核酸纳米铁补铁剂及其制备方法与流程

文档序号:20699281发布日期:2020-05-12 15:26阅读:478来源:国知局
核酸纳米铁补铁剂及其制备方法与流程
本发明涉及一种核酸纳米铁补铁剂,特别是涉及一种鱼精dna介导的铁氧化物纳米微粒的制备方法及其用途。
背景技术
:铁是人体需求量最高的微量元素,参与了氧气运送、能量代谢和脱氧核糖核酸合成等多种重要的生理代谢活动,当其在体内的储备耗竭而不能充分供应各组织需要时,人体便处于铁缺乏状态。铁缺乏会对胎儿和儿童的生长及认知发育造成不可逆转的负面影响,还能引起机体免疫功能的下降和重大感染性疾病发生几率的升高。食物铁强化和服用铁补充剂是目前应对铁缺乏的主导策略,主要有二价铁与三价铁。二价铁(如硫酸亚铁)溶解性好,但是易与食品基质反应,造成食品感官品质的降低,且会对肠道产生较大的刺激。而三价铁则易发生沉淀,造成其生物利用度低。然而,自然界中许多阴离子聚合物具有阻止铁沉淀的能力。如膳食动物蛋白肽、磷脂和硫酸多糖,介导了三价铁在消化道内的水解,形成了一种具有较高生物可利用性的铁氧化物纳米微粒,具体的吸收方式包括二价金属离子转运蛋白(dmt-1)和细胞内吞作用,从而促进了三价铁的吸收。核酸结构中含有磷酸基团,且具有骨架结构,因此,也具有介导形成氢氧化铁纳米微粒的潜力。核酸类物质包括生物大分子核酸、核苷酸及其衍生物等小分子物质。动物和植物细胞中的核酸类物质含量差异很大,如肉类,海鲜和酵母中含量较丰富(100-1000mg/100g湿重),谷物中的含量为170-300mg/100g干重。在鲑鱼的鱼白中,dna含量高时可占干重的40%以上。人乳中dna含量1-12mg/dl。摄入核酸类物质,对于细胞的生长、发育以及维持新陈代谢平衡有着重要作用。据报道,从食物中摄入后,消化道类核苷酸中的核酸代谢物是有益的,特别是对婴儿,因为其对免疫系统或肠道菌群有积极的影响,在脂质代谢,组织的生长、发育和修复方面也有一定效果。现有文献中未发现有关核酸对三价铁溶解度和生物利用率影响的报道。技术实现要素:本发明的目的是提供一种新型的核酸纳米铁补铁剂的制备方法。本发明所要解决的技术问题是:制备一种核酸纳米铁补铁剂,成分为鱼精dna包覆的铁氧化物纳米颗粒。实现本发明目的采取的技术方案如下:鱼精dna经过加热预处理后,加入铁盐后调节ph至近中性,再经过滤膜过滤后,得到的粒径小于200nm的鱼精dna包覆的铁氧化物纳米颗粒。核酸纳米铁补铁剂的制备方法,包括下列步骤:(1)将鱼精dna溶解在水中,在0-4℃的条件下连续搅拌至完全溶解,在70-130℃加热0-8h,冷却至室温。(2)核酸纳米铁的合成过程如下:将三价铁盐固体或者三价铁水溶液缓慢加入步骤(1)制备的鱼精dna溶液,边加边搅拌,铁与鱼精dna的质量比不超过0.7;待三价铁盐固体全部溶解或溶液全部滴加完毕,将反应体系的ph调整至3.0-8.0;用孔径为0.1-0.8μm滤膜过滤获得滤液,制得核酸纳米铁混悬液。优选的,本发明步骤(1)鱼精dna溶液加热条件是100℃保持2h。鱼精dna经过加热预处理后,其铁负载能力能够得到极大的提升,但100℃保持2h后,再延长加热时间对负载能力无显著提升了。进一步的,本发明步骤(2)反应体系的ph不超过8.0。ph值越高,反应体系氢氧根离子浓度越大,当超过8.0后,氢氧根离子对核酸的铁负载能力影响过大。进一步的,铁与鱼精dna的质量比不超过0.7。鱼精dna介导形成的铁氢氧化物纳米微粒可以通过fe-o-fe键在310nm处的特征吸收来相对定量。溶液中三价铁离子的浓度超过鱼精dna的负载能力时,未结合的三价铁的水解会导致铁氢氧化物沉淀的产生,同时会吸附一部分已经形成纳米微粒的铁氢氧化物与之共沉,从而使得溶液中铁氢氧化物纳米微粒的量不但没有升高,反而下降了。通过观察310nm处吸光度随着铁浓度增加先上升后下降的变化过程,便可以确定铁负载能力。优选的,滤膜的孔径最佳为0.45μm。本发明优选的核酸是鱼精dna。本发明的有益效果:本发明利用鱼精dna和三价铁盐制备了一种核酸纳米铁补铁剂,可稳定存在于胃肠道环境中,无细胞毒性,在体外肠道上皮细胞和缺铁性贫血动物模型中具有与硫酸亚铁相当的生物利用度。本发明的核酸纳米铁补铁剂相比亚铁类补铁剂而言,对消化道的刺激性较小,且不易造成食品基质发生脂质氧化和蛋白沉淀等不利反应,而生物可利用性不弱于亚铁类补铁剂,故是一种较为理想的补铁剂,可在营养强化、营养补充或临床治疗中应用。附图说明下面结合附图对本发明的具体实施方式和有益效果作进一步详细的说明。图1核酸纳米铁制备过程的表征。(a)鲑鱼精dna的电泳图;(b)紫外全波长扫描;(c)动态光散射粒径分布;(d)透射电镜图;(e)edx能谱表征;(f)傅立叶变换红外光谱。图2鲑鱼精dna热降解对其铁负载能力的影响。(a)铁负载能力的测定;(b)热降解过程中dna的电泳图;(c)热降解过程中鱼精dna铁负载能力的变化;(d)热降解时间对核酸纳米铁粒径的影响。图3热降解dna对核酸纳米铁在体外caco-2细胞模型中铁吸收动力学的影响。采用了caco-2单层分化细胞,细胞外液ph值为5.5,细胞铁的摄入会让钙黄绿素荧光发生猝灭,利用钙黄绿素荧光的变化相对定量细胞的铁摄入。图4核酸纳米铁在缺铁性贫血大鼠中的铁生物利用度。(a)血红蛋白再生效率;(b)血清转铁蛋白饱和度。不同字母组差异有统计学意义(p<0.05)。具体实施方式实施例1本实施例提供一种基于鲑鱼精dna制备的核酸纳米铁及其制备过程。具体技术方案步骤如下:(1)将鲑鱼精dna溶解在水中,配成0.45mg/ml浓度,在4℃的条件下连续搅拌至完全溶解,沸水浴加热2h,冷却至室温。(2)将氯化铁配置成2mm溶液,缓慢加入步骤(1)制备的鲑鱼精dna溶液中,边加边搅拌,终体积比为1:1;逐滴加入1m氢氧化钠将反应溶液的ph调至7.0,然后用孔径为0.45μm滤膜过滤获得滤液,制得核酸纳米铁混悬液。实施例2实施例1制备的核酸纳米铁补铁剂的实验结果本实施例的相关实验是以实施例1中鲑鱼精dna制备的核酸纳米铁补铁剂为基础进行的。具体为:(一)核酸纳米铁制备过程的表征,具体实验过程和实验结论如下:图1中,(a)是鲑鱼精dna的电泳图;(b)是紫外全波长扫描;(c)是动态光散射(dls)粒径分布;(d)是透射电镜图(tem);(e)是edx能谱表征;(f)是傅立叶变换红外光谱。通过琼脂糖凝胶电泳对鲑鱼精dna的分子量进行了表征,为大于5kb的片段(图1a)。紫外全波长扫描的显示铁氢氧化物的特征广泛吸收带在250-500nm(图1b),但经过0.45μm滤膜过滤后滤液中的吸收带消失,表明铁氢氧化物完全沉淀。图1b中由于嘌呤和嘧啶的共轭双键作用,dna对240-290nm波长的紫外有很强的吸收能力,而最大吸收峰为260nm。当滴加氯化铁后,可以观察到dna和铁氢氧化物的叠加的紫外吸收带在500-240nm,0.45μm过滤后吸收强度没有显著变化。由此看来,dna介导氯化铁形成了稳定的较小尺寸氢氧化铁胶体。dls的分析使用激光粒度分析仪(malvernnanozs),633nmhe-ne激光器,在25±0.1℃下,恒定散射角为173°。dls测定滤膜过滤后滤液中具有散射光信号,也证明了较小的氢氧化铁胶体形成。在鲑鱼精dna存在的条件下氢氧化铁胶体平均水力学粒径为175.1±1.6nm(图1c)。核酸纳米铁透射电镜(tem)观测(图1d),样品溶液滴加到到碳涂层的铜网上,风干,然后使用jem-2100plus设备在200kv下进行检测,并在fei-tecnaig2tf20上进行了能量色散x射线光谱(edx)分析。tem在图1d中发现了不规则形状的粒子聚集。然后这些粒子的edx分析显示三个特征峰线约0.72,6.40和7.06kev分别对应于铁的lα、kα和kβ谱线(图1e)。因此,tem图像中的粒子是含铁的。根据这些发现,可以得出结论,鲑鱼精dna可以介导铁氧化物纳米颗粒的形成。将核酸纳米铁和dna进行真空冷冻干燥,制备固体样品。使用kbr压片在nicoletis10ftir红外光谱仪(thermoscientific,woburn,ma,usa)上扫描ft-ir光谱。fe与dna主链磷酸基的相互作用可以通过在1210cm-1处磷酸带强度的增加以及在1214cm-1处振动向更高频率的移动来证明。另外dna骨架po2基团的非对称(vas)和对称(vs)振动的相对强度发生改变。vspo2(1045cm-1)和vaspo2(1215cm-1)发生变化,vs/vas比值从1.01上升到0.887。因此,根据ft-ir光谱,可以确定,在dna中磷酸基团可以作为铁的成核位点,其骨架提供了空间位阻来稳定铁氧化物(图1f)。(二)鲑鱼精dna热降解对其铁负载能力的影响,具体实验过程和实验结论如下:结果如图2。(a)铁负载能力的测定;(b)热降解过程中dna的电泳图;(c)热降解过程中鱼精dna铁负载能力的变化;(d)热降解时间对核酸纳米铁粒径的影响。图2a所示为dna的铁负载能力。将新鲜配制的氯化铁溶液(2mm)逐滴加入dna溶液中(终浓度50μg/ml),边加样边涡旋以保证样品和铁溶液混合混匀,将反应体系ph调整为7.0,然后用0.45μm滤膜过滤,取滤液。鱼精dna介导形成的铁氢氧化物纳米微粒可以通过fe-o-fe键在310nm处的特征吸收来相对定量。溶液中三价铁离子的浓度超过鱼精dna的负载能力时,未结合的三价铁的水解会导致铁氢氧化物沉淀的产生,同时会吸附一部分已经形成纳米微粒的铁氢氧化物与之共沉,从而使得溶液中铁氢氧化物纳米微粒的量不但没有升高,反而下降了。通过观察这种变化过程,便可以确定铁负载能力。如图2a所示,1gdna计算的最大铁负载约为280mgfe,其铁负载能力较高。采用了热降解的方式来将dna降解成小片段。将dna溶液在100℃的温度下进行10、30、60和120min的热处理,然后逐渐冷却到室温。如图2b所示,dna分子量随加热时间的延长而降低。热处理使得dna的铁负载能力从280mgfe/gdna增加到728mgfe/gdna(图2c)。形成的核酸纳米铁的粒径也呈现出降低的趋势(图2d)。(三)核酸纳米铁在体外caco-2细胞模型中的铁吸收动力学,具体实验过程和实验结论如下:具体见图3,采用了caco-2单层分化细胞,细胞外液ph值为5.5,细胞铁的摄入会让钙黄绿素荧光发生猝灭,利用钙黄绿素荧光的变化相对定量细胞的铁摄入。人结肠腺癌细胞caco-2细胞株,购自中国科学院典型培养物保藏委员会细胞库;caco-2细胞日常培养于高糖dmem完全培养液(含10%胎牛血清、25mmhepes、4mm谷氨酰胺和1mm丙酮酸钠),在37℃、5%二氧化碳和恒定湿度的培养箱中培养,每隔2-3d传代一次。将caco-2细胞用高糖dmem完全培养液稀释至一定浓度,以5×104个/cm2的密度接种于胶原覆盖的24孔板,每隔2d更换一次培养液;从细胞完全融合(接种后2-3d)开始计时,12d后caco-2细胞分化完全,即得体外肠道细胞模型。随后更换无血清mem培养基进行饥饿处理24h。之后加入钙黄绿素在37℃孵育30分钟后,加入970μl含有mes(调节ph值5.5)的tyrod溶液,及包含1mmfe或核酸纳米铁的样品溶液,在synergyh4荧光酶标仪(bio-tek)中37℃孵育30分钟,每3分钟记录一次钙黄绿素荧光(485nm激发,530nm发射)。利用caco-2细胞模型模拟小肠近端ph值5.5的条件。外源铁通常先进入肠道细胞的细胞质中,即先进入细胞弱结合铁池,再用于合成带有铁辅基的功能酶,或者贮存于铁蛋白,或者排出细胞外。因此,利用钙黄绿素是反映细胞弱结合铁池中的铁含量。如图3所示,钙黄绿素荧光变化表明,相比于未经过热处理的dna,热处理后的dna合成的核酸纳米铁的吸收更明显。这可能是由于纳米颗粒的内吞作用是一个依赖于粒径大小的途径,而热处理后合成的核酸纳米铁颗粒的尺寸更小。(四)核酸纳米铁在缺铁性贫血大鼠中的铁生物利用度,具体实验过程和实验结论如下:具体见图4。(a)血红蛋白再生效率;(b)血清转铁蛋白饱和度。不同字母组差异有统计学意义(p<0.05)。21±3天周龄的雄性sprague-dawley大鼠-单笼饲养,动物房温度23±2℃,湿度55±15%,早上6点开灯,12/12h明暗交替,在整个研究期间动物可自由摄食和饮用超纯水。获得中国海洋大学动物实验伦理委员会批准(批准号:spxy20180929)。饲料制备:使用tp0300基础饲料(无外源添加铁),含10mg/kg铁,这部分铁来自于饲料原料;正常饲料含35mg/kg铁,其中25mg/kg铁来自于外源添加的柠檬酸铁;加铁饲料含30mg/kg铁,其中20mg/kg铁来自于外源添加的硫酸亚铁、柠檬酸铁和核酸纳米铁。干状外源铁的添加过程如下:称取一定量的硫酸亚铁、柠檬酸铁、核酸纳米铁与1kg其它饲料组分干粉混合均匀,然后加入200ml超纯水,搅拌后得到湿饲料。上述的湿饲料经颗粒化后,置于40℃烘箱中过夜干燥。血红蛋白再生实验如下:主要分为两个阶段,即耗铁建模阶段和血红蛋白再生阶段。刚断奶的雄性sd大鼠(n=48只;21±3天)分为缺铁组(n=40)和正常对照组(n=8),耗铁建模阶段21天。从每只大鼠尾尖穿刺取20μl血液进行血细胞计数,测得血红蛋白浓度已经低于100g/l,可判定此时已成功建立起了缺铁性贫血模型。低铁组大鼠按照血红蛋白浓度随机分为5组(n=8),其中一组继续饲喂低铁饲料,另外四组分别为阳性对照饮食(硫酸亚铁)、阴性对照饮食(柠檬酸铁)、核酸纳米铁饮食,而正常组继续饲喂正常饲料。大鼠的摄食量是每天手动记录的,计算方法是将前一天上午九点至十点期间足量加入饲料槽的饲料重量减去第二天同一时间段时饲料槽中和笼子底部所剩的饲料重量。大鼠体重在两个实验阶段的开始和结束均称量一次。铁生物利用度计算步骤如下:(1)总血红蛋白(g)=血红蛋白浓度(g/l)×血液容积(l);血液容积(l)=体重(kg)×6.7%;(2)总血红蛋白铁(mg)=总血红蛋白(g)×3.35;(3)总血红蛋白铁增加值(mg)=血红蛋白再生阶段始末总血红蛋白铁(mg)之差;(4)铁摄入量(mg)=摄食量(kg)×饲料铁含量(mg/kg)(5)血红蛋白再生效率(%)=总血红蛋白铁增加值(mg)÷铁摄入量(mg)×100(6)相对生物利用率(%)=实验组的血红蛋白再生效率÷硫酸亚铁组的血红蛋白再生效率×100肠道内容物中铁的化学形态分析,所有组大鼠禁食一夜,第二天喂饲30min后撤掉饲料;再过90min后,将所有大鼠麻醉,取近端三分之一小肠,将其中的内容物用生理盐水冲洗出来;原子吸收光谱法测定肠道内容物及其0.45μm和3kda(≈1nm)滤液中的铁含量。用核酸纳米铁作为补铁剂建立缺铁性贫血大鼠模型,研究其体内铁的生物利用度。血红蛋白再生试验的设计和结果如表1所示。从表1中可以看出,各实验组体重和血红蛋白浓度的变化是独立的,没有相关性,从这些变化无法直接比较各种饲料铁的生物可利用性,有必要通过综合体重变化、摄食量、饲料铁含量和血红蛋白浓度变化计算出血红蛋白再生效率(hre)来得到最终结论。如图4a所示核酸纳米铁组显示血红蛋白再生效率与阳性对照组硫酸亚铁无显著性差异(52.9%±5.5%)(p=0.174),并且显著高于阴性对照柠檬酸铁组(p<0.05)。以硫酸亚铁的血红蛋白再生效率定义为参考(100%),核酸纳米铁组的铁相对生物利用度为86.3%±6.9%(表2)。此外,核酸纳米铁组大鼠转铁蛋白饱和度水平与阳性对照大鼠无显著差异(p=0.441)(图4b)。表1.血红蛋白再生实验的设计和结果数据均以平均值±标准偏差(n=3)来表示。均值的差异性采用lsd进行分析,在没有共同上标字母(a、b和c)的行中表示的p<0.05。为了阐明核酸纳米铁的形式是否涉及体内吸收,我们分析了小肠近三分之一段的管腔内铁的形态(膳食铁吸收的主要部位)。本发明中,核酸纳米铁组的纳米铁含量高于阳性对照组(p>0.05)(表2),说明核酸纳米铁在经过胃肠道消化后仍能保持其纳米形态,但存在一定的损失。表2.肠道内容物中铁的化学形态分布组别铁的形式相对生物利用率(%)d肠道中纳米铁3阴性对照柠檬酸铁65.2±11.2b23.18±5.22b核酸纳米铁核酸纳米铁86.3±6.9a38.36±6.58a阳性对照硫酸亚铁100±10.6a29.58±7.87ab数据均以平均值±标准偏差(n=3)来表示。均值的差异性采用lsd进行分析,在没有共同上标字母(a和b)的列中表示的p<0.05。本发明表明鱼精dna介导了铁氧化物纳米颗粒的形成,该核酸铁纳米微粒可稳定存在于胃肠道环境中,无细胞毒性,在体外肠道上皮细胞和缺铁性贫血动物模型中具有与硫酸亚铁相当的生物利用度,是一种很有前途的新型铁强化剂。当然,上述说明并非是对本发明的限制,本发明也并不限于上述举例,本
技术领域
的普通技术人员,在本发明的实质范围内,作出的变化、改型、添加或替换,都应属于本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1