本发明涉及热加工工具钢。
背景技术:
钒合金基体工具钢已出售了数十年,并且由于它们结合了高耐磨性和优异的尺寸稳定性的事实以及由于其具有良好的韧性而获得了相当多的关注。这些钢具有广泛的应用,如压铸和锻造。该钢通常通过常规冶金,随后电渣重熔(esr)来生产。
虽然就热裂、粗裂纹、热磨损和塑性变形而言,通过esr生产的钒合金基体工具钢具有比常规生产的工具钢更好的特性,但需要进一步改善以降低热加工工具破损的风险,例如在高压模铸(highpressurediecasting)中的热裂和粗裂纹。此外,进一步改善热加工工具钢的热强度和回火稳定性是有益的。
技术实现要素:
本发明的目的是提供具有导致工具的寿命增加的改善特性特征的热加工工具钢。
本发明的另一个目的是改善热裂,同时仍保持良好的耐热磨损性和良好的抗粗裂纹性。又一个目的是提供钢组成,粉末形式的所述钢适合用于增材制造(additivemanufacturing,am),特别是用于制造或修复注射成型工具和模具。
通过提供具有如合金权利要求中所述的组成的热加工工具钢来在有意义的量度上实现前述目的以及另外的优点。
本发明限定于权利要求中。
具体实施方式
以下简要说明单独的元素及其彼此相互作用的重要性,以及所要求保护的合金的化学成分的限制。在整个说明书中,钢的化学组成的所有百分比以重量%(wt.%)给出。硬质相的量以体积%(vol.%)给出。单个元素的上限和下限可在权利要求中给出的限度内自由组合。
碳(0.27%至0.38%)
碳应以0.27%的最小含量,优选以至少0.28%、0.29%、0.30%、0.31%、0.32%、0.33%或0.34%存在。碳的上限为0.38%并且可将其设为0.37%、0.36%或0.35%。优选的范围为0.30%至0.38%和0.33%至0.37%。在任何情况下,应控制碳的量,以便限制钢中m23c6、m7c3、m6c型的一次碳化物的量,优选钢不含这样的一次碳化物。
硅(0.10%至0.35%)
硅用于脱氧。si以溶解的形式存在于钢中。si是强的铁素体形成元素,并且增加碳活性并因而增加形成不期望的碳化物的风险,这不利地影响冲击强度。硅也易于界面偏析,这可能导致韧性和抗热疲劳性降低。因此将si限制为0.35%。上限可以是0.34%、0.32%、0.31%、0.30%、0.29%、0.28%、0.27%、0.26%、0.25%、0.24%、0.23%和0.22%。下限可以是0.12%、0.14%、0.16%、0.18%和0.20%。优选的范围为0.10%至0.25%和0.15%至0.24%。
锰(0.2%至0.7%)
锰有助于改善钢的淬透性,并且锰与硫一起通过形成硫化锰来帮助改善机械加工性。因此,锰应以0.2%的最小含量存在。下限可以设为0.25%、0.3%、0.35%、0.4%、0.45%或0.5%。在较高的硫含量下,锰防止钢中的热脆性。钢应包含最大0.7%的mn。上限可以设为0.65%、0.6%、0.55%或0.5%。
铬(4.5%至5.5%)
铬应以至少4.0%的含量存在,以在热处理期间提供较大截面的良好淬透性。如果铬含量太高,则这可能导致形成高温铁素体,这降低可热加工性。下限可以是4.6%、4.7%、4.8%或4.9%。上限可以是5.4%、5.3%、5.2%或5.1%。
钼(2.05%至2.90%)
已知mo对淬透性具有非常有利的影响。钼对于获得良好的二次硬化响应是必需的。最小含量为2.05%,并且可以将其设为2.1%、2.15%、2.2%、2.25%或2.3%。钼是强碳化物形成元素,也是强铁素体形成元素。因此,钼的最大含量为2.9%。优选地将mo限制为2.8%、2.7%、2.6%、2.5%、2.4%或2.35%。
钒(0.4%至0.6%)
钒在钢的基体中形成均匀分布的v(n,c)型一次析出碳化物和碳氮化物。该硬质相也可以表示为mx,其中m主要为v,但也可以存在cr和mo,以及x为c、n和b中的一者或更多者。因此,钒应以0.4%至0.6%的量存在。上限可以设为0.59%、0.58%、0.57%、0.56%或0.55%。下限可以是0.42%、0.43%、0.44%、0.45%、0.46%、0.47%、0.48%、0.49%、0.50%、0.51%或0.52%。
v/c比(1.35至1.65)
本发明人已发现室温下以及升高的温度下的抗拉强度受钢中碳化物形成元素钒与碳含量之比影响。原因被认为与以下事实有关:这些特性取决于基体中碳的溶解含量和析出的碳二者。韧性也受该比影响。由于这些原因,优选该比为1.35至1.65,优选1.40至1.60或更优选1.45至1.55。
v+8.8(n-0.005)/c比(1.55至1.90)
如果想要更显著的二次硬化,则可以增加钒的总量以补偿与更稳定的氮化物结合的钒中的一些或全部。由于这些原因,优选该比为1.55至1.90。可以将其设为1.60至1.85或更优选1.65至1.80。
铝(0.001%至0.06%)
铝与si和mn结合用于脱氧。将下限设为0.001%、0.003%、0.005%或0.007%以确保良好的脱氧。将上限限制为0.06%以避免不期望的相(如aln)的析出。上限可以是0.05%、0.04%、0.03%、0.02%或0.015%。
氮(0.01%至0.12%)
将氮限制为0.010%至0.12%以获得期望类型和含量的硬质相,特别是v(c,n)。当氮含量与钒含量适当平衡时,将形成富钒碳氮化物v(c,n)。这些将在奥氏体化步骤中部分地溶解,然后在回火步骤中作为纳米尺寸的颗粒析出。钒碳氮化物的热稳定性被认为优于钒碳化物的热稳定性,因此工具钢的耐回火性可得以提高,并且在高奥氏体化温度下的抗晶粒生长性增强。下限可以是0.011%、0.012%、0.013%、0.014%、0.015%、0.016%、0.017%、0.018%、0.019%或0.02%。上限可以是0.11%、0.10%、0.09%、0.08%、0.07%、0.06%、0.05%、0.04%或0.03%。
氢(≤0.0004%)
已知氢对钢的特性具有有害影响并在加工过程中引起问题。为了避免与氢相关的问题,使钢水经历真空脱气。上限为0.0004%(4ppm)并且可以限制为3ppm、2.5ppm、2ppm、1.5ppm或1ppm。
镍(≤1.5%)
镍可以以≤1.5%的量存在。它给予钢良好的淬透性和韧性。然而,由于费用,应限制钢的镍含量。因此,上限可以设为1.0%、0.8%、0.5%或0.3%。然而,通常不刻意添加镍。
铜(≤2.0%)
cu是任选的元素,其可以有助于增加钢的硬度和耐腐蚀性。如果使用,则优选的范围为0.02%至1%。然而,一旦添加了铜,就不可能从钢中提取铜。这极大地使废料处理更困难。因此,通常不刻意添加铜。
钴(≤8%)
co是任选的元素,co导致固相线温度升高,并因此提供了升高硬化温度的机会,硬化温度可以比没有co高15℃至30℃。在奥氏体化期间,因此可以溶解较大分数的碳化物并由此提高淬透性。co也提高ms温度。然而,大量的co可导致韧性和耐磨性下降。如果添加,最大量为8%,以及有效量可以是2%至6%,特别是4%至5%。然而,由于实际的原因,例如废料处理,不刻意添加co。然后最大杂质含量可设为1%、0.5%、0.3%、0.2%或0.1%。
钨(≤0.5%)
原则上,由于钼和钨的化学相似性,可以用两倍的钨替代钼。然而,钨昂贵并且还使废金属的处理复杂化。因此,最大量限制为0.5%,优选0.3%,更优选不刻意添加。
铌(≤0.5%)
铌在其形成m(n,c)型碳氮化物上类似于钒,并且原则上可用于替代部分钒,但是相对于钒需要双倍量的铌。然而,nb产生更多角状的m(n,c)。因此,最大量为0.5%,优选0.05%,并且最优选不刻意添加。
ti、zr和ta
这些元素是碳化物形成元素,并且可以以所要求保护的范围存在于合金中以改变硬质相的组成。然而,通常不添加这些元素。
硼(≤0.01%)
b可以用于进一步增加钢的硬度。量限制为0.01%,优选≤0.005%。添加b的优选范围为0.001%至0.004%。
ca、mg和rem(稀土金属)
这些元素可以以所要求保护的量添加到钢中,以用于对非金属夹杂物进行改性和/或进一步改善机械加工性、可热加工性和/或可焊接性。
杂质元素
p、s和o是主要杂质,它们对钢的机械特性具有不利影响。因此,可以将p限制为0.03%,优选为0.01%。将s限制为0.0015%,并且可以限制为0.0012%、0.0010%、0.0008%或0.0005%。可以将o限制为0.0015%、0.0012%、0.0010%、0.0008%、0.0006%或0.0005%。
钢生产
具有所要求保护的化学组成的工具钢可以通过常规冶金来生产,包括在电弧炉(eaf)中熔炼并在钢水包中进一步精炼并真空处理。任选地,可以使钢经历电渣重熔(esr)以进一步改善洁净度和显微组织均匀性。
通常,在使用前使钢经历硬化和回火。奥氏体化可以在1000℃至1070℃,优选1030℃至1050℃的范围内的奥氏体化温度(ta)下进行。典型的ta为1040℃,保持时间为30分钟,随后快速淬火。回火温度根据硬度要求来选择,并且在600℃至650℃下进行2小时至少两次(2×2小时),随后在空气中冷却。
实施例1
在该实施例中,通过eaf熔炼、钢水包精炼和真空脱气(vacuumdegassing,vd)(以重量%计)来制备具有以下组成的钢:
余量的铁和杂质。
在真空脱气之后,通过喂线(coredwireinjection)使钢经历氮合金化。在所述微调(trimming)之后的最终氮含量为0.0142重量%。
将钢铸成锭并使其经历热加工。
使钢在1040℃下奥氏体化30分钟,并且通过气体流淬火并在600℃下回火2小时两次(2×2小时),随后在空气中冷却而硬化。
使用thermo-calc计算氮合金化在三种不同奥氏体化温度下对基体的组成和一次mx的量的影响。结果如表1所示。
表1
表1显示在所有三种温度下,氮合金钢中未溶解的硬质相(mx)的量显著高于非合金钢中的量。mx相是固定晶界并由此阻碍晶粒生长的原因。因此,本发明的氮合金化在硬化温度下不易于晶粒生长。实验也证实了这一点,这表明具有低氮含量的钢在1060℃下粒度显著增加,而氮合金钢对晶粒生长稳定至超过1080℃的温度。因此,可以对氮合金钢使用较高的硬化温度而没有有害的晶粒生长。因此可能影响模具材料的特性平衡,以降低热裂和/或粗裂纹的倾向,从而延长模具寿命。
实施例2
将合金在感应炉中熔炼并使其经历氮气(5n)雾化。
余量的铁和杂质。
将粉末筛分至<500μm,填充入直径为63mm且高度为150mm的钢包套中。在1150℃的温度下进行热等静压,保持时间为2小时并且压力为110mpa。冷却速率<1℃/秒。将如此获得的材料在1130℃下锻造成20mm×30mm的尺寸。在900℃下以10℃/小时的冷却速度降至750℃进行软退火,其后在空气中自然冷却。未溶解的mx的量高于前述实施例并且氮含量较高。由于这一事实以及富氮的钒碳氮化物(mx)的细分布,发现钢抗晶粒生长非常稳健。
实施例3
使具有与实施例2中相同的组成的粉末经历筛分,以获得具有在10μm至60μm的范围内的窄粒度分布的粉末。发现该粉末可以成功地用于模具的激光包覆修复,以及用于例如具有随形冷却水道的模具的快速原型。因此,将明显的是钢合金粉末适合用于增材制造。
工业实用性
本发明的工具钢可用于要求良好的淬透性以及良好的抗热裂和粗裂纹性的大模具。合金的雾化粉末可以用于生产具有优越的组织均匀性的热等静压产品。合金的粉末可以具体地通过增材制造方法用于生产或修复模具。