一种基于细菌纤维素的高紫外线反射率薄膜及其制备方法与流程

文档序号:13654766阅读:291来源:国知局

本发明属于复合材料制备技术领域,具体地说,是涉及一种以溶于离子液体的细菌纤维素经静电纺丝后所得薄膜为基材,以经高压均质处理所得纳米级细菌纤维素颗粒为紫外线反射物的具有高紫外线反射率的薄膜及其制备方法。



背景技术:

近年来,随着激光技术等的进步,利用强激光研究光学材料的非线性和惯性约束聚变等得到广泛发展,光学薄膜的作用更加凸显(shaog,luoc,kangj,etal.luminescentdownshiftingeffectofce-dopedyttriumaluminumgarnetthinfilmsonsolarcells[j],appliedphysicsletters,2015)。作为激光器的重要元件之一,高紫外反射薄膜元件已经成为复合材料领域的研究热点(罗佳慧,李燕,杨成韬,cu/ti超晶格薄膜的强紫外反射性能研究,光学学报,2001年6期)。

目前常用的薄膜只要包括两种:(1)全介质薄膜(李刚,孙连春,薄膜位相延迟器的研究,光学仪器,2004年2期;熊峰,乔学亮,陈建国,孙龙,激光谐振腔全介质高反膜的研究进展,激光杂志,2002年1期)是一类反射率较高的反射膜,限制其广泛应用的瓶颈主要包括制作工艺繁琐,而且成本昂贵;(2)金属薄膜(朱晓龙,肖峻,马孜,氧化铪薄膜的宽光谱光学特性研究,激光与光电子学进展,2016年3期;吴倩,陈松林,马平,不同制备工艺下氧化硅和氧化铪薄膜的椭偏光谱,红外与激光工程,2012年3期;韩冬,何涛,徐金光,王翀,翁永根,张冬梅,表面结构可调控的α-fe2o3薄膜的制备及光电化学活性研究,烟台大学学报(自然科学与工程版),2016年2期)作为紫外线反射膜能够提供较好的紫外线反射率,但是其成型难度大、透光性低,同时对于光线的吸收也非常明显。



技术实现要素:

本发明所要解决的技术问题是针对全介质薄膜或者金属薄膜制备工艺繁琐、成型难度大等缺陷,导致的高紫外线反射率薄膜制备成本等问题,提供了一种易成型、低成本的基于细菌纤维素的高紫外线反射率薄膜及其制备方法。本发明基于细菌纤维素的高紫外线反射率薄膜主要以溶于离子液体的细菌纤维素经静电纺丝后交织而成的薄膜为基体,以接枝在基体表面的纳米级细菌纤维素颗粒作为主体反射物,该薄膜具有成本可控、紫外线反射率高等突出优势。

为解决上述技术问题,本发明采用以下技术方案:

一种基于细菌纤维素的高紫外线反射率薄膜,所述的高紫外线反射率薄膜以溶于离子液体的细菌纤维素经静电纺丝后交织而成的薄膜为基体,然后将高压均质处理所得纳米级细菌纤维素颗粒通过表面接枝的手段与基体连接后制备而成;所述的高紫外线反射率薄膜在入射角为15°时对波长为266nm的紫外线反射率>65%,在入射角为45°时对波长为266nm的紫外线反射率>85%。

所述的细菌纤维素薄膜的制备方法,采用如下步骤:

(1)取细菌纤维素置于离子液体中,在水浴加热条件下经机械搅拌至完全溶解后得到纺丝液;

(2)将步骤(1)制得的纺丝液装入注射器中进行静电纺丝,阳极与针头连接,连接阴极的铝箔为接收器,获得静电纺丝纤维;

(3)取细菌纤维素分散在无水乙醇中,经过高压均质处理获得均匀的细菌纤维素-无水乙醇分散体系;

(4)将步骤(2)制得的静电纺丝纤维浸泡于步骤(3)制得的细菌纤维素-无水乙醇分散体系中;

(5)在常温下用盐酸调节乙醇的ph值为3-4得到乙醇-盐酸体系,然后将硅烷偶联剂加入到乙醇-盐酸体系中进行水解,得到硅醇与乙醇-盐酸的混合溶液,其中硅烷偶联剂在乙醇-盐酸体系中进行水解得到硅醇,水解彻底的标志为混合溶液变澄清透明;

(6)将步骤(5)所获得的硅醇与乙醇-盐酸的混合溶液加入到步骤(4)所获得的混合体系中,在65℃下静置12小时;

(7)将步骤(6)得到的混合体系真空过滤,所得的滤饼在低温下烘干,得到基于细菌纤维素的环保型紫外线吸收薄膜。

所述步骤(1)中选用的离子液体中阳离子为n,n’-二烷基咪唑,阴离子为x-,bf4-和pf6-;细菌纤维素与离子液体的质量比为1:4~1:8;机械搅拌转速为60r/min,搅拌时间为30min~60min,水浴加热温度为70℃。

所述步骤(2)中电纺丝喷射流形成时的电压为18kv;纺丝喷丝头到收集基板之间的间距为18cm;注射泵流速为1.0ml/h~2.0ml/h,静电纺丝纤维的直径为40~60nm,长度为300~500nm。

所述步骤(3)中细菌纤维素和无水乙醇的质量比为1:100;高压均质处理的压强为100mpa,循环次数为8~12次,每次处理量为100-150ml。

所述步骤(4)中静电纺丝纤维与细菌纤维素-无水乙醇分散体系的质量比为1:10~1:20。

所述步骤(5)中硅烷偶联剂与乙醇-盐酸体系的质量比为1:7,硅烷偶联剂的水解反应方程式为:

其中:n=0~3,x为甲氧基或者乙氧基或者甲氧基乙氧基或者乙酰氧基,y为氨基或者(2,3)-环氧丙氧基或者甲基丙烯酰氧基或者巯基。

所述步骤(6)中硅醇与乙醇-盐酸的混合溶液与步骤(4)所得的混合体系的质量比为1:5~1:8;反应方程式为:

所述步骤(7)中的烘干温度为40℃,烘干时间为48h。

本发明的有益效果在于:(1)本发明所述的基于细菌纤维素的高紫外线反射率薄膜以细菌纤维素为基础,利用离子液体溶解、静电纺丝、高压均质以及硅烷偶联剂改性等手段获得,实验原料及过程不涉及剧毒性物质,产物为天然有机高分子材料,具有可生物降解性,符合环保要求。(2)本发明利用溶于离子液体的细菌纤维素经静电纺丝后交织而成的薄膜为基体,然后将高压均质处理所得纳米级细菌纤维素颗粒通过表面接枝的手段与基体连接后制备而成,制备过程简单。(3)本发明所述的基于细菌纤维素的高紫外线反射率薄膜主要原料为细菌纤维素,来源广泛,价格合理,利于广泛推广。(4)本发明细菌纤维素薄膜的制备方法简单,易与现有技术结合,可实现工业化生产。

具体实施方式

下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。

实施例1

本实施例的基于细菌纤维素的高紫外线反射率薄膜的制备方法如下:

(1)取60g阳离子为n,n’-二烷基咪唑,阴离子为x-的离子液体作为溶剂,将8g细菌纤维素置于离子液体中,在70℃水浴加热条件下经60r/min的机械搅拌30min后获得纺丝液65.2g;

(2)取60g纺丝液装入注射器中进行静电纺丝,阳极与针头连接,连接阴极的铝箔为接收器,获得静电纺丝纤维53.6g;

(3)取5.5g细菌纤维素分散在550g无水乙醇中,经过高压均质处理获得均匀的细菌纤维素-无水乙醇分散体系553.8g;

(4)将步骤(2)所制得的静电纺丝纤维浸泡于550g步骤(3)所制得的细菌纤维素-无水乙醇分散体系中,获得混合体系602.6g;

(5)在常温下用盐酸调节乙醇的ph值为3-4得到乙醇-盐酸体系,然后取16g的3-氨丙基三乙氧基硅烷加入到112g的乙醇-盐酸体系中得到硅烷偶联剂与乙醇-盐酸的混合溶液,经过彻底水解得到硅醇与乙醇-盐酸的混合溶液126.9g;

(6)取120g步骤(5)所获得的硅醇与乙醇-盐酸的混合溶液加入到步骤(4)所获得的混合体系中,在65℃下静置12小时,获得716.1g混合体系;

(7)将步骤(6)得到的混合体系经真空过滤后把所得滤饼在低温下烘干获得质量为10.6g的基于细菌纤维素的环保型紫外线吸收薄膜。

经过光谱测试仪检测后所得基于细菌纤维素的环保型紫外线吸收薄膜在波长为266nm条件下,入射角为15°时反射率为52%,入射角为45°时反射率为76%。

实施例2

本实施例的基于细菌纤维素的高紫外线反射率薄膜的制备方法如下:

(1)取60g阳离子为n,n’-二烷基咪唑,阴离子为bf4-的离子液体作为溶剂,将10g细菌纤维素置于离子液体中,在70℃水浴加热条件下经60r/min的机械搅拌40min后获得纺丝液68.6g;

(2)取60g纺丝液装入注射器中进行静电纺丝,阳极与针头连接,连接阴极的铝箔为接收器,获得静电纺丝纤维58.1g;

(3)取8g细菌纤维素分散在800g无水乙醇中,经过高压均质处理获得均匀的细菌纤维素-无水乙醇分散体系805.1g;

(4)将步骤(2)所制得的静电纺丝纤维浸泡于755g步骤(3)所制得的细菌纤维素-无水乙醇分散体系中,获得混合体系810.3g;

(5)在常温下用盐酸调节乙醇的ph值为3-4得到乙醇-盐酸体系,然后取18g的γ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入到126g的乙醇-盐酸体系中得到硅烷偶联剂与乙醇-盐酸的混合溶液,经过彻底水解得到硅醇与乙醇-盐酸的混合溶液140.5g;

(6)取135g步骤(5)所获得的硅醇与乙醇-盐酸的混合溶液加入到步骤(4)所获得的混合体系中,在65℃下静置12小时,获得937.6g混合体系;

(7)取步骤(6)得到的混合体系经真空过滤后把所得滤饼在低温下烘干获得质量为13.7g的基于细菌纤维素的环保型紫外线吸收薄膜。

经过光谱测试仪检测后所得基于细菌纤维素的环保型紫外线吸收薄膜在波长为266nm条件下,入射角为15°时反射率为59%,入射角为45°时反射率为82%。

实施例3

本实施例的基于细菌纤维素的高紫外线反射率薄膜的制备方法如下:

(1)取40g阳离子为n,n’-二烷基咪唑,阴离子为pf6-的离子液体作为溶剂,将8g细菌纤维素置于离子液体中,在70℃水浴加热条件下经60r/min的机械搅拌50min后获得纺丝液45.2g;

(2)取45g纺丝液装入注射器中进行静电纺丝,阳极与针头连接,连接阴极的铝箔为接收器,获得静电纺丝纤维43.8g;

(3)取7.5g细菌纤维素分散在750g无水乙醇中,经过高压均质处理获得均匀的细菌纤维素-无水乙醇分散体系753.9g;

(4)将步骤(2)所制得的静电纺丝纤维浸泡于700g步骤(3)所制得的细菌纤维素-无水乙醇分散体系中,获得混合体系742.9g;

(5)在常温下用盐酸调节乙醇的ph值为3-4得到乙醇-盐酸体系,然后取14g的γ-(甲基丙烯酰氧)丙基三甲氧基硅烷加入到98g的乙醇-盐酸体系中得到硅烷偶联剂与乙醇-盐酸的混合溶液,经过彻底水解得到硅醇与乙醇-盐酸的混合溶液110.2g;

(6)取106g步骤(5)所获得的硅醇与乙醇-盐酸的混合溶液加入到步骤(4)所获得的混合体系中,在65℃下静置12小时,获得843.6g混合体系;

(7)将步骤(6)得到的混合体系经真空过滤后把所得滤饼在低温下烘干获得质量为13.2g的基于细菌纤维素的环保型紫外线吸收薄膜。

经过光谱测试仪检测后所得基于细菌纤维素的环保型紫外线吸收薄膜在波长为266nm条件下,入射角为15°时反射率为63%,入射角为45°时反射率为85%。

实施例4

本实施例的基于细菌纤维素的高紫外线反射率薄膜的制备方法如下:

(1)取40g阳离子为n,n’-二烷基咪唑,阴离子为x-的离子液体作为溶剂,将10g细菌纤维素置于离子液体中,在70℃水浴加热条件下经60r/min的机械搅拌60min后获得纺丝液47.7g;

(2)取40g纺丝液装入注射器中进行静电纺丝,阳极与针头连接,连接阴极的铝箔为接收器,获得静电纺丝纤维38.6g;

(3)取8g细菌纤维素分散在800g无水乙醇中,经过高压均质处理获得均匀的细菌纤维素-无水乙醇分散体系802.6g;

(4)将步骤(2)所制得的静电纺丝纤维浸泡于772g步骤(3)所制得的细菌纤维素-无水乙醇分散体系中,获得混合体系808.5g;

(5)在常温下用盐酸调节乙醇的ph值为3-4得到乙醇-盐酸体系,然后取14g的γ-巯丙基三甲氧基硅烷加入到98g的乙醇-盐酸体系中得到硅烷偶联剂与乙醇-盐酸的混合溶液,经过彻底水解得到硅醇与乙醇-盐酸的混合溶液109.3g;

(6)取101g步骤(5)所获得的硅醇与乙醇-盐酸的混合溶液加入到步骤(4)所获得的混合体系中,在65℃下静置12小时,获得907.6g混合体系;

(7)将步骤(6)得到的混合体系经真空过滤后把所得滤饼在低温下烘干获得质量为14.3g的基于细菌纤维素的环保型紫外线吸收薄膜。

经过光谱测试仪检测后所得基于细菌纤维素的环保型紫外线吸收薄膜在波长为266nm条件下,入射角为15°时反射率为66%,入射角为45°时反射率为87%。

以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1