本公开涉及智能家居技术领域,尤其涉及一种自动清洁设备。
背景技术:
随着技术的发展,出现了多种多样的自动清洁设备,比如自动扫地机器人、自动拖地机器人等。自动清洁设备可以自动地执行清洁操作,方便用户。以自动扫地机器人为例,是通过直接刷扫、真空吸尘等技术来实现对地方的自动清理。
技术实现要素:
本公开提供一种自动清洁设备,以解决相关技术中的不足。
根据本公开实施例的第一方面,提供一种自动清洁设备,包括:主机和安装于所述主机上的尘盒结构;所述尘盒结构中设置有非接触式感应元件,且所述主机中设置有非接触式感应配合元件;
其中,所述非接触式感应元件可在所述尘盒结构被安装至所述主机的情况下配合于所述非接触式感应配合元件,使所述非接触式感应配合元件能够感应到所述非接触式感应元件。
可选的,
所述非接触式感应元件包括磁片,所述非接触式感应配合元件包括霍尔传感器;其中,所述霍尔传感器可在所述尘盒结构被安装至所述主机的情况下感应到所述磁片;
或者,所述非接触式感应元件包括光耦器件的发光部,所述非接触式感应配合元件包括光耦器件的受光部;其中,所述发光部可在所述尘盒结构被安装至所述主机的情况下,发出可使所述受光部输出预设电信号的光线。
可选的,所述非接触式感应配合元件能够在所述尘盒结构被安装至所述主机的情况下,电连接至所述自动清洁设备中的控制部件,以将自身的感应结果告知所述控制部件。
可选的,所述主机的顶部或相对于所述自动清洁设备的行进方向的后方侧边处设有容纳腔,所述尘盒结构可置入所述容纳腔中,以安装至所述主机。
可选的,所述尘盒结构包括:尘盒和可配合安装于所述尘盒的滤网,其中非接触式感应元件设置于所述滤网上。
可选的,所述尘盒上形成至少两侧开口;一侧开口为所述尘盒的入风口,另一侧开口为所述尘盒的出风口;其中,所述滤网安装于所述出风口处,并覆盖所述出风口。
可选的,所述尘盒上设有所述入风口的侧壁可拆卸;其中,当所述侧壁被拆卸时,可形成用于倾倒所述尘盒内收集的清洁对象的倾倒口。
可选的,所述入风口朝向一侧斜下方处的所述主机的滚刷结构,且所述入风口所处平面垂直于由所述入风口吹入所述尘盒的风向,使清洁对象被吹向位于所述入风口另一侧斜上方处的尘盒顶部后,存留于所述尘盒中。
可选的,所述出风口与所述主机中的风机结构的进风口导通;其中,所述滤网的截面积配合于所述进风口的截面积,使所述尘盒中的风能够不产生涡流地导入所述风机结构的进风口,且所述尘盒的风量利用率不小于预设利用率。
可选的,还包括:
位于所述入风口和所述出风口处的密封件。
本公开的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本公开通过采用非接触式的在位检测方式,可以避免自动清洁设备在尘盒不在位的情况下启动清扫,有助于延长自动清洁设备的使用寿命。同时,当采用非接触式的在位检测方式时,无需在自动清洁设备中添加复杂的机械结构,有助于提升自动清洁设备的内部简化度,以及尘盒在位检测的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1-4是根据一示例性实施例示出的一种机器人的结构示意图。
图5是根据一示例性实施例示出的一种自动清洁设备的结构分解示意图。
图6是根据一示例性实施例示出的一种尘盒结构的结构分解示意图。
图7是根据一示例性实施例示出的另一种尘盒结构的结构分解示意图。
图8是根据一示例性实施例示出的又一种尘盒结构的结构分解示意图。
图9是根据一示例性实施例示出的一种自动清洁设备的清洁系统的截面剖视图。
图10是根据一示例性实施例示出的一种自动清洁设备的截面剖视图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1-4是根据一示例性实施例示出的一种机器人的结构示意图,如图1-4所示,机器人100可以为扫地机器人、拖地机器人等自动清洁设备,该机器人100可以包含机器主体110、感知系统120、控制系统130、驱动系统140、清洁系统150、能源系统160和人机交互系统170。其中:
机器主体110包括前向部分111和后向部分112,具有近似圆形形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。
感知系统120包括位于机器主体110上方的位置确定装置121、位于机器主体110的前向部分111的缓冲器122、悬崖传感器123和超声传感器(图中未示出)、红外传感器(图中未示出)、磁力计(图中未示出)、加速度计(图中未示出)、陀螺仪(图中未示出)、里程计(图中未示出)等传感装置,向控制系统130提供机器的各种位置信息和运动状态信息。位置确定装置121包括但不限于摄像头、激光测距装置(LDS)。
机器主体110的前向部分111可承载缓冲器122,在清洁过程中驱动轮模块141推进机器人在地面行走时,缓冲器122经由传感器系统,例如红外传感器,检测机器人100的行驶路径中的一或多个事件(或对象),机器人可通过由缓冲器122检测到的事件(或对象),例如障碍物、墙壁,而控制驱动轮模块141使机器人来对所述事件(或对象)做出响应,例如远离障碍物。
控制系统130设置在机器主体110内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物信息利用定位算法,例如SLAM,绘制机器人所在环境中的即时地图。并且结合缓冲器122、悬崖传感器123和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态,如过门槛,上地毯,位于悬崖处,上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得机器人的工作更加符合主人的要求,有更好的用户体验。进一步地,控制系统130能基于SLAM绘制的即使地图信息规划最为高效合理的清扫路径和清扫方式,大大提高机器人的清扫效率。
驱动系统140可基于具有距离和角度信息,例如x、y及θ分量,的驱动命令而操纵机器人100跨越地面行驶。驱动系统140包含驱动轮模块141,
驱动轮模块141可以同时控制左轮和右轮,为了更为精确地控制机器的运动,优选驱动轮模块141分别包括左驱动轮模块和右驱动轮模块。左、右驱动轮模块沿着由主体110界定的横向轴对置。为了机器人能够在地面上更为稳定地运动或者更强的运动能力,机器人可以包括一个或者多个从动轮142,从动轮包括但不限于万向轮。驱动轮模块包括行走轮和驱动马达以及控制驱动马达的控制电路,驱动轮模块还可以连接测量驱动电流的电路和里程计。驱动轮模块141可以可拆卸地连接到主体110上,方便拆装和维修。驱动轮可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接,到机器人主体110,且接收向下及远离机器人主体110偏置的弹簧偏置。弹簧偏置允许驱动轮以一定的着地力维持与地面的接触及牵引,同时机器人100的清洁元件也以一定的压力接触地面10。
清洁系统150可为干式清洁系统和/或湿式清洁系统。作为干式清洁系统,主要的清洁功能源于滚刷结构、尘盒结构、风机结构、出风口以及四者之间的连接部件所构成的清扫系统151。与地面具有一定干涉的滚刷结构将地面上的垃圾扫起并卷带到滚刷结构与尘盒结构之间的吸尘口前方,然后被风机结构产生并经过尘盒结构的有吸力的气体吸入尘盒结构。扫地机的除尘能力可用垃圾的清扫效率DPU(Dust pick up efficiency)进行表征,清扫效率DPU受滚刷结构和材料影响,受吸尘口、尘盒结构、风机结构、出风口以及四者之间的连接部件所构成的风道的风力利用率影响,受风机的类型和功率影响,是个负责的系统设计问题。相比于普通的插电吸尘器,除尘能力的提高对于能源有限的清洁机器人来说意义更大。因为除尘能力的提高直接有效降低了对于能源要求,也就是说原来充一次电可以清扫80平米地面的机器,可以进化为充一次电清扫100平米甚至更多。并且减少充电次数的电池的使用寿命也会大大增加,使得用户更换电池的频率也会增加。更为直观和重要的是,除尘能力的提高是最为明显和重要的用户体验,用户会直接得出扫得是否干净/擦得是否干净的结论。干式清洁系统还可包含具有旋转轴的边刷152,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁系统150的滚刷区域中。
能源系统160包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者下方的充电电极与充电桩连接进行充电。如果裸露的充电电极上沾附有灰尘,会在充电过程中由于电荷的累积效应,导致电极周边的塑料机体融化变形,甚至导致电极本身发生变形,无法继续正常充电。
人机交互系统170包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括手机客户端程序。对于路径导航型清洁设备,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
为了更加清楚地描述机器人的行为,进行如下方向定义:机器人100可通过相对于由主体110界定的如下三个相互垂直轴的移动的各种组合在地面上行进:横向轴x、前后轴y及中心垂直轴z。沿着前后轴y的前向驱动方向标示为“前向”,且沿着前后轴y的向后驱动方向标示为“后向”。横向轴x实质上是沿着由驱动轮模块141的中心点界定的轴心在机器人的右轮与左轮之间延伸。其中,机器人100可以绕x轴转动。当机器人100的前向部分向上倾斜,向后向部分向下倾斜时为“上仰”,且当机器人100的前向部分向下倾斜,向后向部分向上倾斜时为“下俯”。另外,机器人100可以绕z轴转动。在机器人的前向方向上,当机器人100向Y轴的右侧倾斜为“右转”,当机器人100向y轴的左侧倾斜为“左转”。
在上述的机器人100中,风机结构产生有吸力的气体后,可将滚刷结构扫起的灰尘等清洁对象吸入尘盒结构中;清洁对象被留存在尘盒结构中,以便收集并倾倒,而气体则继续沿风道进入风机结构中,并最终通过出风口排出。因此,风机结构产生的气体需要依次经过下述部件:滚刷结构→尘盒结构→风机结构→出风口。其中,尘盒结构通常被设置为可拆卸结构,以便于用户将尘盒结构从机器人100上拆卸后,倾倒已收集的灰尘等清洁对象,然后重新安装至机器人100进行使用。
然而,用户可能出于各种原因而忘记将尘盒结构安装回机器人100,导致机器人100直接启动时,可能使灰尘、颗粒状垃圾等在风机结构产生气体的吸力下,进入风机结构,造成电机被灰尘侵入、风机扇叶被颗粒状垃圾打坏等状况,严重影响机器人100的使用寿命。
为了解决上述技术问题,相关技术中提出了对尘盒结构的在位检测方案。为了便于理解相关技术中的在位检测方案,下面配合图5所示的示意图进行说明。其中,图5是根据一示例性实施例示出的一种自动清洁设备的结构分解示意图,如图5所示,该自动清洁设备可以包括:主机1和尘盒结构2;主机1的顶部设有容纳腔11,且尘盒结构2可置入该容纳腔11中,以安装至主机1中。当然,容纳腔11还可以位于主机1的其他位置,比如主机1后方(可参考图4所示y轴后向)侧边处等,本公开并不对此进行限制。
那么,相关技术中通过在容纳腔11的一侧安装微动开关,使得只有将尘盒结构2置入容纳腔11时,该微动开关才能够被触动,并使自动清洁设备的电路进入导通状态,否则自动清洁设备的电路将保持关闭状态,从而实现了对尘盒结构2的在位检测。
但是,相关技术中的上述方案存在下述问题:
1、微动开关的弹片在长期多次使用后会发生形变,从而无法准确指示尘盒结构2是否在位。微动开关的使用寿命以按压次数计算,并且个体差异较大,部分微动开关会提前失效。
2、微动开关在装配过程中很可能存在装配差异,从而可能导致开关不良的后果。
3、部分结构的微动开关采用弹簧件,而在放置尘盒结构2的容纳腔11内有可活动的突起,因而用户在装卸尘盒结构2时可能产生抠碰到突起的误操作,从而导致弹簧件被抠断直接导致微动开关失效。
4、尘盒结构2中灰尘可能进入微动开关的电路板,导致其电路失效。
综上,由于微动开关等机械件在稳定性、可靠性和统一性等方面存在严重缺陷,很可能无法准确实现对尘盒结构2的在位检测,甚至导致自动清洁设备无法正常工作。
因此,本公开通过改进诸如上述机器人100等自动清洁设备的结构,可以实现对尘盒结构2的在位检测,并有助于提升其稳定性、可靠性和统一性。
如图5所示,为了实现对尘盒结构2的在位检测,尘盒结构2中可以设置有非接触式感应元件31,且主机1中设置有非接触式感应配合元件32;其中,非接触式感应元件31与非接触式感应配合元件32可在一定范围内实现非接触式的配合感应,因而无需复杂的机械结构和装配关系,只要确保非接触式感应元件31与非接触式感应配合元件32处于可感应的距离范围内,即可实现两者之间的配合感应,从而实现对尘盒结构2的在位检测。
因此,通过事先对非接触式感应元件31与非接触式感应配合元件32的感应距离范围进行配置,可令非接触式感应元件31可在尘盒结构2被安装至主机1的情况下配合于非接触式感应配合元件32,使非接触式感应配合元件32能够感应到非接触式感应元件31。由于两者之间采用非接触式的感应方案,因而相比于每次均需要相互装配的机械结构,可以避免装配过程可能造成的挤压、折断、材料老化等意外状况,从而提升其应用过程中的可靠性。
1、元件类型
所有近距离非接触式的感应元件,均可以应用于本公开的技术方案中,本公开并不对此进行限制。为了便于理解,下面对可以采用的非接触式感应元件31和非接触式感应配合元件32进行举例说明:
1)磁片与霍尔传感器
在一示例性实施例中,非接触式感应元件31可以为磁片,而非接触式感应配合元件32可以为霍尔传感器。通过配置磁片的磁场强度与霍尔传感器的感应灵敏度之间的匹配关系,可使尘盒结构2被安装至主机1的情况下,该霍尔传感器恰好能够感应到磁片,从而实现对磁片所处尘盒结构2的在位检测。
当然,正如上文所述,本公开并不限制非接触式感应元件31与非接触式感应配合元件32之间的感应方向,因而类似于上述实施例,可以将霍尔传感器作为非接触式感应元件31而安装于尘盒结构2中,并将磁片作为非接触式感应配合元件32而安装于主机1中,同样可以实现上述在位检测,此处不再赘述。
2)光电耦合
在另一示例性实施例中,非接触式感应元件31可以为光耦器件的发光部,而非接触式感应配合元件32可以为光耦器件的受光部。通过考量尘盒结构2与主机1之间的安装关系,可以对发光部与受光部的安装位置、安装角度等进行合理配置,使得发光部可在尘盒结构2被安装至主机1的情况下,发出可使受光部输出预设电信号的光线,从而实现对发光部所处尘盒结构2的在位检测。
类似地,可以将光耦器件的受光部作为非接触式感应元件31而安装于尘盒结构2中,并将光耦器件的发光部作为非接触式感应配合元件32而安装于主机1中,同样可以实现上述在位检测,此处不再赘述。
2、信号传输
自动清洁设备中安装有控制部件,比如图1所示控制系统130中的MCU等,该控制部件可以获知对尘盒结构2的在位检测的检测结果,从而实现对自动清洁设备的相应控制。其中,当检测结果为尘盒结构2在位时,可以允许自动清洁设备启动清洁操作;而当检测结果为尘盒结构2不在位时,不允许自动清洁设备启动清洁操作,以避免对自动清洁设备的内部结构造成损坏或不利影响。
为使自动清洁设备中的控制部件获知检测结果,非接触式感应元件31与非接触式感应配合元件32中至少之一能够在尘盒结构2被安装至主机1的情况下,电连接至自动清洁设备中的控制部件,以将自身的感应结果告知该控制部件;然后,该控制部件可以根据获得的感应结果,处理得到上述的检测结果。举例而言,当非接触式感应元件31为磁片、非接触式感应配合元件32为霍尔传感器时,假定该霍尔传感器电连接至主板上的MCU,则当尘盒结构2未安装至主机1时,该霍尔传感器向MCU输出低电平,使该MCU确定尘盒结构2不在位;而当尘盒结构被安装至主机1时,该霍尔传感器向MCU输出高电平,使该MCU确定尘盒结构2在位。
3、安装位置
在本公开的技术方案中,非接触式感应元件31可以安装于尘盒结构2中的任意位置,本公开并不对此进行限制;类似地,非接触式感应配合元件32可以安装于主机1中的任意位置,本公开也并不对此进行限制。然而,对于非接触式感应元件31而言,通过改变其在尘盒结构2上的安装位置,可以实现不同的在位检测效果。
如图6-7所示,尘盒结构2可以包括:尘盒21和滤网22,且滤网22可拆卸地安装于该尘盒21上,因而非接触式感应元件31存在两种安装位置:安装于尘盒21中,或者安装于滤网22上。
1)如图6所示,假定非接触式感应元件31安装于尘盒21中。那么,当自动清洁设备得到的检测结果为尘盒结构2在位时,实际上可以确定包含非接触式感应元件31的尘盒21已经被安装至主机1的容纳腔11内;然而,由于滤网22与尘盒21之间的体积和形状均相差较大,导致对于用户而言滤网22相对不“显眼”,因而用户很可能在将滤网22拆卸后且并未恢复安装的情况下,直接将尘盒21安装至主机1。因此,自动清洁设备虽然会得到尘盒结构2在位的检测结果,但实际上并不能够确定该“尘盒结构2”是否完整,即是否包含滤网22,而是默认为滤网22已经被安装于尘盒21上。
2)如图7所示,假定非接触式感应元件31安装于滤网22上。那么,由于滤网22与尘盒21之间的体积和形状均相差较大,导致对于用户而言不可能单独将滤网22安装至主机1,而遗漏尘盒21,所以将导致下述两种安装情况:(1)用户未将滤网22安装至尘盒21,而单独将尘盒21安装至主机1,此时由于非接触式感应元件31位于滤网22上,因而自动清洁设备无法检测到尘盒结构2,因而检测结果为尘盒结构2不在位;(2)用户将滤网22安装至尘盒21,那么用户将完整的尘盒结构2安装至主机1后,自动清洁设备可以确定尘盒结构2在位。
因此,通过将非接触式感应元件31安装于滤网22上,不仅可以对尘盒结构2进行完整的在位检测,而且可以对滤网22进行检测,确保自动清洁设备得到“尘盒结构2在位”的检测结果时,该尘盒结构2中确实包含尘盒21和滤网22,从而避免气体在不经过滤网22过滤的情况下吹入风机结构,防止灰尘、颗粒状垃圾等被随之吹入风机结构并对风机结构造成损坏。由于滤网22上累积灰尘会大大降低风量影响吸尘效率,滤网是经常需要用户清理保持干净风路通畅的,用户在清理滤网22后很可能忘记将其装回而直接将尘盒21放入主机1,一旦开机清扫直接导致灰尘垃圾等进入风机结构造成损坏。实际上诸如扫地机器人等自动清洁设备由于忘装滤网22而导致的风机报废也是不少见的。由于滤网22的片状结构,导致在其上设计机械件进行在位识别是困难的。
可选择地,将非接触式感应元件31安装在滤网22的框架任意位置上,例如将磁片嵌装在滤网22的塑料框架上。
4、尘盒结构2
在本公开的技术方案中,尘盒21上可以形成至少两侧开口:一侧开口为图8所示的尘盒21上的入风口211,另一侧开口为图6所示的尘盒21上的出风口212;其中,如图6所示,滤网22可以安装于出风口212处,并通过使得滤网22覆盖该出风口212,确保灰尘等清洁对象滞留于尘盒21中,避免由出风口212被吹入后续的风机结构中。
在一示例性实施例中,如图8所示,尘盒21可以进一步拆分为:尘盒主体21A和设有入风口211的侧壁21B。由于入风口211设置于侧壁21B上,因而侧壁21B的规格必然大于入风口211,所以在将侧壁21B拆卸后,可形成规格大于入风口211的倾倒口213,便于用户对尘盒21中收集的灰尘等清洁对象进行倾倒。
图9示出了一示例性实施例的自动清洁设备的清洁系统150(参见图1)的剖视图,该清洁系统150包括上述的尘盒结构2,以及主机1中设置的滚刷结构4、风机结构5;当风机结构5处于工作状态时,外部环境中的气体将由滚刷结构4处进入自动清洁设备中,然后通过尘盒结构2中的尘盒21左侧(以图9所示的视角)的入风口211进入尘盒21,再由尘盒21右侧(以图9所示的视角)的出风口212进入风机结构5,最后由风机结构5排出外部环境中。那么,通过气体依次在滚刷结构4、尘盒结构2和风机结构5之间的流动,即可将滚刷结构4扫起的灰尘等清洁对象送入尘盒21内,实现清洁操作。
其中,尘盒21左侧的入风口211朝向其一侧(即图9所示的左侧)斜下方处的滚刷结构4,且入风口211所处平面垂直于由该入风口211吹入尘盒21的风向,那么当流动气体裹挟着清洁对象进入尘盒21时,首先被吹向位于入风口211另一侧(即图9所示的右侧)斜上方处的尘盒顶部214,使得流动气体的风速下降,从而使清洁对象从尘盒顶部214直接落下,从而存留于尘盒21中。通过对入风口211的角度配置,可以避免避免自动清洁设备停止清扫时灰尘等清洁对象落到滚刷结构4的主刷(即图9所示滚刷结构4中的圆形截面对应的部件)上,又能避免清洁对象被直接吹向并粘附到滤网22上,防止对滤网22造成阻塞。
进一步地,出风口212还与主机1中的风机结构5的进风口(图9未示出)导通;其中,滤网22的截面积配合于该进风口的截面积,从而使得尘盒21与风机结构5之间可以平滑地导流气体:一方面,滤网22的截面积不宜过大,使尘盒21与风机结构5之间不至于产生陡变,从而确保尘盒21中的风能够不产生涡流地导入风机结构5的进风口,既可以提高风量利用率,又能够降低噪声;另一方面,滤网22的截面积不宜过小,既能够使得尘盒21的风量利用率不至于降低过多(比如不小于预设利用率),又能够避免灰尘等清洁对象堵住滤网22,从而保证自动清洁设备的DPU。
在自动清洁设备的另一实施例中,如图10所示,风机结构5位于尘盒21之中的第一空间21A,滤网22位于风机结构5所处的第一空间21A与尘盒21的其余空间21B之间。那么,可以将非接触式感应元件31安装在尘盒21或者滤网22的框架上,而将非接触式感应配合元件32安装在主机1的尽可能靠近非接触式感应元件31的位置上。非接触式感应元件31与非接触式感应配合元件32之间尽可能靠近,从而避免远距离感应容易导致的误判,例如尘盒21中的带磁性垃圾引起的误判。
此外,在本公开的自动清洁设备中,由于气体需要在滚刷结构4、尘盒结构2与风机结构5之间进行流动,因而在气体流动时所需要经过的路径上,针对任意相邻结构之间的配合缝隙处,比如滚刷结构4与尘盒结构2的尘盒21的入风口211的结合处、尘盒21的出风口212与风机结构5的结合处等,均可以通过设置密封件,从而一方面避免气体泄露而降低风量利用率,另一方面防止灰尘等清洁对象随气体进入自动清洁设备的内部环境中,比如风机结构5的电机、扇叶等位置,有助于延长自动清洁设备的使用寿命。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。