本公开涉及基于输入图像的亮度分配来控制入射在显示面板上的光的量的液晶显示器。
背景技术:
已经开发了诸如液晶显示器(LCD)、等离子显示板(PDP)、有机发光二极管(OLED)显示器和电泳显示器(EPD)的各种平板显示器。液晶显示器通过基于数据电压控制施加至液晶分子的电场并且调节像素的透光率来显示图像。有源矩阵液晶显示器包括在每个像素中的薄膜晶体管(TFT)。
液晶显示器包括具有液晶层的显示面板、将光照射在显示面板上的背光单元、用于将数据电压供应至显示面板的数据线的源驱动器集成电路(IC)、用于将选通脉冲(或扫描脉冲)供应至显示面板的选通线(或扫描线)的选通驱动器IC、用于控制源驱动器IC和选通驱动器IC的控制电路、用于驱动背光单元的光源的光源驱动电路等。
输入图像的灰度由施加至显示面板的像素的数据电压表示。在显示深色图像时在液晶显示器上的图像的再现性由于背光而不佳。这是因为背光单元将均匀量的光照射在显示面板的整个屏幕上,而不考虑输入图像的亮度分配。因而,液晶显示器具有对对比度的改进的限制。
技术实现要素:
本公开提供了基于输入图像的亮度分配通过控制入射在显示面板上的光的量而能够改进对比度的光阀面板和使用该光阀面板的液晶显示器。
在一个方面,提供了一种光阀面板,该光阀面板包括:多个块,所述多个块经由数据输入线被供应电压,每个块被划分成经由电阻图案连接的多个分段电极。电压被分配至每个块的所述多个分段电极。
在另一方面,提供了一种光阀面板,该光阀面板包括:单个透明电极层,所述单个透明电极层经由数据输入线被供应电压。在每块的基础上所述数据输入线连接至所述单个透明电极层,所述块在所述单个透明电极层中被预先设置。在每个块中产生电压分配。
在又一方面,提供了一种液晶显示器,该液晶显示器包括:包括多个像素的显示面板,在所述显示面板上显示输入图像;背光单元,所述背光单元被配置为将光照射到所述显示面板上;以及光阀面板,所述光阀面板布置在所述显示面板与所述背光单元之间并且被配置为根据所述输入图像来调节由所述背光单元照射的光的量。所述光阀面板包括经由数据输入线被供应电压的多个块,每个块被划分成经由电阻图案连接的多个分段电极。电压被分配至每个块的所述多个分段电极。
附图说明
附图被包括进来以提供对本发明的进一步理解并被并入且构成本说明书的一部分,附图例示了本发明的实施方式,并且与说明书一起用于解释本发明的原理。在附图中:
图1是根据本发明的实施方式的液晶显示器的框图;
图2是例示在图1中示出的显示面板、光阀面板和背光单元的堆叠结构的截面图;
图3例示了从光阀面板获得的对比度的改进效果;
图4例示了通过当显示面板的金属线和光阀面板的金属线彼此交叠时生成的光的干扰的摩尔纹出现;
图5例示了由显示面板和光阀面板之间的间隙而产生的颜色失真;
图6例示了当与明亮的框相邻的深色的框被接通从而防止侧视角的颜色失真时出现不好的亮线的示例;
图7例示了显示面板的像素数据调制方法和光阀面板的阻挡亮度控制方法;
图8例示了当经由图7的(C)中例示的控制方法控制显示面板的数据和亮度时在侧视角处的像素的亮度;
图9是例示将光阀面板划分成块的示例的平面图;
图10是图9的虚线框A的放大图并且是示出相邻块的四个电压馈送位置、从块划分的分段电极以及分段电极之间的电阻图案的平面图;
图11是图10的虚线框D的放大平面图;
图12和图13是例示分段电极的沉积方法的平面图;
图14、图15、图16、图17例示了在图12中示出的光阀面板的电极结构的模拟结果;以及
图18例示了根据本发明的实施方式的光阀面板的块结构。
具体实施方式
现在将详细参照本发明的实施方式,在附图中例示了实施方式的示例。只要可能,在所有附图中将使用相同的附图标记来指示相同或相似的部件。要注意,如果确定现有技术会误导本发明的实施方式,则将省略已知技术的详细说明。
参照图1和图2,根据本发明的实施方式的液晶显示器包括含有像素阵列的显示面板PNL1、将光照射在显示面板PNL1上的背光单元BLU、布置在显示面板PNL1和背光单元BLU之间的光阀面板PNL2、第一面板驱动电路、第二面板驱动电路和背光驱动电路40。
显示面板PNL1包括布置为彼此相反的上板和下板且液晶层插置在它们之间。显示面板PNL1的像素阵列包括基于数据线DL和选通线GL的交叉结构布置为矩阵形式的像素并且显示输入的图像。每个像素使用由利用数据电压经由薄膜晶体管(TFT)充电的像素电极1与供应有公共电压Vcom的公共电极2之间的电压差驱动的液晶分子来调节光的传输量。像素电极1和公共电极2可以由诸如铟锡氧化物(ITO)的透明电极材料形成。
显示面板PNL1可以实现为任何已知的液晶模式,包括扭曲向列(TN)模式、垂直配向(VA)模式、共面转换(IPS)模式、边缘场切换(FFS)模式等。
显示面板PNL1的下板包括下部透明基板12。在下部透明基板12上,形成数据线DL、选通线GL、公共电极2、TFT、连接至TFT的像素电极1、连接至像素电极1的存储电容器Cst等。TFT分别形成在子像素中并且连接至像素电极1。TFT可以实现为非晶硅(a-Si)TFT、低温多晶硅(LTPS)TFT、氧化物TFT等。TFT分别连接至子像素的像素电极1。公共电极2和像素电极1彼此分开,且绝缘层插置在它们之间。
显示面板PNL1的上板包括上部透明基板11。在上部透明基板11上,形成包括黑底和多个滤色器的滤色器阵列。
偏光膜13和偏光膜14分别附接至显示面板PNL1的上板和下板。用于设置液晶的预倾角的配向层分别形成在显示面板PNL1的上板和下板上。用于保持液晶单元Clc的单元间隙的间隔件可以形成在显示面板PNL1的上板和下板之间。
背光单元BLU可以实现为直下式背光单元或侧光式背光单元。背光单元BLU包括光源LS、导光板LGP、光学片OPT等。光源LS可以实现为诸如发光二极管(LED)的点光源。根据由背光单元驱动器40供应的驱动电压独立地调节光源LS的亮度。光学片OPT包括一个或更多个棱镜片和一个或更多个扩散片。光学片OPT扩散从导光板LGP入射的光并且以基本垂直于显示面板PNL1的光入射表面的角度折射光的传播路径。
光阀面板PNL2布置在显示面板PNL1和背光单元BLU之间。光阀面板PNL2基于施加至光阀面板PNL2的上板的电压与施加至光阀面板PNL2的下板的电压之间的差驱动液晶分子并且调节要照射在显示面板PNL1上的光的量。光阀面板PNL2是使用电控液晶分子与输入图像同步地调节光的量的液晶快门。光阀面板PNL2包括彼此相反的上板和下板,且液晶层插置在它们之间。光阀面板PNL2可以实现为扭曲向列(TN)模式。也可以使用其它液晶模式。
光阀面板PNL2可以被划分成多个块,并且每个块再被细分成多个分段电极。由于分段电极之间的电阻,电压被分配至每个块的多个分段电极。因此,在每个分段电极的基础上,块的亮度可以变化。
光阀面板PNL2的下板包括下部透明基板22。下部透明基板22包括分别连接至块的数据输入线LVL。所述块中的每个块包括沿水平方向布置的两个或更多个分段电极并且在竖直方向上被划分成两个或更多个分段电极。数据输入线LVL连接至分段电极并且将电压直接供应至每个块。因此,光阀面板PNL2不需要TFT和选通线。因此,本发明的实施方式可以防止摩尔纹现象和亮线现象并且还能通过简化光阀面板PNL2的结构来减少光阀面板PNL2的制造工艺的数量,由此增加产量。另外,本发明的实施方式省去了用于驱动光阀面板PNL2的选通驱动电路并且由此能够实现便宜的光阀面板PNL2。
分段电极、各个块之间的电阻图案和数据输入线LVL由诸如铟锡氧化物(ITO)和铟锌氧化物(IZO)的透明电极材料形成。数据输入线LVL可以由诸如Cu、Mo、Ti等的其它金属形成。优选的但不是必需的,将数据输入线LVL配置为透明电极,以防止摩尔纹现象。数据输入线LVL可以由低电阻金属形成以便补偿透明电极的电阻。光阀面板PNL2的下板不包括TFT和选通线。
分段电极可以具有与像素电极1相同的尺寸,以便分段电极与显示面板PNL1的像素相反。也可以使用其它尺寸。经由光阀面板PNL2的数据输入线LVL,分段电极被供应有数据电压。
光阀面板PNL2的液晶分子基于分段电极的电压和公共电压之间的差被驱动并且调节照射在显示面板PNL1上的光的量。经由数据输入线LVL施加至分段电极的数据电压根据输入图像的亮度分配而变化。以与显示面板PNL1的公共电压Vcom相同的电压水平按照相同的方式将公共电压施加至所有分段电极。
光阀面板PNL2的上板包括上部透明基板21。公共电极形成在上部透明基板21上。公共电极可以由诸如铟锡氧化物(ITO)的透明电极材料形成。光阀面板PNL2的上板不包括用于增加透光率的滤色器。如有必要或者希望的话,光阀面板PNL2的上板可以包括黑底。
偏光膜24附接至光阀面板PNL2的下板。配向层在光阀面板PNL2的上板和下板处分别形成在接触液晶层的表面上。可以在光阀面板PNL2的上板和下板之间形成用于保持液晶单元Clc的单元间隙的间隔件。
显示面板PNL1和光阀面板PNL2可以使用诸如光学透明胶(OCA)的粘合剂23而附接至彼此。
第一面板驱动电路包括第一时序控制器100、第一数据驱动器20和选通驱动器30。第一面板驱动电路将输入图像的数据施加至像素。
光阀面板PNL2的下电极可以被配置为具有高电阻的单个透明电极层。因为大量电流在电压馈送位置流入高电阻的透明电极层,所以在电压馈送位置处的电压下降增大。因此,可能出现峰值电压。电压馈送位置是数据输入线LVL和透明电极层的连接部分。随着电压馈送位置与远离电压馈送位置的位置处的电阻差增大,电压下降可能增大。
高电阻的透明电极层可以由铟锌氧化物(IZO)形成。可以使用其它材料。因此,当在每块的基础上将数据输入线LVL连接至具有高电阻的透明电极层时,可以逐渐调节块的亮度而不用将块划分成电阻图案和分段电极。
光阀面板PNL2的透明电极层被划分成分段电极并且电阻图案连接在分段电极之间的示例可以被应用于具有低电阻的透明电极。虽然不划分高电阻的透明电极层,但是可能由于高电阻而产生电压分配。因此,不需要添加单独的电阻器。大量生产的ITO可以具有约50ohm/□(或ohm/sq)的薄层电阻和最大约250ohm/□(或ohm/sq)的薄层电阻。存在铟锌氧化物(IZO)作为大于ITO的薄层电阻的高电阻的透明电极层的示例。
在图2中,“DIC1”指示集成电路(IC),在该集成电路中集成有第一数据驱动器20。第一面板驱动电路可以集成到一个IC中。
第一时序控制器100将从主机系统200接收的输入图像的数字视频数据发送至第一数据驱动器20。第一时序控制器100接收与从主机系统200输入的图像的数据同步的时序信号。时序信号包括竖直同步信号Vsync、水平同步信号Hsync、数据使能信号DE和时钟信号CLK等。第一时序控制器100基于与输入图像的像素数据一起接收的时序信号Vsync、Hsync、DE和CLK控制第一数据驱动器20和选通驱动器30的操作时序。第一时序控制器100可以将用于控制像素阵列的极性的极性控制信号发送至第一数据驱动器20的每一个源驱动器IC。
第一数据驱动器20的输出信道连接至像素阵列的数据线DL。第一数据驱动器20从第一时序控制器100接收输入图像的数字视频数据。第一数据驱动器20在第一时序控制器100的控制下将输入图像的数字视频数据转换成正伽玛补偿电压和负伽玛补偿电压并且输出正数据电压和负数据电压。第一数据驱动器20的输出电压被供应至数据线DL。第一数据驱动器20在第一时序控制器100的控制下转变要供应至像素的数据电压的极性。
选通驱动器30在第一时序控制器100的控制下将与数据电压同步的选通脉冲顺序地供应至选通线GL。从选通驱动器30输出的选通脉冲与供应至数据线DL的数据电压同步。
第二面板驱动电路包括第二时序控制器110和第二数据驱动器50。第二面板驱动电路与输入图像同步地调节由光阀面板PNL2发送的光的量并且改进在显示面板PNL1上再现的图像的对比度。在图2中,“DIC2”指示IC,在该IC中集成有第二数据驱动器50的电路。第二面板驱动电路可以集成到一个IC中。
第二时序控制器110将输入图形的数据发送至第二数据驱动器50。第二时序控制器110从主机系统200接收与输入图像的数据同步的时序信号。时序信号包括竖直同步信号Vsync、水平同步信号Hsync、数据使能信号DE和时钟信号CLK等。第二时序控制器110基于与输入图像的像素数据一起接收的时序信号Vsync、Hsync、DE和CLK控制第二数据驱动器50的操作时序。
第二数据驱动器50从第二时序控制器110接收输入图像的数字视频数据。第二数据驱动器50在第二时序控制器110的控制下将输入图像的数字视频数据转换成正伽玛补偿电压和负伽玛补偿电压并且输出正数据电压和负数据电压。第二数据驱动器50的输出电压被供应至数据输入线LVL。第二数据驱动器50在第二时序控制器110的控制下转换要供应至像素的数据电压的极性。
可以按照各种类型来集成第一面板驱动电路和第二面板驱动电路。例如,第一时序控制器100和第二时序控制器110可以集成到一个IC中。第一面板驱动电路和第二面板驱动电路可以集成到一个IC中。
主机系统200可以是电视系统、机顶盒、导航系统、DVD播放器、蓝光播放器、个人计算机(PC)、家庭影院系统、电话系统、包括显示器或与显示器结合地操作的其它系统中的一个。
根据本发明的实施方式的液晶显示器还包括电力单元(未示出)。电力单元生成使用DC-DC转换器驱动显示面板PNL1和光阀面板PNL2所需的电压。所述电压包括高电位电力电压VDD、逻辑电力电压VCC、伽玛基准电压、选通高电压VGH、选通低电压VGL、公共电压Vcom等。高电位电力电压VDD是数据电压的最大值,显示面板PNL1的像素将被充电至该电压。逻辑电力电压VCC是第一面板驱动电路和第二面板驱动电路的IC电力电压。选通高电压VGH是选通脉冲的高逻辑电压,该电压被设置为等于或大于像素阵列的TFT的阈值电压。选通低电压VGL是选通脉冲的低逻辑电压,该电压被设置为小于像素阵列的TFT的阈值电压。选通高电压VGH和选通低电压VGL被供应至选通驱动器30。选通脉冲在选通高电压VGH与选通低电压VGL之间摆动。公共电压Vcom被供应至液晶单元Clc的公共电极2。电力单元划分高电位电力电压VDD并且生成伽玛基准电压。伽玛基准电压由安装在第一数据驱动器20内的电压功分器电路划分并且根据灰度被划分成正伽玛基准电压和负伽玛基准电压。
光阀面板PNL2与在像素阵列上显示的输入图像的数据同步地精确控制照射在每个像素上的光的量,并且使在显示面板PNL1上再现的图像的对比度最大化。参照图3将对此进行描述。
在图3中,图3的(A)例示了当在不具有光阀面板PNL2的情况下背光直接照射在显示面板PNL1时在显示面板PNL1上显示的样本图像的示例;图3的(B)例示了在光阀面板PNL2上再现的样本图像;并且图3的(C)例示了当将光阀面板PNL2布置在显示面板PNL1与背光单元BLU之间时在液晶显示器上再现的图像的对比度。光阀面板PNL2能够通过进一步减小入射在输入图像的深色部分上的光的量来提高对比度。
在显示面板PNL1和光阀面板PNL2中的每一个上形成线。线不是透明的,并且可以形成为具有高反射率的金属线。金属线包括竖直方向的数据线、竖直方向的数据输入线、水平方向的选通线和水平方向的公共线。公共线连接至像素的公共电极并且将公共电压Vcom供应至公共电极。因为具有高反射率的金属线通过反射外部光导致对比度下降,因此金属线和TFT被黑底图案覆盖。在这种情况下,当显示面板PNL1的线与光阀面板PNL2的线交叠时,如果产生如图4所示的错位,则可能由于光的干扰在竖直方向和水平方向产生摩尔纹现象。为了减少摩尔纹现象,可以在显示面板PNL1和光阀面板PNL2之间布置扩散光的扩散片。另一方面,本发明的实施方式从光阀面板PNL2去除水平线并且使用透明电极材料形成上板、下板和线的电极,由此在不添加扩散片的情况下使摩尔纹现象最小化。
当用户以前视角观看液晶显示器时,用户可以以期望的亮度观看图像。但是,当用户以侧视角观看液晶显示器时,图像的亮度和颜色可能改变。如图5的中间的图所示,前视角是当用户以90°角观看显示面板PNL1的显示表面时获得的视角。侧视角是当用户以倾向于左侧或右侧的角度观看显示面板PNL1的显示表面时获得的视角。在图5中,左边的图以45°的左视角示出,并且右边的图以45°的右视角示出。具体地,因为预定间隙ΔG无条件地形成在显示面板PNL1和光阀面板PNL2之间,因此,包括光阀面板PNL2的液晶显示器的颜色失真可能在侧视角更清楚地出现。在图5中,只有光阀面板PNL2的位于像素下的用白色表示的块传输光,并且光阀面板PNL2的其它块阻挡光。在这种情况下,当用户以侧视角观看液晶显示器时,一些颜色的亮度减小,并且颜色失真出现。可以考虑在图6中示出的用于调节光阀面板PNL2的亮度的方法以便改进侧视角的亮度。应注意,在图6中示出的示例不是现有技术。
图6例示了当与光阀面板PNL2的明亮的框相邻的深色的框被接通从而防止侧视角的颜色失真时出现不好的亮线的示例。明亮的框布置在(对应于)显示面板PNL1的明亮的像素(在下文中,称为“ON像素”)下,并且表示光阀面板PNL2的块(下文中,称为“ON块”)将光照射在ON像素上。明亮的像素(或ON像素)是被施加了高灰度(例如,白色灰度)的数据的像素。深色框表示光阀面板PNL2的布置在与显示面板PNL1的ON像素相邻的深色像素(下文中,称为“OFF像素”)下的块。OFF像素是被施加了低于ON像素的低灰度像素(例如,黑色灰度)的数据的像素。如图6所示,当与ON块相邻的OFF块的亮度增加时,在侧视角的红色数据、绿色数据和蓝色数据中的每一种数据能够看起来具有期望的亮度。因此,能够减小或防止在侧视角的颜色失真。
另一方面,当OFF块的亮度增大时,OFF像素的亮度可以增大。因此,在前视角的OFF像素的亮度可以增大。为了补偿在前视角的图像质量下降,使用减小与ON像素相邻的OFF像素的数据值的调制方法,OFF像素的亮度可以减小。但是,该调制方法可能导致亮线现象,在该亮线现象中接收数据的OFF像素与接收原始数据的OFF像素之间的边界看起来是明亮的。
本发明的实施方式通过将电压分配至块经由渐变方法调节光阀面板PNL2的亮度使得在光阀面板PNL2中与ON块相邻的OFF块的亮度逐渐改变,以便减小侧视角的亮度和颜色失真并且防止亮线现象。另外,本发明的实施方式可以按OFF块的渐变亮度控制方法的逆向法控制在光阀面板PNL2中与ON块相邻的OFF块的灰度。
图7例示了显示面板的像素数据调制方法和光阀面板的阻挡亮度控制方法。图8例示了当经由图7的(C)中例示的控制方法控制显示面板的数据和亮度时在侧视角处的像素的亮度。
在图7中,D1表示ON像素的位置和在ON像素下的ON块的位置,并且D2和D3表示OFF像素的位置和在OFF像素下的OFF块的位置。
图7的(A)例示了高灰度数据仅被施加至ON像素,并且只有ON块以高亮度被接通的示例。图7的(B)例示了通过ON块的亮度来增加与ON块相邻的OFF块的亮度并且减小要施加至与ON像素相邻的OFF像素的数据的灰度从而改进侧视角的方法。
图7的(C)和图8例示了在通过ON块的亮度增加与ON块相邻的OFF块的亮度时,随着OFF块远离ON块而逐渐减小OFF块的亮度从而改进侧视角和亮线的方法。光阀面板PNL2的每个块被划分成多个分段电极,并且块的亮度根据施加至每个块的分段电极的电压以渐变的方法增大或减小块的亮度。分段电极的尺寸可以设置为像素尺寸,并且在每个像素的基础上可以调节背光亮度。在该方法中,要施加至与ON像素相邻的OFF像素的数据的灰度可以减小,并且在OFF块的一个区域中随着OFF像素远离ON像素,要施加至OFF像素的数据的灰度可以逐渐增加。光阀面板PNL2的每个块布置在显示面板PNL1的多个像素下并且将光照射在像素上。因此,在与ON块相邻的OFF块中存在多个OFF像素,并且可以独立地调节OFF像素的灰度,如图7的(C)和图8所示。优选地,但不是必须的,像素数据调制方法使用在图7的(C)中示出的渐变方法。也可以使用其它方法。例如,光阀面板PNL2的亮度可以使用图7的(C)的渐变方法,并且像素数据调制方法可以使用在图7的(B)或图7的(C)中示出的方法。
图9是例示将光阀面板PNL2划分成块的示例的平面图。图10是图9中虚线框‘A’的放大图并且是示出相邻块的四个电压馈送位置、从块划分的分段电极以及分段电极之间的电阻图案的平面图。在图9中,由‘BL’表示的虚线框指示一个块。图11是图10的由“D”表示的虚线框的放大平面图。
参照图9至图11,光阀面板PNL2被划分成M×N个块BL,其中,M和N是等于或大于2的正整数。每个块BL再细分成m×n个分段电极SEG,其中,m和n是等于或大于2的正整数。相邻的分段电极SEG经由电阻图案R连接。数据输入线LVL、分段电极SEG和电阻图案R可以由诸如铟锡氧化物(ITO)的透明电极材料形成从而防止摩尔纹现象。
数据输入线LVL连接至布置在电压馈送位置91处的分段电极SEG,该电压馈送位置91位于每个块的边缘。数据输入线LVL和分段电极SEG经由绝缘层彼此绝缘,并且布置在块的边缘91处的分段电极SEG经由穿过绝缘层的接触孔连接至数据输入线LVL。
经由数据输入线LVL将数据电压直接供应至块BL。因此,光阀面板PNL2不需要TFT或选通线(或扫描线)。
分段电极SEG之间的电阻图案R给出对分段电极A、B和C的电阻,使得分段电极A、B和C能够被供应不同的电压。如图10所示,当0V的数据电压被直接施加至布置在相邻块中的一个块的电压馈送位置91处的分段电极SEG,10V的数据电压被直接施加至布置在其它块的电压馈送位置92处的分段电极SEG时,电压经由电阻被分配至它们之间的分段电极SEG。例如,电压经由电阻图案的电阻被分配至供应有0V电压的分段电极SEG与供应有10V电压的分段电极SEG之间的分段电极SEG,并且0V与10V之间的电压被供应至各个分段电极SEG。施加至分段电极SEG的电压根据分段电极SEG的位置而变化。例如,随着分段电极SEG与供应有10V电压的分段电极SEG之间的距离减小,接近10V的电压可以被施加至该分段电极SEG。另外,随着分段电极SEG与供应有0V电压的分段电极SEG之间的距离减小,接近0V的电压可以被施加至该分段电极SEG。
施加至分段电极SEG的电压可以根据电阻图案R的电阻值来控制。如图11所示,电阻图案R可以形成为锯齿图案的弯曲部分并且可以连接相邻的分段电极SEG。可以根据电阻图案R的长度或厚度来调节电阻图案R的电阻。例如,可以通过增大电阻图案R的长度或减小电阻图案R的厚度来增大电阻值。另一方面,可以通过减小电阻图案R的长度或增大电阻图案R的厚度来减小电阻值。
光阀面板PNL2的分段电极SEG的结构可以设计为各种形状,如图12和图13所示。由于分段电极SEG的形状、尺寸和配置可以不同地改变,因此分段电极SEG的结构不限于图12和图13。如图12所示,相同尺寸的分段电极SEG可以布置在一个块中,并且可以经由电阻图案R连接以形成网状形状。如图13所示,在一个块中的分段电极SEG1至SEG4可以根据位置而具有不同的尺寸、形状等并且可以经由电阻图案R连接以形成网状形状。例如,如图13所示,布置在一个块的中间的第一分段电极SEG1可以设计为具有最大尺寸;布置在第一分段电极SEG1的上侧、下侧、左侧和右侧上的第二分段电极SEG2和第三分段电极SEG3可以设计为比第一分段电极SEG1更小;并且布置在一个块的边缘处的第四分段电极SEG4可以设计为比第二分段电极SEG2和第三分段电极SEG3更小。
光阀面板PNL2的液晶可以在TN模式下被驱动。在TN模式下的液晶单元的亮度可以根据正常白色的透光率-电压曲线(在下文中,称为“T-V曲线”)来调节。如图16所示,在正常白色的T-V曲线中,随着电压下降,(与Y轴相对应的)透光率增大。因此,液晶单元的亮度增大。相反,随着电压升高,(与Y轴相对应的)透光率减小。因此,液晶单元的亮度减小。
图14至图17例示了在图12中示出的光阀面板的电极结构的模拟结果。在图14和图15中示出的电压分配曲线中,X轴是块位置,Y轴是电压。在图16和图17中示出的亮度分配曲线中,X轴是块位置,Y轴是亮度。
参照图14,在电阻值均匀分配的5×5个块中,10V供应至布置在中间的9个块,并且0V供应至其余的边缘块。作为模拟结果,能够看出,逐渐改变的电压分配至与ON块相邻的OFF块。但是,在电压馈送位置处可能产生快速电压下降,在该电压馈送位置处电压直接供应至连接至数据输入线的分段电极SEG。连接至数据输入线并且被直接供应电压的分段电极SEG可以被黑底覆盖。但是,从图16的T-V曲线可以看出,由于峰值电压不导致液晶单元的亮度的急剧变化,因此可以省略黑底。
参照图15,可以通过对相邻的分段电极SEG不同地施加电阻来减小峰值电压,并且因此能够防止急剧的电压变化。通过减小在大量电流流入的部分(即,电压馈送位置)处的电阻以及增加在小量电流流入的部分处的电阻可以减小峰值电压。
参照图16和图17,在以TN模式驱动光阀面板PNL2的模拟结果中,峰值电压不导致亮度变化,因为亮度在T-V曲线中是常数。在T-V曲线中,X轴是电压(V),Y轴是透光率(T)。在T-V曲线中,实线和虚线指示两个TN模式样本,每个样本具有不同的介电常数。虚线曲线是低介电常数的TN模式样本。
图18例示了根据本发明的实施方式的光阀面板的块结构。
参照图18,光阀面板PNL2的下电极可以形成为高电阻的单个透明电极层。当在每块的基础上将数据输入线连接至高电阻的透明电极层时,可以在每个块中产生电压分配而不将块划分成电阻图案和分段电极。因此,可以经由渐变方法调节块的亮度。
如上所述,本发明的实施方式能使用光阀面板使对比度最大化并且在没有TFT和选通线的情况下通过将数据电压经由数据输入线供应至光阀面板的块并且通过使用透明电极材料形成块的分段电极和数据输入线能够防止摩尔纹现象。
本发明的实施方式经由渐变方法调节光阀面板的亮度使得每个块的亮度逐渐增大或减小,由此防止在侧视角处的亮度和颜色失真并且防止亮线现象。
本发明的实施方式能够防止摩尔纹现象和亮线现象并且通过简化光阀面板的结构能够减少光阀面板的制造工艺的数量,由此增加产量。另外,本发明的实施方式省去了用于驱动光阀面板的选通驱动电路,由此能够实现便宜的光阀面板。
虽然已经参照本发明的多个例示性实施方式描述了实施方式,但是应理解,本领域技术人员可以设计落入本公开原理的范围内的各种其它修改和实施方式。更具体地,在本公开、附图和随附权利要求的范围内,对主题组合布置的构件和/或布置的各种变型和修改都是可能的。除了对部件和/或布置的变型和修改以外,另选用途对本领域技术人员也是显而易见的。
相关申请的交叉引用
本申请要求于2015年7月29日提交的韩国专利申请No.10-2015-0107596的优先权,该专利申请出于所有目的以引用方式并入本文,如同在本文中进行完全阐述。