用于在部件、带状材料或工具的表面上形成涂层的装置的制作方法

文档序号:11446506阅读:274来源:国知局

本发明涉及一种用于在部件、带状材料或工具的表面上形成涂层的装置。可以形成不同涂层,所述不同涂层特别形成耐高温、耐磨损或耐腐蚀的层。



背景技术:

到目前为止,还没有任何以连续材料进料(例如,快速运行的钢带状材料)对大表面连续涂覆的良好可控的涂覆方法,其中,通过气相沉积进行涂覆,该方法比常规的涂覆方法具有经济竞争力,并且通过该方法,还可以由高熔点材料形成涂层。

因此,几十年来,在用于精加工部件的批处理过程中,使用在负压下工作的气相沉积方法和具有高功能(耐磨损、光学和磁性应用、微电子学)层的工具进行涂覆,例如,已知的化学气相沉积(chemicalvapordeposition,cvd)和物理气相沉积(physicalvapordeposition,pvd)方法。虽然cvd方法由于与处理前体和处理废气相关的困难而没有广泛用于连续过程,但是现在,在许多领域中,pvd方法对于精加工平板产品(镜子、建筑玻璃)、片材和卷材(包装膜、铜板和铝板)是绝对必要的。

pvd方法的关键优点在于,其中,涂层材料使用物理方法转移到气相,它们由于层组成和结构而具有非常高的柔性,这允许例如目标层设计。因此,自从20世纪80年代以来,一直在致力于在连续工艺中用氮化钛涂覆电带以减少磁滞损耗,并且还有相应的专利。

典型地,用固体或液体金属填充并且用电子束枪蒸发的坩埚在较高熔点金属(例如钛)的气相沉积期间使用。在这些情况下,连续提供到坩埚中的材料是有问题的。由于电子束的可接近性问题,在坩埚上方,材料可能不能以低损耗被传导通过待涂覆的相应部件或工具的表面的热通道。因此,散射涂层保留,在短暂的时间之后必须清洁并供给到再循环过程,这涉及非常复杂并且导致不能有效使用的时间损失。

在通过pvd工艺生产由锌-镁合金制成的防腐蚀层的领域中,也已经存在许多公认的技术解决方案。例如,使用zn和mg的共蒸汽沉积或包括zn和mg的多个交替连续层的层系统的气相沉积。还建议使用另外的热后续处理。

还已知使用具有锌涂层和锌合金涂层的pvd涂覆方法。可以使用包括两个喷射蒸发器和一个混合腔室的系统。蒸发器中的金属被感应加热,形成的金属蒸汽被引导到混合腔室中并且从那里被引导到运行的带状部件的表面上。尽管该方法允许高速率,但由于大量熔化材料,其极度热阻滞,这使得工业过程的调节更加困难。此外,所有的蒸汽接触表面必须保持高于所使用的金属的冷凝温度,这几乎不能处理,特别是对于更高熔点的金属。此外,由于技术工艺原因,具有确定组成的金属合金层的生产是困难的。还存在将材料连续进料到蒸发器中的问题。因此,没有长时间耐受液态镁的材料。

另一种方法是基于电磁悬浮。在该方法中,将线状材料侧向进料到石英管中,并且在保持悬挂的同时,通过包围石英管的线圈熔化和蒸发。该方法在低熔点金属上成功测试,但是在较高温度下熔化的金属不可能将该层均匀地沉积在表面上。另外,在形成于各个表面上的层中引入液滴(较大的颗粒),这对于耐腐蚀层,耐磨层和经受滑动磨损的层是不可接受的。

将切断的金属线片应用于过热板并立即在那里蒸发的方法,所谓的快速蒸汽沉积,解决了材料进料问题。然而,由于在固相中进料的材料和需要显著高于每根线材上的蒸发温度的温度,不可能获得足够的蒸发速率。

同样完善的热喷涂方法,特别是线电弧喷涂方法的方法变型,是用于部件的批量电镀的成本效益好的且灵活的方法。在该方法中,在阳极和阴极切换线或这样的电极之间保持电弧,并且在线的端部蒸发一小部分材料并且液化更大的部分。气体喷流从导线端部撕裂液体材料并将其加速到待涂覆的表面上。由于熔滴非常小,当它们撞击在冷的基底表面上时它们非常快速地硬化,并形成与前述方法相比非常多孔的层状结构。因此,为了获得足够的耐腐蚀效果,必须沉积厚度在70μm和150μm之间的层。因此,所需的层厚度比带状方法中通常使用的方法大10至20倍,使得热喷涂不适合用于带涂覆或仅仅出于资源效率的原因的大表面。此外,通过热喷涂产生的表面通常对于汽车应用来说太粗糙,因此需要后处理。此外,与许多材料结合的不足的粘附力是一个问题。



技术实现要素:

本发明的基本目的是,在使用易于控制和/或调节的气相沉积的涂覆表面的涂覆方法中,提供具有高涂覆速率的选择、具有连续的材料供给,特别是对于高熔点材料或合金系统(例如铁-镁-锌)。

根据本发明,该目的通过具有权利要求1的特征的装置来实现。本发明的有利实施方式和改进可以通过从属权利要求中描述的特征来实现。

在本发明的装置中,用于形成相应涂层的至少一种线状或带状材料可以被供给到电弧的影响区域,该电弧在两个线状或带状元件之间形成,或者在连接到直流电流源的阴极和阳极之间。电弧可以在由用于形成涂层的一种或多种材料形成的线形或带状元件之间形成。

因此,该单元可以呈现为喷头。借助于来自电弧流的能量熔化和/或蒸发的材料且借助于气体或气体混合物的气体喷流通过入口流入腔室的内部,该腔室可以被加热到至少等于用于涂层的至少一种材料或具有相应最高蒸发温度的材料的蒸发温度。因此,一种或多种材料在腔室中完全蒸发并且通过腔室中存在的开口离开。因此,蒸发的一种或多种材料撞击到部件的待涂覆的表面,带状材料或用于形成相应涂层的工具的表面上。

由于部件、带状材料或工具的表面上的温度低得多,因此冲击材料转变为固体聚集状态。如果使用这样的多种材料,则可以产生原位合金结构,特别有利地,这对于不可能形成合金或者仅可以通过其它方法困难地形成合金的金属是可行的。

如果不需要含有氧化物的涂层,则腔室内的气氛应当是无氧的。为了确保没有氧气并且降低所供给的材料的蒸发温度,与环境压力相比,腔室内的压力应该被降低,优选地,降低到最小对应于水蒸发所在的压力的压力。这样,可以使用对灰尘不敏感的便宜的水环泵。

该材料可以有利地经由可控制的驱动辊被供给有待涂覆的一种或多种材料的一个或多个线材或带。材料可以在周围条件下储存,然后优选地,可以按照连续气锁技术供给至在真空条件下或在无氧气氛中发生的电弧熔化或气相沉积过程。

这里,可以使用具有不同厚度和组成的线状或带状材料,包括药芯焊丝(flux-coredwire)。这样,可以在部件、带状材料或工具的表面上形成具有几乎任何期望的材料组成的均质合金层系统。所使用的合金的数量和数目可以根据需要而使用多个电弧通过气体喷射供给和供给添加到腔室中的线状或带状材料而实际上扩展。通过在大气条件下将线形或带状材料焊接在一起以产生准连续线,可以确保不间断的操作(甚至几周)。

用于形成涂层的线状或带状材料可以使用在线状材料或带状材料与水冷阴极或阳极之间形成的电弧而熔化或部分蒸发。有利地,一种或多种线状材料应当有利地相对于彼此或相对于阳极或阴极、类似于电弧焊丝喷头而以平角(锐角)供给。该角度应该优选地在30°的范围内。然而,用于熔化和/或蒸发线状或带状材料的电弧也可以在至少两种线状或带状材料之间形成。然后,线状或带状材料形成连接到直流电流源的阴极和阳极。

然而,也可以在连接到直流电源的电极的线形或带状材料与阴极或阳极之间形成电弧,其材料不被电弧熔化或甚至蒸发。连接到直流电流源的电极的线状或带状材料因此形成阳极或阴极以及互补电极,即阴极或阳极由非熔化材料形成。

同时,优选地无氧气体喷流(优选地氮气或氩气)可以在布置在电弧的影响区域中的一种或多种线形或带状材料的端部处沿纵向方向通过。气体喷流将材料的端面端部撕裂成微小的熔滴(moltendroplet),并将它们和所得到的材料蒸汽驱使出而通过喷嘴状开口并通过入口进入腔室的内部。

待蒸发的线状或带状材料或待蒸发的多种材料(例如fe、zn、al、mg或以上几者的合金)可以以具有在几毫米的范围内的直径的线的形状或在几毫米的范围内的带的宽度存在。一种线状或带状材料可以连接到阳极,另一个连接到直流电流源的阴极,所述直流电流源能够供给在10v和80v之间的电压下在20a和200a之间的电流。所选择的电压和电流取决于待蒸发的材料。对于fe,可以使用u=30v和i=80a。接触有利地由具有通孔的杆形式的导电材料(铜)构成,使得线状材料(wire-shaped)可以被引导通过孔。这允许线状材料的良好电接触和对线状材料的引导,使得其端部相接。对于带状材料,可以使用狭缝来代替孔。

如果施加电压,则如果线状或带状材料的端部连接到直流电流源的阳极和阴极,则电弧在线状或带状材料的端部之间打火。因此,线状或带状材料至少部分地熔化并且可以部分地蒸发。因此,为了保持光弧,必须继续供给线形或带状材料,这可以通过送料装置来实现。线状或带状材料和将其封闭的电接触可以有利地保持在由耐热和电隔热陶瓷制成的块中。为了使部分熔化的、部分蒸发的材料完全蒸发,后者通过待蒸发的材料不与其反应的气体流(例如,氩气)被朝向腔室向前撕裂,并在加热装置中或通过加热装置输送。陶瓷块有利地通过管连接到加热装置,以便将气体、熔化材料和蒸发的材料无损耗地输送到加热装置中。

加热装置可以有利地包括耐高温的导电材料,并且可以特别有利地包括石墨,并且可以具有圆柱形状(坩埚/腔室)。连接到陶瓷块的连接管应该被附接,使得材料可以切向供给,从而在被供给到坩埚中之后,材料以圆形流的形状循环。尚未蒸发的熔化材料颗粒具有比气态蒸发材料更高的密度。材料颗粒可以被圆形流朝向内部坩埚壁向外推动,沿着内部坩埚壁,它们循环并且因此吸收来自坩埚的热量的、用于完全蒸发所需的能量。在坩埚上可以有盖,在盖的中心添加了圆形管,圆形管轴向地浸入坩埚内部(浸入管)并且在两端开口。已经处于气态形式的材料部分可以在向上的方向离开坩埚。

有利地,在管的上开口上方布置待涂覆的表面;这可以是例如为在开口上方连续移动的带状材料。为了增加蒸汽的范围并防止材料的再冷凝,所述装置可有利地在其中存在负压的腔室中操作。

原则上,坩埚可以以各种不同的方式加热。感应加热是有利的。为此,坩埚可以由具有适合的阻抗的感应器包围,并且可以有利地在数千赫兹的范围内操作。感应器有利地完全由确保感应器的隔热和绝缘的材料包围。这可以例如为混凝土。为了防止热辐射导致的热损失,坩埚应该由绝热材料包围。必须选择坩埚温度,使得超过待蒸发的材料的沸点。这例如对于zn为1200℃,或者待蒸发的材料在主要负压下(例如,对于fe为2600℃)已经具有显著蒸汽压力。

为了增加蒸发速率和/或用于蒸发不同的材料,坩埚可有利地配备有多个上述用于供给被熔化和蒸发的材料的装置。

已知用于电弧的电弧喷涂(spraying)的具有高熔化能力的电流源可被用于形成电弧。根据所使用的一种或多种材料,可以使用不同类型的电弧。与常规喷涂工艺相反,目标应是待蒸发的材料的最高可能的蒸发速率。这也应该通过在气体喷流(gasjet)的供给期间所选择的体积流最小化来支持。形成气体喷流的气体或气体混合物应该有利地在腔室内预热而供给,以使气体量和在随后的蒸发过程中所需的能量最小化。这可能例如利用在感应器的加热区域中的螺旋而发生。因此,气体喷流可以流过感应器的影响区域并且由此被加热。

将气体喷流、蒸发材料和极细熔滴的混合物添加到加热腔室中。腔室内的温度必须至少等于具有分别用于形成涂层的最高蒸发温度的蒸发材料的蒸发温度,使得材料的剩余的小熔滴可以在腔室内完全蒸发。通过使用负压,可以显著降低蒸发温度和因此所需的腔室温度。这对于几种高熔点材料是必要和有利的,因为否则没有可用于腔室壁的合适材料。最小对应于使水蒸发的压力的负压对于仍然能够使用耐灰尘以产生真空的成本效益好的水环泵是有利的。

至少一个喷头可以存在于腔室上,或者至少一个喷头也可以连接到腔室。因此,喷头应当具有形成电弧和气体喷流所需的元件。用于供给线状或带状材料的元件也可以是喷头的部件。

喷头可以被布置成使得喷头的喷嘴设置在腔室中,或者喷射管可以布置在喷头和腔室壁之间。自然地,多个喷头也可以布置在腔室上。

通过喷头的喷嘴流出的气体-蒸汽液滴流由此防止蒸发的材料渗透到喷头中。为了防止在喷嘴上的累积,喷头的喷嘴的温度应该至少等于所供给的高熔点材料的熔点。这里也要达到蒸发温度。因此,喷嘴和喷头以及可能的喷射器管应当优选地由耐高温的隔热陶瓷材料制成或由石墨组分和隔热陶瓷材料的混合物制成。氮化硼优选地用于陶瓷材料。水冷式接触元件(优选由铜制成)应该集成到喷头中以用于电接触带状或线状材料。机械能或几何形式的流出的气体-蒸汽液滴流可以呈现为锥形减小或扩大的喷嘴的形状的开口影响。

由于其良好的耐温性、导热性和导电性,石墨应优选地用作腔室壁的材料。根据待蒸发的一种或多种材料,为了形成涂层,可以将抗熔化的耐高温的陶瓷材料(例如氮化硼)与铁和铝组合,优选地以部分或完全衬里的形式。

优选地,可以使用感应加热将腔室加热至蒸发温度或大于蒸发温度。对于温度>2000℃时的隔热性,此处优选的是石墨棉和氧化铝衬里、水冷式铜感应器的组合。然而,也可以使用腔室内或腔室外的cfc电阻加热元件进行加热。

为了使所需的腔室温度最小化并同时防止熔滴离开腔室内部并且确保熔滴保持或沿着腔室的加热的外壁流动尽可能长,腔室的壁可以形成通道,熔化和/或蒸发的材料经由长路径而流过该通道并且流动持续延长的时间段。腔室壁可以有利地呈现为旋风分离器的形式。待涂覆的材料应该在腔室内滑动,如在气垫上、在气体流和/或蒸汽流上,并且在腔室内形成的蒸汽应当被引导成使得其全部可以沉积在待涂覆的表面上。这可以使用合适的开口或喷嘴形状来有利地影响和调节,蒸发的材料被引导出通过该开口或喷嘴形状。在任何情况下,应当防止腔室壁和待涂覆的材料之间的直流接触,这因为这可能导致对待形成的涂层和/或对腔室壁的涂层的损坏。

如果蒸汽流作为涂层完全沉积在部件、带状材料或工具的表面上不可能在蒸汽的直流冲击区域中,则用于涂覆的材料可以在腔室的开口上方被引导在热的通道。

可以根据需要并且快速地使用不同的前进速度来控制或调节在腔室的开口上方气相沉积的涂层的合金组成,利用该前进速度将线状或带状材料供给到电弧中,结合合适的电弧参数并通过打开和关闭。

这样,用于形成涂层的一种或多种蒸发材料的量可以适应于待涂覆的表面沿其移动的前进速度。

如果待涂覆更大的表面区域或特定表面区域,则多个开口可以存在于一个腔室上,并且蒸发的材料可以通过它们被引导到待涂覆的表面上。还可以存在多个电弧,且用于气体喷流和线形或带状材料的进料存在于一个腔室中。例如,使用纵向压力腔室,也可以将多个腔室彼此连接。

对于将在部件、带状材料或工具的表面上形成涂层的某些分层系统,如从电子束气相沉积领域已知的,流出蒸汽的附加电离可导致层性能的改善。

如果部件、带状材料或工具被充分加热和/或蒸汽被电离并且可能被加速,则气相沉积材料可以合金化或涂层通过基材合金化。

还有一个有利的选择是,通过流出的蒸汽-气体流的动能,至少在开口的区域中,调节待涂覆到腔腔室的表面上的带状材料的表面。这可以产生显著地减小摩擦的气垫,并且因此可以保持更小的距离,使得可以减少或甚至完全防止涂层材料的损失。

在下文中使用示例更详细地解释本发明。

附图说明

图1是用于在部件的表面上形成涂层的本发明的装置的示例。

具体实施方式

图1描述了用于在部件7的表面上形成涂层的装置,在这种情况下是由钢制成的带状材料。

使用驱动辊(未示出)供给线形材料2.1和2.2,使得如果通过直流电流源而一个导线形成为阴极2.1,并且一个导线形成为阳极2.2,则在这些导线之间可以形成电弧2。这蒸发和/或至少熔化端面端。

优选地加热到至少600℃的温度并且不含有任何氧气的气体或气体混合物的气体喷流1以将体积流供给到该区域中,该体积流足以驱动熔化和/或蒸发的材料2.1和2.2通过注入管3进入呈现为旋风分离器的腔室4中。

气体-蒸汽液滴混合物被驱动到呈现为旋风分离器的腔室4中,使得旋转流在腔室壁4和浸入管9之间形成至少一个通道6。这使得存在的熔滴沉积在腔室4的加热的外壁并且在那里蒸发,并且气体-蒸汽流被输送到布置在浸入管9的区域中的开口5。

待涂覆的部件7的表面以与开口5相距微小的距离而设置在腔室4的外部,并且在形成涂层期间以适当的前进速度平移或旋转地移动,使得提供用于涂覆的整个表面可以被涂覆。

没有提供对线状材料的送料装置的描述,该装置通过至少两个辊子供给,其中,至少一个辊子应当是可驱动的。

一个或多个通道6呈现为,使得从电弧2到开口5的路径延伸,并且由于旋转流,融滴保留在加热的壁上,以便延长蒸发的一种或多种材料和加热壁之间的接触时间并且延长在腔室4内的停留时间。由于腔室4的壁在腔室4中保持的压力下被加热到大于材料2.1和材料2.2(涂层由其形成)的蒸发温度,通过从外部封闭腔室4的感应加热器8,可以使用于涂覆的所有材料2.1和2.2在其从开口5离开之前蒸发,并且冲击在待涂覆的部件7的表面上。这样,可以特别地获得腔室4的壁的涂层和用于形成涂层的材料的至少几乎完全地耗尽。通过完全蒸发,还可以防止可能沉积在涂层中的液滴离开,并且可能导致表面质量的恶化。使用腔室地板10的锥形实施方式,即使温度不被正确地选择,也可以防止任何熔滴离开。

如上所述,腔室4内部的压力应该相对于环境压力降低,以便能够尽可能多地降低材料完全蒸发所需的温度。

在该示例中,腔室4的壁由石墨制成。对于其熔体作用于石墨的材料,腔室4的至少部分可以镶有陶瓷材料,例如氮化硼。这样,甚至可以使用不能与用于形成涂层的纯石墨一起使用的材料。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1