用于自动放置扫描激光撕囊切口的装置的制造方法_5

文档序号:9280158阅读:来源:国知局
割过程。切口直径可以由1L要求预先确定并且针对相对于通过视频信息的边缘检测的图像处理确定的虹膜直径的拟合进行检查。类似地对于切口的中心;可以使用由先前所述的视频图像的处理确定的虹膜边界的中心确定它。如图9中所示,切口的绝对深度位置417和深度厚度419可以由视频系统的焦深或视频系统的主动聚焦或由基于使虹膜与囊相关的统计解剖数据的推测进行确定。可以使用这些技术增加深度厚度419以解决更大的预期变化范围。更大的深度厚度可以导致切割时间的更长持续时间。
[0080]患者常常具有偏心瞳孔,并且在视频图像中可以清楚识别的缘407也被认为是分辨囊401的几何中心的手段。囊401由小带(未显示)保持就位,小带连接到在缘407正下方的睫状器(未显示)。然而,当虹膜414大范围扩张时,它在标称上与缘407同心,因此产生等价测度。包括切口直径、切口的中心、深度417和深度厚度419的如图10中所述的撕囊切口的方面可以使用通过缘识别导出的视频信息获得。
[0081]在又一个实施例中,OCT和视频系统都可以用于引导囊切割。例如,可以通过同时考虑OCT和视频系统数据以确定像素或眼睛位置是瞳孔像素还是非瞳孔像素而确定瞳孔的中心。对于将被视为在瞳孔内的位置,可能需要两个系统单独地分辨该结论。备选地,如果至少一个系统得出该结论则位置可以在瞳孔内。在任一情况下,考虑来自两个系统的信息。
[0082]必须配准成像系统和UF光束6。成像系统可以是视频系统、OCT系统100或两者的组合。因此,必须实现系统2的空间校准以精确地放置切口。这可以以各种方式实现。图10是指示具有目标表面510的校准透镜505的光学示意图。校准透镜505由已知折射率、厚度515和光功率的材料制造。
[0083]它用作眼睛的代替物或替代物。厚度、材料和形状被选择成使得在目标位置510处的尺度和眼睛中的尺度之间有已知关系。表面510可以包括具有已知校准尺度的分划板或掩模。经由光学设计代码(例如Zemax、0SL0和CODE V)的光学计算可以用于进一步细化校准透镜和分划板尺度相对于眼睛之间的关系。可以包括在该细化中的因素包括校准透镜505的指数、厚度、形状和预期眼睛光学因素,例如角膜厚度、角膜指数、角膜表面半径、房水指数、房水厚度以及晶状体指数、晶状体厚度和晶状体表面半径。
[0084]使用该分划板,像素可以映射到眼睛尺度,与视频情况中一样,并且被扫描OCT信号可以与眼睛尺度相关,与OCT情况中一样。图11是使用视频系统看到的分划板图像的例子。在该情况下分划板是具有已知直径的圆520的铬掩蔽玻璃表面。在图11的图像中圆以毫米标记。然后可以将视频像素校准到分划板毫米。图像毫米可以与眼睛中的指定平面处的等价眼睛尺度相关。可以经由光学建模帮助该关系。在图12中给出了使视频像素与眼睛尺度相关的曲线的例子。类似地可以在分划板表面510上校准UF光束,与图10中一样。视频和UF光束的眼睛空间中的远心性允许如图12中的校准曲线有效地应用于眼睛内的整个切割体积。
[0085]图13是将成像系统配准到UF光束的校准技术的另一个例子。在图13中,目标表面由材料530(例如聚酯薄膜的薄片)制造,其可以被标记535或者由聚焦UF光束烧灼。一旦标记,OCT可以检测标记位置。OCT由此配准到UF光束。
[0086]另外如果使用如图13中的视频系统观察该标记材料,则视频像素可以配准到UF和因此OCT光束位置。可以通过使用如关于图11中使用的校准目标所述的校准技术和如图12中的校准曲线获得与实际眼睛尺度的联系。使用可以由UF光束标记、由OCT和视频系统读取并且校准到实际眼睛尺度的目标材料不仅产生如图12中的曲线斜率所示的缩放信息,而且产生UF光束标记图案相对于成像(视频和0CT)系统的定心和旋转。来自这样的校准技术的校准信息的完整集合在图13的表中给出。
[0087]图14是用于将切割激光器、OCT和视频图像配准到眼睛中的实际尺度的包括像素缩放、中心位置和旋转的关键校准因素的表。将有用于切割激光器和用于OCT的一组值,但是理想地OCT和切割激光器重叠使得仅仅一组是必要的,如图14中所示。
[0088]图15是眼睛的横截面示意图,显示了倾斜撕囊切口平面。它显示了倾斜晶状体并且理想地囊的切口将跟随该倾斜。在这里图1的OCT系统100用于通过检测晶状体412的表面408和410分辨囊401。OCT系统可以通过寻找连接前和后晶状体表面的曲率的中心的轴线424检测该倾斜。可以相对于由虹膜的中心限定并且与系统的光轴重合的轴线422看到该轴线424的倾斜。类似地,也可以使用OCT系统100解决系统2和眼睛68之间的失配。相比于可以具有较大焦深并且因此难以区分倾斜分量的视频系统,OCT系统通常在检测眼睛和系统之间的相对倾斜信息方面是出色的。
[0089]图16显示了视网膜图像的示意性表示。视网膜结构(例如小凹或中心凹)的包括允许关于它指定的视轴线的更好定心。为此,可调节焦点系统可以置于成像系统71中以允许成像虹膜和视网膜。虹膜和视网膜的图像之间的焦点偏移将描述眼睛的长度,并且这还可以用于计算晶状体中心或其它点(例如晶状体的光学基点)和视网膜配准特征之间的角以及囊401上的切口 400的偏移。可以通过使用类似于图1的描述中的z调节40的校准z调节实现这样的调节。此外,增加成像系统71中的孔径81的直径将减小它的焦深,并且因此更好地定位眼结构(例如视网膜426和虹膜402)的实际位置。再次地,图像处理然后可以定位瞳孔404(或虹膜402或缘407)内的中心406和小凹430内的中心428,配准它们并且因此分辨眼睛的视轴线。这然后可以代替中心线422用作撕囊定心的轴线。类似地,为了这样的确定可以使OCT系统分辨虹膜和视网膜结构。固定灯也可以用于帮助所述视网膜/眼对准。
[0090]尽管晶状体412的厚度(3_5mm)和几何轴线和视轴线之间的角差异(3_7° )的典型值仅仅产生?600 μ m的中心406的最差位移,但是它完全在本发明的精度内,如本文中所述。此外,成像系统71的近红外光的使用通过提供否则可能由于光学不透明白内障的存在而更加衰减的增强返回信号而简化检测。
[0091]系统也可以为用户提供使用上述拟合中的任何一种放置激光产生的切口的选择。例如,视频系统可以显示覆盖有缘、几何和视觉定心结果的患者的眼睛的正面图像。用户然后可以基于关于视频图像的它的外观选择方法。类似地,系统可以显示供用户选择的角膜切口的(一个或多个)预期位置。
[0092]图18显示了用于测量生理瞳孔的装置的实施例,该装置响应变化的照明条件。由照明源提供的光量可以由漫射器漫射以提供入射在试验中的患者的眼睛上的更均匀的光分布。光束分裂器经由光电检测器提供照明光的水平的主动反馈,同时使用照相机成像眼睛的虹膜。所有这些电子元件可以经由I/o端口连接到CPU。该配置提供很灵活的仪器以根据照明水平测量瞳孔尺寸、形状和形心。因而,它可以被校准以在对应于典型环境照明条件的范围上调节照明水平,所述环境照明条件是不同的,从黑夜到阳光明媚的白天,通过典型的800勒克斯的办公室环境。也可以使照明源提供光的变化光谱分量以增加测量。可以使照明强度的变化率以适应生理瞳孔反应的一定速度改变以便精确地捕获瞳孔反应,如图19中示意性地所示。可以使包含瞳孔尺寸(图20)和形心位置(图21)与照明水平的比较的数据提供最佳地定位囊切开切口的侧向或横向位置所必需的信息。在示例性图中,由标记a-h标识的水平对应于实际情况,例如晨光等。线I连接数据c_f,该照明水平被视为适合于试验中的患者。瞳孔反应可能具有一定的滞后量,如图20和21中所示。因此,线I的中心点(点P)用于限定该环境光水平的中值囊切开切口中心位置。本发明也将捕获扩张瞳孔的图像以用于术中配准,如上面详细地所述。
【主权项】
1.一种用于患者的眼睛的白内障手术的系统,所述系统包括: a.激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束; b.集成光学系统,所述集成光学系统包括成像组件,所述成像组件可操作地联接到治疗激光输送组件使得所述成像组件与所述治疗激光输送组件共用至少一个公共光学元件,所述集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及 c.控制器,所述控制器可操作地联接到所述激光源和所述集成光学系统,并且被配置成: 1)基于所述图像信息调节激光束和治疗图案,并且 2)至少部分地基于所述图像信息的一系列鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构,以便在每个连续最小二乘拟合分析中迭代地包括拟合到数学表面的更多数量的位置。2.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括角膜。3.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括巩膜。4.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括缘。5.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括虹膜。6.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括晶状体。7.根据权利要求1所述的系统,其中所述两个或以上解剖结构包括晶状体囊。8.根据权利要求1所述的系统,其中所述控制器被配置成进行一系列三次或以上的最小二乘拟合分析。9.根据权利要求1所述的系统,其中所述数学表面是球形表面。10.根据权利要求1所述的系统,其中所述数学表面是非球形表面。11.根据权利要求1所述的系统,其中所述控制器还被配置成定位所述两个或以上解剖结构之间的边界。12.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的巩膜之间的交界。13.根据权利要求11所述的系统,其中所述边界被限定为眼睛的角膜和眼睛的虹膜之间的交界。14.根据权利要求11所述的系统,其中所述边界被限定为眼睛的晶状体和眼睛的虹膜之间的交界。15.根据权利要求1所述的系统,其中所述控制器被配置成利用最小二乘拟合分析的拒绝点来识别眼睛的解剖结构。
【专利摘要】本发明公开了用于自动放置扫描激光撕囊切口的装置,特别描述了用于白内障手术的系统和方法。在一个实施例中一种系统包括:激光源,所述激光源被配置成产生包括多个激光脉冲的治疗光束;集成光学系统,所述集成光学系统包括成像组件,成像组件可操作地联接到治疗光束输送组件使得它们共用至少一个公共光学元件,集成光学系统被配置成采集与一个或多个目标组织结构相关的图像信息并且以三维图案引导治疗光束以导致目标组织结构中的至少一个的破坏;以及控制器,控制器可操作地联接到激光源和集成光学系统,并且被配置成基于图像信息调节激光束和治疗图案,并且至少部分地基于所述图像信息的鲁棒最小二乘拟合分析区分眼睛的两个或以上解剖结构。
【IPC分类】A61F9/008, A61F9/01
【公开号】CN104997587
【申请号】CN201510490331
【发明人】D·安杰莉, P·古丁, B·伍德利, G·马塞利诺
【申请人】眼科医疗公司
【公开日】2015年10月28日
【申请日】2011年1月21日
【公告号】CN102811684A, CN102811684B, EP2525749A1, US8845625, US20110202046, US20140341451, WO2011091326A1
当前第5页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1