡段和弯折段间的夹角为90°-180°;其中,连接段的纵向剖面为梯形或方形;出气端口设于弯折段上;连接段和过渡段外壁均涂有绝缘涂层。
优选地,进气端口的内直径为1.5mm-15mm;出气端口的内直径为0.1mm-10mm;金属管体的高度为5mm-50mm。
优选地,过渡段的侧壁上设有与气体流道连通的过渡段喷气口;过渡段喷气口与出气端口同侧设置;过渡段喷气口的内直径为0.1-10mm。
本发明还包括一种喷气剥离系统,包括如上述中任一项所述的喷气剥离系统中的控制气体供给装置的气体流速调节装置;金属输气管的外侧壁上设有导电柱,导电柱通过电线与高频电切电凝装置电连接。
优选地,金属输气管与手柄可拆卸连接;输气金属管与喷气剥离电切头可拆卸连接或一体成型;手柄与气管可拆卸连接或热熔连接。
优选地,手柄上设有与气体供给装置连通的输气入口和与金属输气管连通的输气出口,手柄内部设有与输气入口和输气出口均连通的输气流道,手柄的输气入口与气管连通。
本发明提供的一种喷气剥离系统中控制气体供给装置的气体流速调节装置及喷气剥离系统与现有技术相比具有以下进步:
1、本发明通过包括依次连接且贯通的喷气剥离电切头、金属输气管,以及手柄;手柄一端通过气管与气体供给装置连通;气管上连通有气动控制阀,用于控制气体供给装置向手柄输送一定流速的气体;气管上还连通有气体流速传感器,用于对输送气体的流速进行实时监测,并将采集的气体流速值发送给控制器;控制器,用于接收气体流速传感器采集的气体流速值,并将采集的气体流速值与预设气体流速阈值对比,并编辑成电信号发送给气动控制阀,以控制气体在气管内的流动速度;当采集的气体流速值超过或低于预设气体流速阈值时,控制器将采集的气体流速值转换为电信号并发送电信号气动控制阀,气动控制阀根据接收的电信号将气体流速调节到预设的气体流速阈值的设计,开启气体供给装置,气体从气管输入到手柄,通过手柄进入到金属输气管,再从金属输气管一端的喷气剥离电切头喷出,气管内的气体流速传感器实时监测气管的流速,保证进入手柄内气体的流速,进而根据金属输气管和喷气剥离电切头的内直径尺寸推算出气体的喷出速度,保证气体喷出的动能,有助于对腹腔深部以及彼此粘连紧密组织脏器的分离,吹开腹腔内潜在间隙,方便操作者进行高效、精准和安全的解剖操作,与现有腹腔镜手术器械相比,具有解剖剥离更精准,操作性更便捷和安全性更高的优点;气体流速传感器可以实时监控气体的流速,保证气体的稳定输送,保证气体喷出的动能。
2、本发明通过包括手动输入气体流速采集模块,用于采集气体输出流速值,并将采集气体输出流速值发送给控制器;控制器,用于接收手动输入气体流速采集模块发送的气体输出流速值,并编辑成电信号发送给气动控制阀,气动控制阀根据接收的电信号控制气体供给装置输出的气体流速值与手动输入气体流速采集模块采集的气体输出流速值一致的设计,方便手术操作者手动输入气体流速值,可以根据实际的情况,手动输入气体流速值,达到想要的气体喷出速度,保证气体喷出的动能,使得需要治疗的脏器产生间隙,方便手术切割操作,避免其他组织的损伤,该设计方便操作,提高手术效率。
3、本发明通过包括显示模块;手动输入气体流速采集模块、气体流速传感器、显示模块均与控制器电连接,显示模块用于显示手动输入气体流速采集模块采集的气体流速值,显示气体流速传感器实时采集的气体流速值的设计,方便手术操作人员直接观察气体流速,清楚了解气体喷出的速度,保证喷出时的动能,使得需要治疗的脏器产生间隙,方便手术切割操作,避免其他组织的损伤,该设计方便操作,提高手术效率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例一中所述气体流速调节装置的电路关系图;
图2为实施例一中所述气体流速调节装置的结构示意图(主视侧视图);
图3为实施例一中所述手柄的示意图(主视剖视图);
图4为实施例一中所述喷气剥离电切头的结构示意图(主侧视图);
图5为实施例一中所述喷气剥离电切头的结构示意图(主侧剖视图);
图6为实施例一中所述喷气剥离电切头的结构示意图(主侧剖视图);
图7为实施例一中所述喷气剥离电切头的结构示意图(主侧剖视图);
图8为实施例一中所述喷气剥离电切头的结构示意图(仰视图);
图9为实施例二中所述喷气剥离电切头的结构示意图(主视剖视图);
图10为实施例二中所述喷气剥离电切头的结构示意图(主视剖视图);
图11为实施例三中所述喷气剥离电切头的结构示意图(主侧视图);
图12为实施例四中的所述用于腹腔镜手术的喷气剥离电切装置的结构示意图(主视侧视图);
图13为实施例四中所述手柄的结构示意图(主侧剖视图);
图14为实施例五中的喷气剥离电切头的结构示意图(主视剖视图)。
附图标记说明:
1、金属管体;4、气体流道;2、进气端口;3、出气端口;101、连接段;102、过渡段;103、弯折段;6、过渡段喷气口;7、金属输气管;8、手柄;9、导电柱;10、导电柱绝缘套;81、输气入口;82、输气流道;83、输气出口。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
如图1、图2所示,本实施例提供了一种喷气剥离系统中的控制气体供给装置的气体流速调节装置,包括依次连接且贯通的喷气剥离电切头、金属输气管7,以及手柄8;手柄8一端通过气管11与气体供给装置连通;气管11上连通有气动控制阀,用于控制气体供给装置向手柄8输送一定流速的气体;气管11上还连通有气体流速传感器,用于对输送气体的流速进行实时监测,并将采集的气体流速值发送给控制器;控制器,用于接收气体流速传感器采集的气体流速值,并将采集的气体流速值与预设气体流速阈值对比,并编辑成电信号发送给气动控制阀,以控制气体在气管11内的流动速度;当采集的气体流速值超过或低于预设气体流速阈值时,控制器将采集的气体流速值转换为电信号并发送电信号气动控制阀,气动控制阀根据接收的电信号将气体流速调节到预设的气体流速阈值。
本发明通过包括依次连接且贯通的喷气剥离电切头、金属输气管7,以及手柄8;手柄8一端通过气管11与气体供给装置连通;气管11上连通有气动控制阀,用于控制气体供给装置向手柄8输送一定流速的气体;气管11上还连通有气体流速传感器,用于对输送气体的流速进行实时监测,并将采集的气体流速值发送给控制器;控制器,用于接收气体流速传感器采集的气体流速值,并将采集的气体流速值与预设气体流速阈值对比,并编辑成电信号发送给气动控制阀,以控制气体在气管11内的流动速度;当采集的气体流速值超过或低于预设气体流速阈值时,控制器将采集的气体流速值转换为电信号并发送电信号气动控制阀,气动控制阀根据接收的电信号将气体流速调节到预设的气体流速阈值的设计,开启气体供给装置,气体从气管11输入到手柄8,通过手柄8进入到金属输气管7,再从金属输气管7一端的喷气剥离电切头喷出,气管11内的气体流速传感器实时监测气管11的流速,保证进入手柄8内气体的流速,进而根据金属输气管7和喷气剥离电切头的内直径尺寸推算出气体的喷出速度,保证气体喷出的动能,有助于对腹腔深部以及彼此粘连紧密组织脏器的分离,吹开腹腔内潜在间隙,方便操作者进行高效、精准和安全的解剖操作,与现有腹腔镜手术器械相比,具有解剖剥离更精准,操作性更便捷和安全性更高的优点;气体流速传感器可以实时监控气体的流速,保证气体的稳定输送,保证气体喷出的动能。
如图1所示,本实施例还包括手动输入气体流速采集模块,用于采集气体输出流速值,并将采集气体输出流速值发送给控制器;控制器,用于接收手动输入气体流速采集模块发送的气体输出流速值,并编辑成电信号发送给气动控制阀,气动控制阀根据接收的电信号控制气体供给装置输出的气体流速值与手动输入气体流速采集模块采集的气体输出流速值一致。
本发明通过包括手动输入气体流速采集模块,用于采集气体输出流速值,并将采集气体输出流速值发送给控制器;控制器,用于接收手动输入气体流速采集模块发送的气体输出流速值,并编辑成电信号发送给气动控制阀,气动控制阀根据接收的电信号控制气体供给装置输出的气体流速值与手动输入气体流速采集模块采集的气体输出流速值一致的设计,方便手术操作者手动输入气体流速值,可以根据实际的情况,手动输入气体流速值,达到想要的气体喷出速度,保证气体喷出的动能,使得需要治疗的脏器产生间隙,方便手术切割操作,避免其他组织的损伤,该设计方便操作,提高手术效率。
如图1所示,还包括显示模块,手动输入气体流速采集模块、气体流速传感器、显示模块均与控制器电连接,显示模块用于显示手动输入气体流速采集模块采集的气体流速值,显示气体流速传感器实时采集的气体流速值。
本发明通过包括显示模块,手动输入气体流速采集模块、气体流速传感器、显示模块均与控制器电连接,显示模块用于显示手动输入气体流速采集模块采集的气体流速值,显示气体流速传感器实时采集的气体流速值的设计,方便手术操作人员直接观察气体流速,清楚了解气体喷出的速度,保证喷出时的动能,使得需要治疗的脏器产生间隙,方便手术切割操作,避免其他组织的损伤,该设计方便操作,提高手术效率。
如图2所示,本实施例还包括一种喷气剥离系统,包括如上述中任一项所述的喷气剥离系统中的控制气体供给装置的气体流速调节装置;金属输气管7的外侧壁上设有导电柱9,导电柱9通过电线与高频电切电凝装置电连接。
本发明通过金属输气管7的外侧壁上设有导电柱9,导电柱9通过电线与高频电切电凝装置电连接的设计,导电柱9依次将高频电输送到金属输气管7和喷气剥离电切头,使得喷气剥离电切头具有电切电凝功能,在对脏器吹出一定间隙后,通过喷气剥离电切头直接电切需要治疗的脏器,方便手术切割操作,提高手术安全系数。
本发明的金属输气管7与手柄8可拆卸连接,方便连接和拆卸;输气金属管7与喷气剥离电切头可拆卸连接或一体成型,本实施例选用一体成型方式制备,连接效果好;手柄8与气管11可拆卸连接或热熔连接,本实施例选用手柄8与气管11热熔连接,保证气密性,同时方便制备;喷气剥离电切头、金属输气管7和手柄8三个结构结合,方便操作者手持操作,金属输气管7和手柄8可拆卸连接,方便安装和拆卸清洗,同时金属输气管7可以选择多种长度,方便操作者根据治疗的患者,选用相应的尺寸的金属输气管7,提高手术效率,保证手术安全;手柄8可以选用金属,方便消毒,也可以选用塑料,质量轻,可以制备一次性手柄,保证手柄8的清洁性,手柄8可以根据手持方式,设计多种造型,可以设置成圆柱形,方形等,提高操作者的手持舒适度,缓解操作者手术过程中的疲劳。
如图3所示,本实施例手柄8上设有与气体供给装置连通的输气入口81和与金属输气管7连通的输气出口83,手柄8内部设有与输气入口81和输气出口83均连通的输气流道82,手柄8的输气入口81与气管11连通。
本发明通过手柄8上设有与气体供给装置连通的输气入口81和与金属输气管7连通的输气出口83,手柄8内部设有与输气入口81和输气出口83均连通的输气流道82,手柄8的输气入口81与气管11连通的设计,实现气体在手柄8内的流通,保证气体的输送效果。
如图4、图5所示,本实施例喷气剥离电切头包括金属管体1;金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小。
本发明通过喷气剥离电切头包括金属管体1;金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小的设计,目的提升气体的流速,让气体从气体流道4通过后,出气端口3喷出时,使得气体流速成倍增加,从而增加气体喷出的动能,通过金属管体1结构的设计,可以将气体流道4内气体的流速呈倍提升,从而喷出一定动能的气体有助于对腹腔深部以及彼此粘连紧密组织脏器的分离,吹开腹腔内潜在间隙,方便操作者进行高效、精准和安全的解剖操作,与现有腹腔镜手术器械相比,具有解剖剥离更精准,操作性更便捷和安全性更高的优点。
本发明优选的方案是出气端口3设于紧靠金属管体1封闭处的金属管体1的外侧壁上。
如图5所示,本实施例金属管体1从下到上依次包括连接段101,与连接段101顶部连接的过渡段102,与过渡段102顶部连接的弯折段103,过渡段102和弯折段103间的夹角a为90°-180°,本实施例优选的夹角a为90°;其中,连接段101的纵向剖面为梯形或方形;出气端口3设于弯折段103上;连接段101和过渡段102外壁均涂有绝缘涂层。
本发明通过金属管体1从下到上依次包括连接段101,与连接段101顶部连接的过渡段102,与过渡段102顶部连接的弯折段103,过渡段102和弯折段103间的夹角a为90°-180°,本实施例优选的夹角a为90°;其中,连接段101的纵向剖面为梯形或方形;出气端口3设于弯折段103上;连接段101和过渡段102外壁均涂有绝缘涂层的设计,将金属管体1划分为三段解结构,可以根据实际情况任选夹角a的角度,达到方便操作的目的,同时,方便绝缘图层的设置,在保护金属管体1的同时,起到绝缘电的作用,避免在电切过程中,损伤不需要治疗的脏器,提高手术的安全系数;连接段101的纵向剖面为梯形,使得气体流速气体流道4持续提高,保证气流的输送速度,有助于对腹腔深部以及彼此粘连紧密组织脏器的分离,吹开腹腔内潜在间隙,方便操作者进行高效、精准和安全的解剖操作。
本发明进气端口2的内直径为1.5mm-15mm;出气端口3的内直径为0.1mm-10mm;金属管体1的高度为5mm-50mm;根据腹腔镜手术穿刺筒的内径,进行进气端口2、出气端口3的内直径为选择尺寸,在尺寸的选择上,要保证出气端口3小于进气端口2。
如图6所示,本发明过渡段103的侧壁上设有与气体流道4连通的过渡段喷气口6;过渡段喷气口6与出气端口3同侧设置;过渡段喷气口6的内直径为0.1-10mm。
本发明通过过渡段103的侧壁上设有与气体流道4连通的过渡段喷气口6;过渡段喷气口6与出气端口3同侧设置;过渡段喷气口6的内直径为0.1-10mm的设计,增加出气口,可以针对需要治疗的位置进行选择,保证需要治疗的位置产生间隙,保证手术的安全性。
喷气剥离系统工作过程:
将导电柱通过电线与高频电切电凝装置电连接,将手柄8与气管连通,气管依次与气体流速传感器、气动控制阀和气体供给装置连接;开启气体供给装置,气体从气管11输入到手柄8,通过手柄8进入到金属输气管7,再从金属输气管7一端的喷气剥离电切头喷出,气管11内的气体流速传感器实时监测气管11的流速,保证进入手柄8内气体的流速,进而根据金属输气管7和喷气剥离电切头的内直径尺寸推算出气体的喷出速度,通过手动输入气体流速采集模块输入需要的气体流速,控制器将接收的数值转换成电信号发送给气动控制阀,使得气管11内的气体流速与手动输入气体流速采集模块采集的数值一致,保证操作者需要的气流速度。
气动控制阀选用费斯托(中国)有限公司生产的流量控制阀;
气体流量传感器选用基恩士(中国)有限公司生产的夹钳式流量传感器;
控制器选用西门子的可编程控制器(plc);
显示模块选用小米显示屏;
手动输入气体流速采集模块选用凯锐测控公司生产的22通道数据采集多功能模块;
无线发射模块选用深圳市思为无线科技有限公司生产的抗干扰无线数传模块;
远程终端为平板电脑、手机、计算机等;
气动控制阀、气体流量传感器、控制器、显示模块、手动输入气体流速采集模块、无线发射模块及远程终端均为现有技术,附图中未画出,也可以选用其它厂家生产的其它型号,本发明旨在保护上述电器件整体电连接后的方案,上述电器件仅仅是完成信号传递的过程,而对信号本身不做软件上的处理。
如图7、图8所示,本实施例中的金属管体1内部设有金属管体5,金属管体5的外壁与金属管体1的内壁焊接于一体,金属管体5两端分别设有入口51和出口52,进口51与进气端口2连通,出口52与出气端口3连通,入口51的直径大于出口52的直径,出口52的直径大于出气端口3的直径。
本发明通过金属管体1内部设有金属管体5,金属管体5的外壁与金属管体1的内壁焊接于一体,金属管体5两端分别设有入口51和出口52,进口51与进气端口2连通,出口52与出气端口3连通,入口51的直径大于出口52的直径,出口52的直径大于出气端口3的直径的设计,在金属管体1通过外加金属管体5进一步改变金属管体1内部气体流道4直径,提高气体的流速,满足需要喷出的动能,保证对腹腔深部以及彼此粘连紧密组织脏器的分离,吹开腹腔内潜在间隙,方便操作者进行高效、精准和安全的解剖操作。
本发明还包括无线发射模块和远程终端,无线发射模块控制器电连接,无线发射模块与远程终端电连接;可以将气体流速情况反映给无法进入手术室的工程师,他们可以在线实时监测流速,以保证设备的正常运行,当出现问题,可以给手术操作者提供调修的意见或者建议,保证手术的顺利进行。
本发明气管11上间隔均等布设有多个气体流速传感器,相邻两个气体流速传感器间距离大于1m。
实施例二
如图9所示,本实施例与实施例一区别仅仅在于出气端口3的开设位置,实施例一中公开的技术内容不重复描述,实施例一公开的内容也属于本实施例公开的内容。
如图7所示,本实施例提供了一种喷气剥离电切头,包括内设气体流道4的金属管体1,金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小或阶梯式减小;本实施具体的方案为金属管体1封闭处开设有一个出气端口3。
本发明通过金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小或阶梯式减小;本实施具体的方案为金属管体1封闭处开设有一个出气端口3的设计,区别于实施例一,本方案在封闭处开始出气端口3,可以针对某一局部特殊位置的脏器进行喷气,分离出脏器间存在的间隙,方便操作,提高手术安全系数。
如图10所示,本实施例过渡段103的侧壁上设有与气体流道4连通的过渡段喷气口6;过渡段喷气口6与出气端口3同侧设置;过渡段喷气口6的内直径为0.1-10mm。
本发明通过进一步的在过渡段103的侧壁上设有与气体流道4连通的过渡段喷气口6;过渡段喷气口6与出气端口3同侧设置;过渡段喷气口6的内直径为0.1-10mm的设计,目的是多角度的喷射,同样,可以针对某一局部特殊位置的脏器进行喷气,分离出脏器间存在的间隙,方便操作,提高手术安全系数。
实施例三
如图11所示,本发明中所述金属管体1是在实施例一基础上的改进,实施例一中公开的技术内容不重复描述,实施例一公开的内容也属于本实施例公开的内容。
本实施例连接段101的纵向剖面为方形。
本发明通过连接段101的纵向剖面为方形的设计,保证金属管体1的进气量,保证对脏器的有效分离,同时连接段101的纵向剖面为长方形的设计,方便加工,101的纵向剖面可以为长方形或者正方形。
实施例四
本实施例与实施例一区别仅仅在于输气入口81的设置位置,实施例一中公开的技术内容不重复描述,实施例一公开的内容也属于本实施例公开的内容。
如图12、图13所示,输气入口81与导电柱9分设于输气金属管7两侧。
本发明通过输气入口81与导电柱9分设于输气金属管7两侧的设计,方便操作者观察连接情况,避免气管或者电线分别输气入口81与导电柱9脱落,影响手术进程。
实施例五
本实施例与实施例一区别仅仅在于出气端口3的开设位置,实施例一中公开的技术内容不重复描述,实施例一公开的内容也属于本实施例公开的内容。
如图14所示,本实施例提供了一种喷气剥离电切头,包括内设气体流道4的金属管体1,金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小或阶梯式减小;本实施具体的方案为金属管体1封闭处和紧靠金属管体1封闭处的金属管体1的外侧壁上均开设有与气体流道4连通的出气端口3。
本发明通过金属管体1一端封闭,另一端设有与气体流道4连通的进气端口2,金属管体1封闭处或/和紧靠金属管体1封闭处的金属管体1的外侧壁上开设有与气体流道4连通的出气端口3;气体流道4的内直径由进气端口2向出气端口3逐渐减小或阶梯式减小;本实施具体的方案为金属管体1封闭处和紧靠金属管体1封闭处的金属管体1的外侧壁上均开设有与气体流道4连通的出气端口3的设计,目的是实现可以针对某一局部特殊位置的脏器进行喷气,分离出脏器间存在的间隙,方便操作,提高手术安全系数。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。