一种制备多相强化铁素体合金的方法与流程

文档序号:11146693阅读:797来源:国知局
一种制备多相强化铁素体合金的方法与制造工艺

本发明属于金属弥散强化技术领域,特别提供了一种采用半固态成形和热挤压相结合的工艺制备多相强化铁素体合金的方法。



背景技术:

由金属间化合物、富Cu析出相和纳米氧化物共同强化的铁素体合金具有类似镍基合金γ/γ’的两相组织,有望能提高传统铁素体耐热合金的使用温度极限和高温力学性能,在高温结构材料领域有重要的应用前景。纳米氧化物颗粒具有优异的热稳定性和化学稳定性,在接近合金熔点的温度下,纳米氧化物仍然能对位错的运动起到阻碍作用,是氧化物弥散强化合金中最重要的强化相。(Ni,Fe)Al金属间化合物相(β′相)是铁基合金中的一种有效的强化相,它是一种长程有序B2结构(CsCl型)的金属间化合物,熔点高达1638℃,具有较高的强度和硬度。β′相与铁素体基体(β)的晶格常数非常接近,晶格错配小,这使β′相与β基体之间容易形成共格界面关系,为β′相的析出强化和共格应变强化创造了条件。L21型Ni2AlMn金属间化合物是合金中添加的Mn元素优先占据NiAl相的Al晶格而形成的一种新型金属间化合物,Mn元素的添加改变了金属间化合物的相结构,降低了金属间化合物形核的应变能,使数量密度增大一个数量级,并且该强化相对铁基合金延性的影响不大。Ni2AlMn金属间化合物的强化效果优于单一NiAl相。富Cu析出相也是BCC铁素体基体中的一种共格析出相,Cu的加入能为金属间化合物析出时形核位置,对于提高合金中析出相的均匀性、增加纳米沉淀析出相的数量密度起到有益的作用。传统的铁基氧化物弥散强化合金采用机械合金化工艺制备,但是长时间的高能球磨能耗高,容易引入各种金属夹杂,杂质氧含量较高,制备效率低。为了进一步提高铁基氧化物物弥散强化合金的高温力学性能,拓展其应用前景,需要开发高效制备技术,设法降低合金中各种金属和非金属夹杂的含量、降低杂质氧含量。



技术实现要素:

本发明的目的在于提供一种采用半固态成形和热挤压相结合的工艺制备多相强化铁素体合金的方法。该多相强化氧化物弥散强化铁基合金包括L21型Ni2AlMn金属间化合物、NiAl金属间化合物、富Cu析出相和氧化物弥散相,利用多种析出相的强化效果的叠加提高材料的综合力学性能。

首先采用利用真空熔炼+电渣重熔双联的工艺来对合金铸锭进行纯净化。电渣重熔使铸锭中的硫和非金属夹杂含量有效降低。在电渣重熔过程中,自耗电极受电阻缓慢熔化,通过调节渣池的形状、深度、粘度等参数来创造非金属夹杂上浮的条件,熔化后的金属液滴穿过熔融的渣料层与渣料发生反应而得到提纯,并在结晶器的底部重新结晶,得到致密、组织均匀、纯净的合金铸锭。纯净化的铸锭进行喷射成形,它是一种利用快速凝固制备金属材料坯料的半固态成形技术。熔融金属雾化成金属熔滴,以惰性高压气体和氧气的混合气体作为雾化介质,通过调节雾化介质中的氧分压来控制引入的氧含量,为合金中Y-O或Y-Ti-O氧化物的形成提供氧元素,雾化熔滴表面形成很薄的氧化膜。金属熔滴在高速气流的带动下逐渐凝固,并喷射到带有冷却系统的收集器上,并在收集器上沉积,从而获得具有致密、等轴、均质无偏析的微观结构的合金坯料。合金坯料进行热挤压,粉末颗粒表面的氧化膜在热挤压过程中破碎,重新分布,氧元素优先与稀土元素Y和Ti结合而形成Y-O或Y-Ti-O氧化物弥散相,分布更均匀。本发明实质是一种液相法制备氧化物弥散强化铁素体合金的技术,综合了喷射成形和弥散强化两种技术的特点,制备效率高,有效降低了金属和非金属夹杂的含量,杂质氧含量低。多相强化铁素体合金的制备工艺流程如图1所示,具体工艺步骤有:

1、原料:以铁块、Fe-Mn合金、Ni-Al合金、Fe-Y合金、Fe-Ti合金、铜块作为原料,各种原料的纯度均大于99.9%。金属原料在5vol.%盐酸水溶液中进行预处理,去除表面氧化物,预处理时间为5-20min,酒精洗净后在烘箱中于60-80℃下烘干30-90min。按照目标多相强化铁素体合金的成分进行称量,目标多相强化铁素体合金的成分为:5Ni-1Al-3Mn-(0.1~0.3)Y2O3-0.3Ti-0.5Cu-余量Fe(重量百分比)。

2、真空感应熔炼+电渣重熔:中间合金在真空感应炉中进行熔炼,熔炼过程中采用CaO陶瓷坩埚,控制真空度0.05-0.2Pa,原料全部熔化后保持熔炼功率不变35-40分钟,提高真空度到0.001-0.01Pa,在1620-1630℃精炼10-15分钟,之后降温、充入氩气,将熔液浇筑成铸锭。真空感应熔炼的铸锭进行惰性气氛保护的电渣重熔。渣料中各组元的重量百分比为15-20%CaO,15-20%Al2O3,1-5%TiO2,1-5%MgO,3-10%CeO,余量CaF2。将渣料加热到熔融状态后倒入结晶器中,通电起弧后,调整重熔电压为35-65V、电流3000-8000A。电渣重熔后得到纯净合金铸锭。纯净合金铸锭的氧含量小于100ppm,硫含量为20ppm。

3、喷射沉积:纯净合金铸锭在喷射沉积炉的坩埚中被加热到1650-1770℃,熔体过热度为150-220℃,真空室的真空度小于50Pa。然后在雾化喷嘴中通入雾化介质,雾化介质为惰性气体和氧气的混合气体,气体总压力为0.2-1.5MPa,其中氧分压为2Pa。雾化介质将导流管流下的熔融金属粉碎,粉碎的熔滴表面与雾化介质中的O元素反应而形成很薄的氧化膜。沉积过程中雾化液滴的固相分数为60%-70%。半固态金属熔滴在接收器上逐层堆积,得到合金坯料。

4、热挤压:合金坯料进行热挤压,挤压温度为950~1150℃,挤压比为2:1-5:1。挤压过程中氧化膜破碎和再分布,氧元素由Fe2O3或Ni2O3等金属氧化物转变为更稳定的Y2O3或Y-Ti-O复合氧化物,得到接近全致密的热挤压坯体。

5、热处理:热挤压坯体进行两阶段热处理,首先进行固溶处理,固溶处理温度为1150~1300℃,保温2~4h后空冷。然后进行时效处理,时效温度为700~800℃,时效时间是12~120h后空冷,得到多相强化铁素体合金。

本发明的优点是解决了传统机械合金化工艺在制备弥散强化材料时效率低和金属、非金属夹杂含量高的问题,是一种高效制备弥散强化铁素体合金的技术。通过可控气氛的雾化介质使金属熔滴在沉积过程中引入氧元素,并通过热挤压变形达到氧元素在金属基体中的再分配,重新组装和均匀分布的目的。同时,热挤压消除了快速凝固坯体中的残留孔隙,为材料综合力学性能的提高奠定了基础。

附图说明

图1为本发明的工艺流程图

具体实施方式

实施例1:成分为5Ni-1Al-3Mn-0.1Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金的制备

以铁块、Fe-Mn合金、Ni-Al合金、Fe-Y合金、Fe-Ti合金、铜块作为原料,各种原料的纯度均大于99.9%。金属原料在5vol.%盐酸水溶液中进行预处理,去除表面氧化物,预处理时间为5min,酒精洗净后在烘箱中于60℃下烘干90min。按照目标多相强化铁素体合金的成分进行称量,目标多相强化铁素体合金的成分为:5Ni-1Al-3Mn-0.1Y2O3-0.3Ti-0.5Cu-余量Fe。中间合金在真空感应炉中进行熔炼,熔炼过程中采用CaO陶瓷坩埚,控制真空度0.05-0.2Pa,原料全部熔化后保持熔炼功率不变35-40分钟,提高真空度到0.001-0.01Pa,在1620-1630℃精炼10-15分钟,之后降温、充入氩气,将熔液浇筑成铸锭。真空感应熔炼的铸锭进行惰性气氛保护的电渣重熔。渣料成分为:20%CaO,15%Al2O3,1%TiO2,1%MgO,3%CeO,余量CaF2。将渣料加热到熔融状态后倒入结晶器中,通电起电弧后,调整重熔电压为35-65V、电流3000-8000A。电渣重熔后得到纯净金铸锭。纯净合金铸锭的氧含量为100ppm,硫含量为20ppm。纯净合金铸锭在喷射沉积炉的坩埚中被加热到1650℃,熔体的过热度150℃,真空室的真空度小于50Pa。然后在雾化喷嘴中通入雾化介质,雾化介质为惰性气体和氧气的混合气体,气体总压力为1MPa,其中氧分压为2Pa。雾化介质将导流管流下的熔融金属粉碎,粉碎的熔滴表面与雾化介质中的O元素反应而形成很薄的氧化膜。沉积过程中雾化液滴的固相分数为60%-70%。半固态金属熔滴在接收器上逐层堆积,得到合金坯料。合金坯料进行热挤压,挤压温度为1000℃,挤压比为3:1。挤压过程中氧化膜破碎和再分布,得到接近全致密的热挤压坯体。热挤压坯体进行两阶段热处理,首先进行固溶处理,固溶处理温度为900℃,保温2h后空冷。然后进行时效处理,时效温度为550℃,时效时间是100h后空冷,得到成分为5Ni-1Al-3Mn-0.1Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金。。

实施例2:成分为5Ni-1Al-3Mn-0.2Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金的制备

以铁块、Fe-Mn合金、Ni-Al合金、Fe-Y合金、Fe-Ti合金、铜块作为原料,各种原料的纯度均大于99.9%。金属原料在5vol.%盐酸水溶液中进行预处理,去除表面氧化物,预处理时间为10min,酒精洗净后在烘箱中于70℃下烘干60min。按照目标多相强化铁素体合金的成分进行称量,目标多相强化铁素体合金的成分为:5Ni-1Al-3Mn-0.2Y2O3-0.3Ti-0.5Cu-余量Fe。中间合金在真空感应炉中进行熔炼,熔炼过程中采用CaO陶瓷坩埚,控制真空度0.05-0.2Pa,原料全部熔化后保持熔炼功率不变35-40分钟,提高真空度到0.001-0.01Pa,在1620-1630℃精炼10-15分钟,之后降温、充入氩气,将熔液浇筑成铸锭。真空感应熔炼的铸锭进行惰性气氛保护的电渣重熔。渣料成分为:20%CaO,15%Al2O3,3%TiO2,3%MgO,5%CeO,余量CaF2。将渣料加热到熔融状态后倒入结晶器中,通电起电弧后,调整重熔电压为35-65V、电流3000-8000A。电渣重熔后得到纯净金铸锭。纯净合金铸锭的氧含量为100ppm,硫含量为20ppm。纯净合金铸锭在喷射沉积炉的坩埚中被加热到1680℃,熔体过热度180℃,真空室的真空度小于50Pa。然后在雾化喷嘴中通入雾化介质,雾化介质为惰性气体和氧气的混合气体,气体总压力为0.2-1.5MPa,其中氧分压为2Pa。雾化介质将导流管流下的熔融金属粉碎,粉碎的熔滴表面与雾化介质中的O元素反应而形成很薄的氧化膜。沉积过程中雾化液滴的固相分数为60%-70%。半固态金属熔滴在接收器上逐层堆积,得到合金坯料。合金坯料进行热挤压,挤压温度为1000℃,挤压比为4:1。挤压过程中氧化膜破碎和再分布,氧元素由Fe2O3或Ni2O3等金属氧化物转变为更稳定的Y2O3或Y-Ti-O复合氧化物,得到接近全致密的热挤压坯体。热挤压坯体进行两阶段热处理,首先进行固溶处理,固溶处理温度为1000℃,保温3h后空冷。然后进行时效处理,时效温度为600℃,时效时间是80h后空冷,得到成分为5Ni-1Al-3Mn-0.2Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金

实施例3:成分为5Ni-1Al-3Mn-0.25Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金的制备

以铁块、Fe-Mn合金、Ni-Al合金、Fe-Y合金、Fe-Ti合金、铜块作为原料,各种原料的纯度均大于99.9%。金属原料在5vol.%盐酸水溶液中进行预处理,去除表面氧化物,预处理时间为15min,酒精洗净后在烘箱中于75℃下烘干45min。按照目标多相强化铁素体合金的成分进行称量,目标多相强化铁素体合金的成分为:5Ni-1Al-3Mn-0.25Y2O3-0.3Ti-0.5Cu-余量Fe。中间合金在真空感应炉中进行熔炼,熔炼过程中采用CaO陶瓷坩埚,控制真空度0.05-0.2Pa,原料全部熔化后保持熔炼功率不变35-40分钟,提高真空度到0.001-0.01Pa,在1620-1630℃精炼10-15分钟,之后降温、充入氩气,将熔液浇筑成铸锭。真空感应熔炼的铸锭进行惰性气氛保护的电渣重熔。渣料成分为:15%CaO,15%Al2O3,5%TiO2,5%MgO,8%CeO余量CaF2。将渣料加热到熔融状态后倒入结晶器中,通电起电弧后,调整重熔电压为35-65V、电流3000-8000A。电渣重熔后得到纯净金铸锭。纯净合金铸锭的氧含量为100ppm,硫含量为20ppm。纯净合金铸锭在喷射沉积炉的坩埚中被加热到1700℃,熔体的过热度200℃,真空室的真空度小于50Pa。然后在雾化喷嘴中通入雾化介质,雾化介质为惰性气体和氧气的混合气体,气体总压力为0.2-1.5MPa,其中氧分压为2Pa。雾化介质将导流管流下的熔融金属粉碎,粉碎的熔滴表面与雾化介质中的O元素反应而形成很薄的氧化膜。沉积过程中雾化液滴的固相分数为60%-70%。半固态金属熔滴在接收器上逐层堆积,得到合金坯料。合金坯料进行热挤压,挤压温度为1050℃,挤压比为5:1。挤压过程中氧化膜破碎和再分布,氧元素由Fe2O3或Ni2O3等金属氧化物转变为更稳定的Y2O3或Y-Ti-O复合氧化物,得到接近全致密的热挤压坯体。热挤压坯体进行两阶段热处理,首先进行固溶处理,固溶处理温度为1100℃,保温3h后空冷。然后进行时效处理,时效温度为700℃,时效时间是60h后空冷,得到多成分为5Ni-1Al-3Mn-0.25Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金。

实施例4:成分为5Ni-1Al-3Mn-0.3Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金的制备

以铁块、Fe-Mn合金、Ni-Al合金、Fe-Y合金、Fe-Ti合金、铜块作为原料,各种原料的纯度均大于99.9%。金属原料在5vol.%盐酸水溶液中进行预处理,去除表面氧化物,预处理时间为20min,酒精洗净后在烘箱中于80℃下烘干30min。按照目标多相强化铁素体合金的成分进行称量,目标多相强化铁素体合金的成分为:5Ni-1Al-3Mn-0.3Y2O3-0.3Ti-0.5Cu-余量Fe。中间合金在真空感应炉中进行熔炼,熔炼过程中采用CaO陶瓷坩埚,控制真空度0.05-0.2Pa,原料全部熔化后保持熔炼功率不变35-40分钟,提高真空度到0.001-0.01Pa,在1620-1630℃精炼10-15分钟,之后降温、充入氩气,将熔液浇筑成铸锭。真空感应熔炼的铸锭进行惰性气氛保护的电渣重熔。渣料成分为:20%CaO,15%Al2O3,5%TiO2,5%MgO,10%CeO余量CaF2。将渣料加热到熔融状态后倒入结晶器中,通电起电弧后,调整重熔电压为35-65V、电流3000-8000A。电渣重熔后得到纯净金铸锭。纯净合金铸锭的氧含量为100ppm,硫含量为20ppm。纯净合金铸锭在喷射沉积炉的坩埚中被加热到1770℃,熔体的过热度220℃,真空室的真空度小于50Pa。然后在雾化喷嘴中通入雾化介质,雾化介质为惰性气体和氧气的混合气体,气体总压力为0.2-1.5MPa,其中氧分压为2Pa。雾化介质将导流管流下的熔融金属粉碎,粉碎的熔滴表面与雾化介质中的O元素反应而形成很薄的氧化膜。沉积过程中雾化液滴的固相分数为60%-70%。半固态金属熔滴在接收器上逐层堆积,得到合金坯料。合金坯料进行热挤压,挤压温度为1150℃,挤压比为5:1。挤压过程中氧化膜破碎和再分布,氧元素由Fe2O3或Ni2O3等金属氧化物转变为更稳定的Y2O3或Y-Ti-O复合氧化物,得到接近全致密的热挤压坯体。热挤压坯体进行两阶段热处理,首先进行固溶处理,固溶处理温度为1200℃,保温4h后空冷。然后进行时效处理,时效温度为800℃,时效时间是24h后空冷,得到成分为5Ni-1Al-3Mn-0.3Y2O3-0.3Ti-0.5Cu-余量Fe的氧化物弥散相的多相强化铁素体合金。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1