露的心电电极而取得心电信号的实施例,因此,可以有各种选择,亦可依实际使用需求而改变,没有限制。
[0103]所以,根据本实用新型再一方面构想,通过发光颜色而提供予使用者的信息,亦可包括通过取得心率及RSA信息而衍生出的许多相关自律神经的信息,举例而言,根据研究可知,呼吸与心率间较好的和谐及同步性代表着较有秩序且协调的心跳节律,也就是,人体处于比较放松、稳定的状态,因此,可通过由分析呼吸与心率间是否和谐及同步而用以判断呼吸导引训练的成效及/或作为实时提供使用者的信息,例如,可对心率序列进行频域分析,当频谱越集中时即表示两者间同步性越高,或者也可计算两者间的相位差,当相位差越小时表示两者间同步性越高,因此,可将有关和谐度或同步性的分析结果通过同一颜色的深浅及不同颜色的变化而呈现给使用者,例如,颜色越浅表示和谐度/同步性越高,身体越放松,而相反地,颜色越深则表示和谐度/同步性越低,让使用者可实时得知其所进行的呼吸训练/生理反馈是否朝向放松的目标前进;再者,还可通过分析结果而调整呼吸导引信号,以进一步引导使用者的呼吸,而使身心状态逐渐趋向更放松的目标。
[0104]替代地,亦可实施为如图4C所示,在呼吸动作感测元件内再设置心电电极24,而由心电图取得心率序列,再配合上通过呼吸动作感测元件所取得的相关呼吸行为的信息,同样可获得如上所述的和谐度及同步性的分析结果,因此,没有限制。
[0105]更进一步,由于可通过心率序列而取得RSA信息,故还可观察心率,呼吸以及脑电信号间的同步性(synchronizat1n),以做为反馈的依据。根据研究显示,呼气与吸气会造成血管内血量的波动,且此波动亦会随着血流到达脑部,进而造成脑波在接近呼吸速率的低频区段,例如,低于0.5赫兹,的波动,因此,除了可得知两者间是否因共振作用而实现同步性外,亦可因此通过观察脑波而得知呼吸模式,另外,由于心脏的窦房节及血管系统受自律神经系统的调控,而且,自律神经系统亦会通过压力受器系统(baroreceptor system)将心率及血压的改变而反馈给脑部,进而影响脑部的功能与运作,例如,影响大脑皮质,并可由脑电图测得,再加上有意识地控制呼吸可因影响自律神经而造成心率改变,因此,三者间存在着彼此影响的关系,是故,三者间良好的同步性即可代表人体处于较为放松的状态,据此,此相关同步性的分析结果同样可作为提供使用者进行自我意识调整的信息,以进行神经生理反馈。
[0106]因此,如图6所示,就可将光传感器结合于图1中的头戴式脑电检测装置上,例如,通过耳戴结构14而设置于耳朵上,例如,耳夹结构,或是设置于头带内侧而由额头取得心率序列等,如此一来,通过更多种的生理信号,将可对使用者的生理状态有更精准的评估,自然能够提供更贴近实际生理状态的实时信息,而让使用者可更容易地朝目标生理状态前进。
[0107]另外,除了常见通过呼吸训练而达到放松身心的目的外,亦可通过调控呼吸而达到其他的目的,举例而言,由于RSA振幅相关于副交感神经活动,较大的RSA振幅代表较佳的副交感神经活动,而当副交感神经活动的增加足够多时,就可触发人体的放松反应(Relaxat1n Response),解除累积的压力,因此,可通过观察使用者的心率变化模式,并在心率开始加速时,通过呼吸导引告知使用者可以开始吸气,以及在心率开始减缓时,通过呼吸导引告知使用者可以开始吐气,以达到增大RSA振幅的效果,所以,可通过这样的方式而提供使用者有助于触发人体放松反应的呼吸导引信号;此时,再配合上,例如,发光颜色表示使用者的呼吸是否与呼吸导引信号相吻合的信息、或是副交感神经活动是否增加的信息等,将可进一步让呼吸导引的效果获得提升。此外,由于RSA的波峰与波谷所取得振幅的大小,亦即,在一呼吸周期中,心率的极大值与极小值间的差值,會相关于自律神经的活性高低,因此,同样可将此信息实时地提供予使用者,以作为使用者调节生理活动的基础。
[0108]再进一步,当取得心率序列后,还可进行HRV(Heart Rate Variability,心率变异率)分析,而HRV分析则是得知自律神经系统活动的常见手段的一方法,例如,可进行频域分析(Frequency domain),以获得可用来评估整体心率变异度的总功率(Total Power,TP),可反应副交感神经活性的高频功率(High Frequency Power, HF),可反应交感神经活性、或交感神经与副交感神经同时调控结果的低频功率(Low Frequency Power,LF),以及可反应交感/副交感神经的活性平衡的LF/HF(低高频功率比)等,另外,亦可在进行频率分析后,通过观察频率分布的状态而得知自律神经运作的和谐度;或者,也可进行时域分析(Time Domain),而获得可作为整体心率变异度的指标的SDNN,可作为长期整体心率变异度的指标的SDANN,可作为短期整体心率变异度的指标的RMSSD,以及可用来评估心率变异度之中高频变异的R-MSSD、NN50、及PNN50等。
[0109]因此,亦可通过发光颜色的变化而实时提供予使用者有关HRV分析的结果,以作为让使用者得知自律神经的活动情形的信息,在此,由于HRV分析是对一段时间内心率序列进行分析,因此,实时HRV分析的进行可通过移动时间窗格(Moving Window)的概念而实施,亦即,先决定一计算时间区段,例如,I分钟、或2分钟,之后,通过不断将此时间区段向后推移的方式,例如,每5秒计算一次,就可持续地得到HRV分析结果,例如,每5秒获得一 HRV分析结果,因而实现提供实时HRV分析结果的目的,另外,亦可采用加权计算(weighting)的概念,适度地增加较接近分析时间的生理信号的计算比重,以让分析结果更贴近实时的生理状况。
[0110]再者,根据本实用新型再一方面的构想,通过可检测使用者呼吸行为的生理传感器,根据本实用新型的系统亦可实施为提供使用者其自身呼吸行为模式,以让使用者知道自己的实际呼吸情形,例如,可通过该发光强度的连续变化而提供使用者的实际呼吸速率、以及呼气期间/吸气期间变化等。此时,通过发光颜色而提供的实时生理状态信息,根据所使用者的生理传感器的不同,可以有不同的可能,举例而言,可以同样是相关呼吸行为的信息,例如,可以是呼吸速率的变化,呼吸稳定度,呼气与吸气期间的比例,通气量的大小,是否符合腹式呼吸行为,口部/鼻部气流量变化等各种可能;另外,也可以是其他的生理信息,例如,当通过取得心率序列而进行分析时,就可一方面取得使用者的呼吸行为模式,以及另一方面获得如前述的自律神经活动情形以及RSA相关信息等其他生理状态信息;或者,也可再通过另一种生理感测元件而取得生理状态信息,例如,同时取得脑电信号而得知脑部活动的情形等,因此,没有限制。
[0111]而除了上述的各种可能外,还可实施为提供使用者的实际呼吸模式与呼吸导引信号间的差异与一预设分级表格的比对结果,举例而言,该预设分级表格可提供作为呼吸速率间的差异比对基准,例如,将差异度分为蓝色:0-20%,绿色:20-40%,黄色:40-60%,红色:60-80%,因此,使用者就可通过呈现出来的颜色而知道自己的呼吸与呼吸导引信号之间的差异,进而进行呼吸调整。
[0112]更进一步地,在此情形下,还可再通过一听觉可感知信号而提供呼吸导引信号,例如,声音或语音,以在通过发光颜色而呈现的生理状态信息之外,亦作为使用者调整自身的呼吸行为模式的基础,及/或让使用者了解自己的呼吸(透过发光强度所展现者)与呼吸导引信号(透过听觉可感知讯号所展现者)间是否相互吻合,而进一步使得呼吸训练的效果获得提升。在此,需注意的是,该听觉可感知信号可由该可感知信号产生源产生,亦可由该穿戴式生理感测装置产生,没有限制。
[0113]此外,根据再一方面的构想,本实用新型的系统亦可通过检测与自律神经系统活动相关的生理信号而了解使用者在生理反馈程序期间的生理状态,以作为实时反馈予使用者信息,及/或作为调整呼吸导引信号的基础。如图7所示,在根据本实用新型的呼吸生理反馈系统中,该穿戴式生理感测装置30实施为通过设置于两个手指上的电极31而检测使用者的皮肤电活动(EDA,Electrodermal Activity),这是因为,皮肤电活动与汗腺的活动有关,而汗腺的分泌仅受交感神经影响,且当交感神经活性增加时,汗腺活动增加,因此可通过测量皮肤电活动的方式得知交感神经的活性增减。另外,在此系统中,该可感知信号产生源则是实施一智能手机34,以通过听觉可感知信号而将呼吸导引信号以及进行生理反馈所需的信息提供予使用者,而当实施为采用听觉方式时,具优势地是,使用者将可选择于生理反馈期间合上双眼,尤其当生理反馈的目标是放松身体,将更为有利。
[0114]需要注意地是,除了指尖外,皮肤电活动亦可由其他位置取得,例如,手掌、手腕等亦都是常见取得皮肤电活动的位置,其中,当以手腕为取得位置时,较佳地是,则电极可实施为设置在如图7中用以设置壳体32的带体的内侧,以接触手腕的皮肤,如此一来还可降低接线的复杂度。
[0115]所以,在利用图4的系统而进行生理反馈程序时,使用者将电极设置于两个手指上,以取得皮肤电信号,放松身体,并通过手机所呈现的声音呼吸导引信号以及生理反馈信息而调整自身的呼吸并进行生理反馈。
[0116]在此,用以表现呼吸导引信号的听觉可感知信号可包括,但不限于,举例而言,可利用产生声音信号的时间间隔而作为起始吸气与吐气的导引;可利用声音频率或音量的改变来代表吸气与吐气的连续变化;或者可由不同的声音种类代表吸气及吐气,例如,不同的音乐曲目,或具有周期性变化的声音文件,例如,海浪声等,以让使用者随其变换而调整呼吸;或者也可通过语音而告知使用者该进行吸气或吐气,例如,通过符合吸气与吐气的时间点的「吸气」及「吐气」语音指示而导引使用者的呼吸模式。
[0117]而当听觉可感知信号同时被用来表现进行生理反馈所需的信息时,其同样有许多选择,举例而言,可利用声音频率或音量的逐渐变高或变低来表示越来越趋向目标,或者,可由特定的声音种类、或乐曲来代表尚未达到、或已达到目标;或者,也可通过语音而告知使用者生理反馈的进行是否逐渐趋向目标。因此,只要能与呼吸导引信号做出区别即可,没有限制。
[0118]所以,当生理反馈的目标为放松身心时,其中一种实施方式是,利用间隔产生的哔哔声来导引使用者开始进行吸气或吐气,并利用声音频率的高低来代表身体的放松程度,例如,音频越高表示越紧张,而音频越低则表示越放松,因此,当使用者听到高频的哔哔声时,就可在跟随进行吸气与吐气的同时,得知自己仍太过紧张,需要想办法放松身心,所以,即使通过单一个声音信号,同样可以清楚地让使用者同时了解两种信息内容。
[0119]或者,另一种实施方式可以是,利用声音音量的强弱代表吸气与吐气的连续变化,并利用不同的声音种类来表示身体的放松程度,例如,以鸟叫声表示紧张程度较高,而以海浪声表示较为放松,同样是可以清楚表达的方式。
[0120]而除了通过检测皮肤电活动以进行生理反馈外,其他受自律神经活动影