本发明总体上涉及材料科学领域,并且更具体地涉及材料沉积工艺,并且在一个实施例中涉及粉末超合金材料的激光沉积。
背景技术:
由本发明人创作的美国专利申请No.US 2013/0136868 A1公开了用于沉积另外地难以焊接的超合金材料的改进的方法。那些方法包括使粉末超合金材料与粉末焊剂材料一起激光熔化,以在一层保护性熔渣下面形成熔池。除了保护熔融合金材料不受大气影响之外,该熔渣还执行清洁功能。在固化时,从新沉积的超合金材料移除熔渣以露出无裂纹的表面和沉积物。这些方法已被证实即使对于超出传统的可焊性范围之外的超合金材料也是有效的,如图1所示。
附图说明
在以下的描述中考虑下列附图解释本发明,附图示出:
图1是现有技术的图表,其图示各种超合金材料的相对可焊性。
图2图示沉积粉末材料的方法。
图3是由图2图示的方法产生的具有分级组分的部件的横截面视图。
图4是第一箔/粉末组合件(package)的横截面视图。
具体实施方法
本发明人已经发现,当在大功率激光熔覆工艺中沉积超合金粉末时,原始粉末材料和熔覆材料之间能够存在铝含量的显著降低。导致该损失的机制被推测为包括元素的蒸发以及铝与焊剂材料(其使铝并入熔渣)的氧化、氮化和/或反应,从而使得更少的铝可用于熔覆金属合金沉积物。在一些应用中,这种铝的损失可以是特别有害的,因为铝对于高温抗氧化/抗腐蚀是重要的,并且因为铝促成由伽马析出相(gamma prime)形成引起的强化。在粉末沉积工艺期间,取决于具体粉末沉积工艺的材料和工艺变量,其它元素组分也可能在各种程度上变得易散(fugitive)。
本发明人已经研发出一种粉末沉积工艺,该工艺通过将易散材料的熔化的箔与熔化的粉末材料一起合并入熔池中,创造性地补偿了在沉积工艺中粉末材料的元素组分的损失。所得的熔池中易散材料的增加的浓度补偿了沉积过程中元素的损失,从而产生带有期望的组成的熔覆材料的沉积。以这种方式,现在沉积材料能够与原始合金粉末具有相同组成,或者沉积材料能够具有这种组成在某种程度上有目的地修改的变化。例如,可以使用具有一定厚度的铝箔,其准确地补偿在沉积过程期间铝损失的量,或者可以有利的是使用更厚的铝箔,以在沉积熔覆层中提供大于原始粉末合金中存在的铝浓度的铝浓度。注意的是,如本文所使用的箔厚度可以包括单层箔,或者可以包括多于一层的箔的复合厚度。当使用多于一层的箔时,层可以被定位成彼此相邻,或者它们可以由粉末分开。可以预见的是,可以使用一定范围的箔厚度,在某些实施例中,包括从0.00004到2mm的范围内的箔。
图2图示了根据一个实施例的工艺过程。基底材料10,诸如具有大于3wt.%的铝含量的超合金材料,具有表面12,期望的是通过粉末沉积工艺将额外的材料沉积于该表面上。可以根据期望由现有技术中已知的任何方法清洁或者以其它方式准备表面12,并且这种清洁或准备的细节在本公开的范围之外。一层箔14定位在基底表面12上,且然后一层粉末金属16(诸如具有与基底10相同的组成的粉末超合金材料)被放置在箔14上。术语“金属”以其通常含义在本文中使用,且意味着包括金属合金,视情况而定。可以理解的是,在其它实施例中,箔14可以放置在粉末金属层16的顶部上或者其内。然后放置一层焊剂材料18以覆盖粉末金属层16,不过焊剂的使用以及焊剂相对于粉末金属16和箔14的物理位置可以根据具体应用来选择。例如,焊剂可以与粉末金属混合,或者焊剂可以与粉末金属一体化为聚结颗粒。能量束20(诸如激光束),横贯22穿过基底10,以熔化粉末18、16以及箔14从而形成熔池24。本领域技术人员将理解的是,基底10的薄表面层也可以被熔化以保证完全粘接,但是为了简化本文的描述,省略熔池24的该组分。当能量束20向前运动时,熔池24固化以在基底10上形成一层沉积材料26,其由一层熔渣28覆盖。稍后移除熔渣28(未示出)以暴露新的熔覆表面30。该过程能够在新的熔覆表面30上重复进行任意次数,以产生具有期望厚度的一层沉积材料。
当例如使用图2图示的工艺来将合金Mar-M-247粉末沉积到Mar-M-247基底上时,金属箔14可被选择为是具有期望厚度的纯铝(即,纯度至少为99%),使得尽管通过激光沉积过程损失了可观的铝,该层的沉积材料26仍与Mar-M-247基底的组成相匹配。
替代性地,可以使纯铝粉末而不是纯铝箔熔化到熔池中以补偿易散的铝。然而,纯铝粉末呈现每单位体积大的表面积,并且使用纯铝粉末会使大量氧并入熔池内。图2所图示的工艺过程避免了该问题,因为箔具有每单位体积相对更低的表面积。此外,使用箔确保遍及熔覆表面12的额外铝的均匀分布,从而消除了对于均匀地混合铝粉末与远为更加致密的超合金粉末的需要。而且,由于爆炸的危险,铝粉末的拥有是受控的,而纯度水平高于99%甚至高达99.999%且厚度小到0.00004mm的铝箔则可商业地获得。因此,可以精确地调节添加到熔池24的铝的量,以适应针对任何具体应用的铝损失的量。
图2所图示的工艺可用于补偿除了铝之外的易散材料(例如钛)或者所沉积的金属粉末的其它组分元素中的任何元素的损失。此外,可以将非易散的元素或并非所沉积的金属粉末的组分元素的元素添加到熔池24,或者可以以小于、等于或者大于沉积过程期间损失的元素的量添加易散的元素,从而允许在不需要购买惯常粉末材料的情况下在熔覆材料中得到惯常复合物。在材料沉积工艺中箔与粉末一起熔化提供了对熔覆状态(as-clad)材料复合物的方便和精确的控制。对于其中具有最小的商业可获得的厚度的箔提供过多易散元素的应用,可以通过使用呈除了箔之外的形式(诸如呈材料的条带或者筛网的形式)的金属预制件来提供更少量的易散材料。
由于在熔化过程中通过使能量束20运动生成的大能量焊剂的突然和扰乱性添加所形成的搅拌和循环,熔融的金属粉末16和熔融的箔14的混合可以在熔池24内自然地实现。焊剂材料18在熔池24内的自然浮力有助于混合效果,并且结果是贯穿该层沉积材料26的一致的化学组成。该层焊剂18在粉末金属16上和在箔14上的位置被示为有效地保护高度活性的熔融铝箔不受大气影响,不过在其它实施例中其它的空间布置也可证实是有利的。也可以使用复合金属合金/焊剂粉末。尽管额外的粉末的添加可以与加热同时发生,但是预先放置粉末16、18允许粉末在熔融过程期间将箔14保持在恰当位置。
图3图示通过以下工艺形成的产品40,其中金属合金粉末(未示出)连同相应的金属预制件(未示出)一起熔化进入基底48之上的连续沉积层42、44、46中,以形成具有期望厚度的熔覆层50。通过在层42、44或46中的至少两层之间使用具有不同参数的金属预制件,产品40可以独特地形成为具有穿过熔覆层50的厚度的分级组成。例如,该预制件从一层到另一层可以具有不同厚度,可以具有不同材料组成,和/或可以具有不同的形状(即,箔、网或条带)。
该箔和粉末组分也可以被制备为组合件并且一起被施加到待熔覆表面上。图4图示箔/粉末组合件60的一个实施例,其包括由顶部箔片64和底部箔片66覆盖的非平面中心箔片62。粉末68占据在限定在片62、64、66之间的内部体积内中。粉末68可以仅是金属合金或者也可以包括焊剂材料。片62、64、66可以全部具有相同材料和厚度,或者针对各种应用可以具有不同的组成和/或厚度。该箔/粉末组合件60可以在没有额外的粉末的情况下直接定位于待熔覆的表面上,或者其可以被放置在一层粉末焊剂材料的顶部上、其内或下方。将理解的是,可以使用箔/粉末组合件的其它实施例,诸如仅仅具有顶部片或仅仅具有底部片的一个实施例,或者其中非平面片在顶部片和底部片之间限定蜂巢形状的一个实施例。
虽然本发明的各种实施例已在本文示出和描述,但是将显然的是,这些实施例仅以示例的方式提供。在不脱离本文的发明的情况下可以做出多种变型、改变或替代。因此,预期的是本发明仅由所附权利要求的精神和范围限制。
附图标记:
Difficulty of welding increases:焊接的难度增加
Astroloy:耐热镍合金
Difficult to weld:weld and strain age cracking:难以焊接:焊接和应变时效裂纹
Weldable;可焊接
Al Content:Al含量
Ti Content:Ti含量
Prior Art:现有技术
Inconel:铬镍铁合金
Unimet:Unimet合金
Unitemp:Unitemp合金
Wasparoy:Wasparoy合金