一种荷载纳米抗菌肽的多聚复合防护膜、制备方法及应用与流程

文档序号:26668252发布日期:2021-09-17 21:33阅读:246来源:国知局
一种荷载纳米抗菌肽的多聚复合防护膜、制备方法及应用与流程

1.本发明涉及功能性多聚高分子复合膜材料技术领域,具体涉及一种荷载纳米抗菌肽的多聚复合防护膜、制备方法及应用。


背景技术:

2.随着生物工程学、组织工程学的不断发展,越来越多的“医工结合”产品进入人类日常生活中,尤其在医疗卫生领域中更是欣欣向荣。例如:生物医用材料、高分子复合组织材料、生物可植入性材料等逐渐被应用于医疗卫生行业中,与此同时,在工程学的开发应用下应运而生的微创介入治疗、有创式诊疗方式也在医疗服务中起到举足轻重的作用,然而这些材料的使用也增加了医疗感染的风险,相对应的交叉感染、职业感染现象也随之而来。因此通过高效切实的防护措施来减少相应的感染风险至关重要。
3.近年来,出现了一种可作为抑杀耐药性细菌的潜在候选物的抗菌肽,该抗菌肽是从微生物中提取得到的,它能够杀死多种微生物(包括细菌、酵母、寄生虫和病毒)。抗菌肽多为一种小分子蛋白质,主要引起微生物细胞膜功能/结构的缺陷或直接抑制部分atp依赖性酶来发挥抗菌作用;另外,抗菌肽还具有促进机体组织愈合及调节体内免疫系统等活性,但天然抗菌肽存在抗菌活性低、稳定性低、溶血性高等缺陷。可使用纳米材料使多肽分子间的某片段与另一片段的非共价键产生相互协同的作用力,从而使肽分子能够在空间尺寸和方向上发生重排及堆积的导向作用进而实现肽分子的自组装。自组装的纳米抗菌肽具有广谱的抗菌活性、不易致细菌耐药、细胞毒性低、降解性可控、运载效率及细胞摄取率高等特性。
4.在中国专利文献cn108135745a中,利用防腐剂(聚维酮碘、氯己定/奥替尼啶)、非水溶剂和溶解于非水溶剂中的多聚成膜材料的组合物制成柔性薄膜,由于聚维酮碘、氯己定/奥替尼啶在一定浓度下具有毒性,因此在制备和应用过程中具有一定局限性。在中国专利文献cn.110527389a中,利用纳米硅溶胶40%、聚丙烯酸酯30%、醇脂十二10%、酪素5%、甲氧苄胺嘧啶10%、十二烷基二甲基苄基氯化铵2%、柠檬酸3%制备的一种抗菌喷膜材料,其中的材料无明显生物可降解性,因此在推广应用上具有一定缺陷。目前在医疗行业中,壳聚糖季铵盐(chitosan quaternary ammonium salt,hacc)及左旋聚乳酸(l

polylactic acid,plla)等多聚高分子化合物因具有良好的生物相容性、生物可降解性应用十分广泛。hacc具有良好的溶解性能、无毒、制备简便、抗菌能力强、成膜性好并且可降解,因此其在抗菌抗病毒防护、环保防污、医疗修复、食品保鲜、农作生产等领域均有相应研究与研发;plla具有可再生性、可降解性、制备简便、透明无毒、热稳定性、以及较好的强度和弹性(类似聚苯乙烯)。因此发明人将纳米抗菌肽、hacc和plla结合制备一种荷载纳米抗菌肽的多聚复合防护膜。


技术实现要素:

5.基于以上问题,本发明提供一种荷载纳米抗菌肽的多聚复合防护膜、制备方法及
应用,本发明的防护功效更高效稳定,制备方式简便,成本低廉、环保安全且稳定,本发明可发挥高效的抗菌、抗病毒性能。
6.为解决以上技术问题,本发明提供了一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
7.s1:制备多聚复合防护膜和自组装纳米抗菌肽
8.a.将质量份数为0.5份~4.1份的hacc和质量份数为0.8份~4.1份的pla倒入质量份数为81.2份~83.3份的纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将25.6份~30.7份hacc/pla多聚混匀液倒入74.4份~69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;
9.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得粒径为30~90nm的纳米微粒;
10.c.将抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将b中的纳米微粒溶于无菌纯水中,制成质量体积浓度为3~5%的凝胶液,然后加入一定量的抗菌肽溶液,制得纳米抗菌肽,使纳米抗菌肽的终浓度为0.2~0.5mg/ml,在37℃、99rpm速度下搅拌混匀后,于50℃条件下固化干燥研磨,即制得30~90nm的自组装纳米抗菌肽;
11.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
12.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加1~5份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
13.b.向a中制得的溶液体系中快速加入0.5~3.0份的步骤s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
14.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
15.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于50~60份非溶剂中,所述非溶剂包括纯水、乙醇和甘油,当混溶液浓度为3~5mg/ml时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件;
16.b.对a中可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入8~10份增塑剂、7~9份成膜助剂、0.1~0.5份防腐剂、3~4份增稠剂、2~3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;其中,增塑剂包括甘油、丙二醇和1,3—丁二醇,成膜助剂包括十二碳醇酯,防腐剂包括edta和苯氧乙醇,增稠剂包括聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮和聚氨酯,乳化剂包括eg乳化剂和g57乳化剂。
17.进一步的,步骤s1a中的添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份。
18.进一步的,步骤s1c中的抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份。
19.为解决以上技术问题,本发明还提供了荷载纳米抗菌肽的hacc/pla多聚复合防护膜。
20.为解决以上技术问题,本发明还提供了荷载纳米抗菌肽的hacc/pla多聚复合防护膜的应用,所述hacc/pla多聚复合防护膜可应用于制备用于治疗皮肤浅表伤口的可撕脱创面敷料中。
21.进一步的,所述hacc/pla多聚复合防护膜可应用于制备日常的消毒喷雾剂中。
22.进一步的,所述hacc/pla多聚复合防护膜可应用于制备用于医疗卫生环境中接触用品的防护膜或用于医疗器械表面的防护涂层中。
23.与现有技术相比,本发明的有益效果是:本发明的防护膜具有高效防护、优异的疏水性、良好的生物相容性、环保可降解等功能;本发明将荷载纳米抗菌肽与hacc/pla多聚复合防护膜结合可大幅度提高现有防护膜的抗菌抗毒效用,本发明的防护膜成为新型防护生物材料的一大突破,其功能多样强大,可适用范围广阔,在各行各业中有着巨大的应用价值和广阔的市场前景;本发明自组装的纳米抗菌肽具有广谱的抗菌活性、不易致细菌耐药、细胞毒性低、降解性可控、运载效率及细胞摄取率高等特性;本发明的hacc与pla的改性结合弥补了彼此单独作为成膜剂的缺陷,改善了膜的热稳定性和可降解性,提高了抗菌杀毒的效能,另外,hacc/pla多聚复合防护膜具有制备便捷、成本低廉、安全环保、高效抗菌、稳定多效等优点。
附图说明
24.图1为本发明的实施例1的hacc/pla多聚复合防护膜的sem图;
25.图2为本发明的实施例1的hacc化学分子结构式;
26.图3为本发明的实施例1的pla化学分子结构式;
27.图4为本发明的实施例1的荷载纳米抗菌肽的hacc/pla多聚复合防护膜sem图;
28.图5为本发明的实施例1的荷载纳米抗菌肽的hacc/pla多聚复合防护膜实体图;
29.图6为本发明的实施例的动物实验结果图。
具体实施方式
30.为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
31.实施例1:
32.本实施例提供一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
33.s1:制备多聚复合防护膜和自组装纳米抗菌肽
34.a.将质量份数为0.5份~4.1份的hacc和质量份数为0.8份~4.1份的pla倒入质量份数为81.2份~83.3份的纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将25.6份~30.7份hacc/pla多聚混匀液倒入74.4份~69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜,如附图1所示;所述添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
35.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得粒径为30~90nm的纳米微粒;
36.c.将抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将b中的纳米微粒溶于无菌纯水中,制成质量体积浓度为3~5%的凝胶液,然后加入一定量的抗菌肽溶液,制得纳米抗菌肽,使纳米抗菌肽的终浓度为0.2~0.5mg/ml,在37℃、99rpm速度下搅拌混匀后,于50℃条件下固化干燥研磨,即制得30~90nm的自组装纳米抗菌肽;所述抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
37.hacc的重均分子量大于30万,且取代度大于90%,其化学分子结构式如附图2所示;聚乳酸(pla)成品的分子量为144.13,特性粘数为0.1~1.5g/dl,分子结构式如附图3所示;
38.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
39.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加1~5份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
40.b.向a中制得的溶液体系中快速加入0.5~3.0份的步骤s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
41.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
42.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于50~60份非溶剂中,所述非溶剂包括纯水、乙醇和甘油,当混溶液浓度为3~5mg/ml时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、3~5mg/ml);
43.b.对a中可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入8~10份增塑剂、7~9份成膜助剂、0.1~0.5份防腐剂、3~4份增稠剂、2~3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;其中,增塑剂包括甘油、丙二醇和1,3—丁二醇,成膜助剂包括十二碳醇酯,防腐剂包括edta和苯氧乙醇,增稠剂包括聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮和聚氨酯,乳化剂包括eg乳化剂和
g57乳化剂。
44.荷载纳米抗菌肽的hacc/pla多聚复合防护膜的表征检测:通过电子扫描显微镜观察荷载纳米抗菌肽的hacc/pla多聚复合防护膜的微观形态,确认纳米抗菌肽与hacc/pla多聚复合防护膜的结合,如附图4和附图5所示。
45.荷载纳米抗菌肽的hacc/pla多聚复合防护膜的抑菌性能检测,铜绿假单胞菌、金黄色葡萄球菌、大肠埃希菌、白色念珠菌琼脂培养平皿中加入适量的0.9%无菌氯化钠溶液将琼脂表面的菌落洗脱,并将菌悬液移至无菌试管内摇匀打散。用0.9%无菌氯化钠溶液稀释并制成1
×
107cfu/ml的菌悬液,各实施例与菌悬液充分混合,使实施例中的试验菌均匀分布,置20

25℃避光贮存。按规定的间隔时间,分别从上述每个试管中取处理后的实施例1ml,用0.9%无菌氯化钠溶液稀释至不同倍数(105倍、106倍、107倍),每稀释10倍的稀释溶液作为一个样品分别置培养皿中培养,将培养不同稀释浓度样品的培养皿放置于恒温培养箱中37℃、相对湿度90%培养适宜时间(金黄色葡萄球菌24h、铜绿假单胞菌24h、大肠埃希菌24h、白色念珠菌48h),通过可准确读出的菌落数的培养皿,确定每份实施例处理后的菌液浓度(cfu/ml),分别进行三组试验取平均值即为结果,计算公式:抗菌率(%)=(原菌落数

存活菌落数)/原菌落数
×
100%。
46.本实施例制备的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可应用于制备用于治疗皮肤浅表伤口的可撕脱创面敷料中,可应用于制备日常的消毒喷雾剂中,可应用于制备用于医疗卫生环境中接触用品的防护膜或用于医疗器械表面的防护涂层中。其优异的抗菌抗毒功效、安全环保的可剥脱降解性能为其以后多领域的应用开发奠定了坚实的基础。
47.实施例2:
48.本实施例提供一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
49.s1:制备多聚复合防护膜和自组装纳米抗菌肽
50.a.将质量份数为4.1份hacc和2.7份pla倒入83.3份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将30.7份hacc/pla多聚混匀液倒入69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
51.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得纳米微粒(粒径75nm);
52.c.抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将75nm的纳米微粒溶于无菌纯水中,制成质量体积浓度为4.5%的凝胶液,然后加入一定量的抗菌肽溶液,使纳米抗菌肽的终浓度为0.5mg/ml,在37℃、99rpm速度搅拌混匀后50℃固化干燥研磨后,制得90nm的自组装纳米抗菌肽;抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
53.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
54.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液
中滴加3份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
55.b.向上述阳离子的溶液体系中快速加入3.0份的s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
56.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
57.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于55份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为4.6mg/ml范围时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、4.6mg/ml);
58.b.对上述可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入10份增塑剂、7份成膜助剂、0.4份防腐剂、3份增稠剂、2份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
59.本发明的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于治疗和保护皮肤浅表伤口及预防伤口的感染,另外还可以在医疗卫生或日常生活环境中作为防护抗菌杀毒的喷雾剂或凝胶状防护罩,还可以作为医疗器械的防护套,避免院内交叉感染
60.实施例3:
61.一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
62.s1:制备多聚复合防护膜和自组装纳米抗菌肽
63.a.将质量份数为3.8份hacc和2.9份pla倒入83.3份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将30.7份hacc/pla多聚混匀液倒入69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
64.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得纳米微粒(粒径70nm);
65.c.抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将70nm的纳米微粒溶于无菌纯水中,制成质量体积浓度为5%的凝胶液,然后加入一定量的抗菌肽溶液,使纳米抗菌肽的终浓度为0.45mg/ml,在37℃、99rpm速度搅拌混匀后50℃固化干燥研磨后,制得78nm的自组装纳米抗菌肽;抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
66.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
67.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加3份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
68.b.向上述阳离子的溶液体系中快速加入3.0份的s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
69.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
70.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于60份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为3mg/ml范围时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、3mg/ml);
71.b.对上述可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入10份增塑剂、7份成膜助剂、0.3份防腐剂、4份增稠剂、3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述的增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
72.本发明的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于治疗和保护皮肤浅表伤口及预防伤口的感染,另外还可以在医疗卫生或日常生活环境中作为防护抗菌杀毒的喷雾剂或凝胶状防护罩,还可以作为医疗器械的防护套,避免院内交叉感染
73.实施例4:
74.一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
75.s1:制备多聚复合防护膜和自组装纳米抗菌肽
76.a.将质量份数为4份hacc和3.5份pla倒入83.3份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将30.7份hacc/pla多聚混匀液倒入69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
77.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得纳米微粒(66nm);
78.c.抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将66nm的纳米微粒溶于无菌纯水中,制成质量体积浓度为3%的凝胶液,然后加入一定量的抗菌肽溶液,使纳米抗菌肽的终浓度为0.4mg/ml,在37℃、99rpm速度搅拌混匀
后50℃固化干燥研磨后,制得70nm的自组装纳米抗菌肽;抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
79.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
80.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加3份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
81.b.向上述阳离子的溶液体系中快速加入1.8份的s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
82.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
83.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于60份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为4mg/ml范围时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、4mg/ml);
84.b.对上述可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入9份增塑剂、7份成膜助剂、0.3份防腐剂、3份增稠剂、3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述的增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
85.本发明的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于治疗和保护皮肤浅表伤口及预防伤口的感染,另外还可以在医疗卫生或日常生活环境中作为防护抗菌杀毒的喷雾剂或凝胶状防护罩,还可以作为医疗器械的防护套,避免院内交叉感染
86.实施例5:
87.一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
88.s1:制备多聚复合防护膜和自组装纳米抗菌肽
89.a.将质量份数为2.8份hacc和2.5份pla倒入81.5份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将25.6份hacc/pla多聚混匀液倒入74.4份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
90.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多聚复合防护膜的孔径大小设计制得纳米微粒(48nm);
91.c.抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性
进行融合,将48nm的纳米微粒溶于无菌纯水中,制成质量体积浓度为3%的凝胶液,然后加入一定量的抗菌肽溶液,使纳米抗菌肽的终浓度为0.2mg/ml,在37℃、99rpm速度搅拌混匀后50℃固化干燥研磨后,制得50nm的自组装纳米抗菌肽;抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
92.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
93.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加2份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
94.b.向上述阳离子的溶液体系中快速加入0.5份的s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
95.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
96.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于55份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为3mg/ml范围时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、3mg/ml);
97.b.对上述可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入8份增塑剂、7份成膜助剂、0.4份防腐剂、3份增稠剂、3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述的增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
98.本发明的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于治疗和保护皮肤浅表伤口及预防伤口的感染,另外还可以在医疗卫生或日常生活环境中作为防护抗菌杀毒的喷雾剂或凝胶状防护罩,还可以作为医疗器械的防护套,避免院内交叉感染
99.实施例6:
100.一种荷载纳米抗菌肽的多聚复合防护膜的制备方法,包括如下步骤:
101.s1:制备多聚复合防护膜和自组装纳米抗菌肽
102.a.将质量份数为0.5份hacc和0.8份pla倒入81.2份份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将25.6份~30.7份hacc/pla多聚混匀液倒入69.3份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;添加液包含如下质量份数的组成成分:丙二醇0.8~1.8份,聚乙烯醇0.4~2.1份,1,3—丁二醇4.5~8.3份,乙醇4.2份,十二碳醇酯1.8~3.3份,无菌纯水25~40份;
103.b.通过扫描电子显微镜观测步骤a中获得的多聚复合防护膜的孔径大小,根据多
聚复合防护膜的孔径大小设计制得纳米微粒30nm;
104.c.抗菌肽与纳米微粒分子间通过非共价键相互作用的化学互补性和结构兼容性进行融合,将30nm的纳米微粒溶于无菌纯水中,制成质量体积浓度为3%的凝胶液,然后加入一定量的抗菌肽溶液,使纳米抗菌肽的终浓度为0.2mg/ml,在37℃、99rpm速度搅拌混匀后50℃固化干燥研磨后,制得37nm的自组装纳米抗菌肽;抗菌肽包括如下质量份数的组分:蓝铜肽0.5份,防御素0.3~0.5份,乳链菌肽0.5~1份,cecropin类抗菌肽0.5份;
105.s2:制备荷载纳米抗菌肽的hacc/pla多聚复合防护膜
106.a.将s1a中所制备的多聚复合防护膜溶入无菌纯水中,采用微量滴定管向该溶液中滴加1~5份的氨水溶液,目测体系透明程度,当体系由混变清时,停止滴定,即得带大量阳离子的溶液体系;
107.b.向上述阳离子的溶液体系中快速加入0.5份的s1c中的自组装纳米抗菌肽,再于99rpm下室温搅拌1h,制得荷载纳米抗菌肽的hacc/pla多聚复合液,将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得荷载纳米抗菌肽的hacc/pla多聚复合防护膜;
108.s3:制备安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜
109.a.利用扫描电子显微镜和数码相机观察步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s2b中所得的荷载纳米抗菌肽的hacc/pla多聚复合防护膜溶于50份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为3mg/ml范围时,荷载纳米抗菌肽的hacc/pla多聚复合防护膜发生相分离,即获得荷载纳米抗菌肽的hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、3mg/ml);
110.b.对上述可剥脱降解的荷载纳米抗菌肽的hacc/pla多聚复合防护膜进行物理改性,加入8份增塑剂、7份成膜助剂、0.1份防腐剂、3份增稠剂、2份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述的增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
111.本发明的荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于治疗和保护皮肤浅表伤口及预防伤口的感染,另外还可以在医疗卫生或日常生活环境中作为防护抗菌杀毒的喷雾剂或凝胶状防护罩,还可以作为医疗器械的防护套,避免院内交叉感染
112.对照例:
113.一种多聚复合防护膜的制备方法,包括如下步骤:
114.s1:制备多聚复合防护膜
115.a.将质量份数为4.1份hacc和0.8份pla倒入81.2份纯水中,在60℃、99rpm搅拌速度下充分搅拌30min,得hacc/pla多聚混匀液;再将25.6份hacc/pla多聚混匀液倒入74.4份添加液中,在37℃、99rpm搅拌速度下充分搅拌混匀30min,得多聚复合液后将其倒入洁净的灭菌盘中,于无菌通风橱静置流延1h后,放入干燥箱中干燥2h,干燥完成后,将干燥物轻轻剥离即得多聚复合防护膜;
116.s2:制备安全稳定且具有剥脱降解性的多聚复合防护膜
117.a.利用扫描电子显微镜和数码相机观察步骤s1a中所得的hacc/pla多聚复合防护膜,在37℃、80rpm搅拌速度混匀后,通过非溶剂致相分离法将步骤s1a中所得的hacc/pla多聚复合防护膜溶于60份非溶剂中(其中所述的非溶剂包括:纯水、乙醇、甘油),当混溶液浓度为5mg/ml范围时,hacc/pla多聚复合防护膜发生相分离,即获得hacc/pla多聚复合防护膜的最优可降解剥脱条件(37℃、80rpm、5mg/ml);
118.b.对上述可剥脱hacc/pla多聚复合防护膜进行物理改性,加入10份增塑剂、8份成膜助剂、0.4份防腐剂、4份增稠剂、3份乳化剂,制得安全稳定且具有剥脱降解性的可荷载纳米抗菌肽的多聚复合防护膜;所述的增塑剂包括:甘油、丙二醇、1,3—丁二醇;所述的成膜助剂包括:十二碳醇酯;所述的防腐剂包括:edta、苯氧乙醇;所述的增稠剂包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚氨酯;所述的乳化剂包括:eg乳化剂、g57乳化剂。
119.本实施例对实施例2至实施例6和对照例进行了荷载纳米抗菌肽的hacc/pla多聚复合防护膜的抑菌性能检测,铜绿假单胞菌、金黄色葡萄球菌、大肠埃希菌、白色念珠菌琼脂培养平皿中加入适量的0.9%无菌氯化钠溶液将琼脂表面的菌落洗脱,并将菌悬液移至无菌试管内摇匀打散。用0.9%无菌氯化钠溶液稀释并制成1
×
107cfu/ml的菌悬液,各实施例与菌悬液充分混合,使实施例中的试验菌均匀分布,置20

25℃避光贮存。按规定的间隔时间,分别从上述每个试管中取处理后的实施例1ml,用0.9%无菌氯化钠溶液稀释至不同倍数(105倍、106倍、107倍),每稀释10倍的稀释溶液作为一个样品分别置培养皿中培养,将培养不同稀释浓度样品的培养皿放置于恒温培养箱中37℃、相对湿度90%培养适宜时间(金黄色葡萄球菌24h、铜绿假单胞菌24h、大肠埃希菌24h、白色念珠菌48h),通过可准确读出的菌落数的培养皿,确定每份实施例处理后的菌液浓度(cfu/ml),分别进行三组试验取平均值即为结果,计算公式:抗菌率(%)=(原菌落数

存活菌落数)/原菌落数
×
100%。见表1:
120.表1荷载纳米抗菌肽的hacc/pla多聚复合防护膜的抑菌性能
[0121][0122][0123]
由表1可知,本发明实施例2

6与对照例的数据可以看出,在多聚复合膜中加入纳米抗菌肽可以明显抑制金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌与白色念珠菌,纳米抗菌肽的加入可以明显起到抗菌作用。从实施例2

6看hacc/pla的配比与自组装纳米抗菌肽的
直径大小会影响荷载纳米抗菌肽的hacc/pla多聚复合防护膜的抑菌性能,hacc成分高且大直径的纳米抗菌肽的多聚复合防护膜抑菌结果明显优于其他的多聚复合防护膜。
[0124]
对本发明的实施例2

6与对照例进行荷载纳米抗菌肽的hacc/pla多聚复合防护膜的生物相容性检测:
[0125]
试验一:体外细胞毒性测试,按照《gb/t16886.5

2017医疗器械生物学评价第5部分:体外细胞毒性试验》测试方法进行测试;
[0126]
试验二:皮肤刺激测试,按照《gb/t16886.10

2017医疗器械生物学评价第10部分:刺激与迟发型超敏反应试验》测试方法进行测试;
[0127]
试验三:溶血试验,按照《gb/t16886.4

2003医疗器械生物学评价第4部分:与血液相互作用试验》;
[0128]
试验四:皮肤致敏测试,按照《gb/t16886.10

2017医疗器械生物学评价第10部分:刺激与皮肤致敏试验》测试方法进行测试。
[0129]
试验五:动物实验,使用sd大鼠(8周龄,150

170g),随机将sd大鼠分组,每组2只,每组使用同一样品。打孔器建立2cm直径的全厚度皮肤圆形创口。分别在伤口上覆盖实例组及对照组的样品,每1,3,5,7,9日观察伤口愈合情况,实例组于皮肤缺损创面覆盖本实施例1提供的具有优异抗菌功效的荷载纳米抗菌肽的hacc/pla多聚复合防护膜,对照组覆盖hacc/pla多聚复合防护膜。实例组的创面收缩较明显,炎性细胞、成纤维细胞浸润少,创面综合愈合情况均优于对照组,实例组皮肤缺损均未发生创面感染,结果如附图6所示,图6a图为首次建模的创面,位于下方的两个圆孔创面用来覆盖实例1中的防护膜,上方的创面则覆盖对照组的防护膜;图6b图为第7天创面愈合情况,可见下方两个创面愈合明显优于上方对照组的两个创面,且未见炎症反应。再次证明了荷载纳米抗菌肽的hacc/pla多聚复合防护膜可用于皮肤创面防护的功效。
[0130]
上述试验一~试验四的结果,如表2所示。
[0131]
表2荷载纳米抗菌肽的hacc/pla多聚复合防护膜的生物相容性检测结果
[0132][0133]
由表2可知,实施例2

6及对照例在生物相容性检测中,细胞形态均正常。检测样本无毒性,没有发现检测样本引起红肿反应。原发性刺激指数均为0,检测样本血液直接接触溶血指数为0,致敏反应在激发斑贴移去后的24h、48h阳性发生率均为0,检测样本通过试验,判定为合格。
[0134]
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1