本发明属于黑色冶金制造技术领域,具体涉及一种可大线能量焊接高强船板eh40及其生产方法。
背景技术:
船舶和海工是海洋钢结构物的两大体系,其制造需要大量的钢铁材料,钢材占其建造成本的20%~30%,船体用钢占其总重量的60%。船舶用钢主要是船体结构用钢板,经过多年的发展,我国已经建立了比较完备的船舶与海工用钢体系,钢级涵盖了早期大型船体采用的一般强度钢和现在海工设备常采用的焊接结构用超高强度钢。
焊接是船体制造的关键环节,约占船舶制造成本的17%。随着船板厚度规格的增加,开发具有高焊接热输入适应性的钢板用以提高焊接效率成为船体建造需重点解决的问题。提高焊接热输入,必须解决热影响区(haz)韧性降低的问题。提高热影响区韧性的方法包括采用低碳当量的成分设计、细化haz晶粒尺寸及改善热影响区晶内组织、优化tmcp轧制工艺等。目前,国内外解决大线能量焊接热映区韧性下降问题主要采用氧化物冶金技术,利用弥散分布的微米级夹杂,改善焊接接头热影响区韧性,通常需要窄窗口控制脱氧方式、严格控制精炼时长。
技术实现要素:
本发明要解决的技术问题是提供一种可大线能量焊接高强船板eh40及其生产方法;本发明通过提供一种短流程生产工序,采用“铁水预处理→转炉→炉后脱氧合金化→连铸→加热→粗轧→精轧→超快冷”工艺路径,避免钢水二次精炼,成分设计上采用nb、ti复合合金化,开发出的eh40船板具有细小晶粒组织和优异的综合力学性能,即高强度、良好的低温韧性、可承受最大热输入值150kj/cm。
为解决上述技术问题,本发明所采取的技术方案是:一种可大线能量焊接高强船板eh40,所述高强船板eh40的化学成分及质量百分含量为:c:0.08~0.12%,mn:1.40~1.80%,si:0.15~0.35%,al:0.020~0.040%,s≤0.01%,p≤0.02%,ti≥0.010%,nb≥0.030,ni≥0.1%,其余为fe和痕量杂质元素。
本发明所述高强船板eh40化学成分中,ti:0.015~0.025%,nb:0.030~0.040%,ni:0.15~0.3%。
本发明所述高强船板eh40厚度规格为8~50mm,抗拉强度为530~570mpa,屈服强度405~425mpa,断后伸长率30~35%,可承受最大线能量输入值为150kj/cm。
本发明所述生产方法包括铁水预处理、转炉冶炼、炉后脱氧合金化、连铸、粗轧、精轧、超快冷工序;所述铁水预处理工序,为了避免二次精炼造成的能源消耗、夹杂物聚集长大及生产节奏紧张的影响,终点硫含量s≤0.003%,扒渣后钢水裸露面积占钢包界面≥2/3。
本发明所述转炉冶炼工序,终点c:0.035~0.050%,终点温度t≥1650℃,终点p≤0.010%。
本发明所述炉后脱氧合金化,转炉出钢1/4开始加入硅铁0.10~0.15㎏/吨钢预脱氧,硅锰9.0~10.0㎏/吨钢合金化,加入钛铁时保证氧位处于30~50ppm;出钢后快速调整其它元素含量,成分合格后钢包静置3~5min,吊运至连铸平台。
本发明所述连铸工序,二冷区采用电磁搅拌+重压下功能,电磁搅拌电流340~350a,频率5~6hz,重压下压下量30~35mm;中间包过热度15~25℃,有效改善铸坯内部疏松、偏析质量问题。
本发明所述粗轧工序,粗轧采用4道次全纵轧,开轧温度≥1050℃,粗轧阶段单道次压下率≥20%。
本发明所述精轧工序,精轧采用6道次,精轧二次开轧温度≤820℃,精轧终轧温度750~820℃。
本发明所述超快冷工序,开冷温度≤690℃,终冷温度450~650℃。
本发明高强船板eh40取样及检测方法参考gb/t2975《钢及钢产品力学性能试验取样位置及试样制备》、gb/t228.1-2010《金属材料拉伸试验第1部分:室温试验方法》及gb/t229《金属材料夏比摆锤冲击试验方法》。
采用上述技术方案所产生的有益效果在于:1、本发明采用c-mn-nb-ti成分体系,nb-ti复合微合金化,减少二次精炼工序,工艺稳定,有效的降低了生产成本。2、本发明通过合理的控制脱氧、微合金化方式,大大改善了钢板大线能量焊接接头热影响区韧性。3、本发明利用钢中弥散分布的微米级夹杂物改善焊接性能,可生产8~50mm厚度规格高强船板eh40。4、高强船板eh40抗拉强度为530~570mpa,屈服强度405~425mpa,断后伸长率30~35%,可承受最大线能量输入值为150kj/cm,焊接热影响区-40℃冲击功值50~84j。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本大线能量焊接高强船板eh40及其生产方法如下所述。
本高强船板eh40化学成分及质量百分含量为:c:0.08%,mn:1.55%,si:0.20%,al:0.025%,s:0.005%,p:0.010%,ti:0.015%,nb:0.040%,ni:0.2%,其余为fe和痕量杂质元素;厚度为30mm。
本大线能量焊接高强船板的生产方法包括铁水预处理、转炉冶炼、炉后脱氧合金化、连铸、粗轧、精轧、超快冷工序,具体步骤如下:
1)铁水预处理工序:铁水预处理终点硫含量:s:0.003%,扒渣后钢水裸露面占钢包界面3/4。
2)转炉冶炼工序:转炉终点:c:0.05%、p:0.008%,终点温度1670℃。
3)炉后脱氧合金化工序:出钢1/4加入硅铁0.10㎏/吨钢预脱氧,硅锰9.5㎏/吨钢合金化,加入钛铁时氧位45ppm;出钢后快速调整其它元素含量,成分合格后钢包静置5min,吊运至连铸平台。
4)连铸工序:连铸二冷区电磁搅拌电流350a,频率5hz,二冷区重压压下量35mm;中间包过热度25℃。
5)粗轧工序:粗轧采用4道次全纵轧,粗轧开轧温度1058℃,单道次压下率20%。
6)精轧工序:精轧采用6道次,精轧二次开轧温度805℃,终轧温度760℃。
7)超快冷工序:超快冷开冷温度680℃,终冷温度550℃。
本eh40钢板经检验,抗拉强度为550mpa,屈服强度425mpa,断后伸长率30%,-40℃冲击功(纵向)值150j,138j,120j。焊接热模拟热输入值150kj/cm,热影响区-40℃冲击功值62j,84j,70j。
实施例2
本大线能量焊接高强船板eh40及其生产方法如下所述。
本高强船板eh40化学成分及质量百分含量为:c:0.09%,mn:1.45%,si:0.22%,al:0.035%,s:0.004%,p:0.012%,ti:0.020%,nb:0.030%,ni:0.3%,其余为fe和痕量杂质元素;厚度为40mm。
本大线能量焊接高强船板的生产方法包括铁水预处理、转炉冶炼、炉后脱氧合金化、连铸、粗轧、精轧、超快冷工序,具体步骤如下:
1)铁水预处理工序:铁水预处理终点硫含量:s:0.002%,扒渣后钢水裸露面占钢包界面2/3。
2)转炉冶炼工序:转炉终点:c:0.04%、p:0.006%,终点温度1680℃。
3)炉后脱氧合金化工序:出钢1/4加入硅铁0.12㎏/吨钢预脱氧,硅锰9.0㎏/吨钢合金化,加入钛铁时氧位35ppm;出钢后快速调整其它元素含量,成分合格后钢包静置5min,吊运至连铸平台。
4)连铸工序:连铸二冷区电磁搅拌电流350a,频率5hz,二冷区重压压下量35mm;中间包过热度25℃。
5)粗轧工序:粗轧采用4道次全纵轧,粗轧开轧温度1050℃,单道次压下率20%。
6)精轧工序:精轧采用6道次,精轧二次开轧温度820℃,终轧温度780℃。
7)超快冷工序:超快冷开冷温度670℃,终冷温度520℃。
本eh40钢板经检验,抗拉强度为530mpa,屈服强度405mpa,断后伸长率32%,-40℃冲击功(纵向)值132j,128j,110j。焊接热模拟热输入值150kj/cm,热影响区-40℃冲击功值52j,64j,50j。
实施例3
本大线能量焊接高强船板eh40及其生产方法如下所述。
本高强船板eh40化学成分及质量百分含量为:c:0.12%,mn:1.40%,si:0.15%,al:0.020%,s:0.01%,p:0.02%,ti:0.025%,nb:0.030%,ni:0.15%,其余为fe和痕量杂质元素;厚度为8mm。
本大线能量焊接高强船板的生产方法包括铁水预处理、转炉冶炼、炉后脱氧合金化、连铸、粗轧、精轧、超快冷工序,具体步骤如下:
1)铁水预处理工序:铁水预处理终点硫含量:s:0.0025%,扒渣后钢水裸露面占钢包界面4/5。
2)转炉冶炼工序:转炉终点:c:0.035%、p:0.010%,终点温度1650℃。
3)炉后脱氧合金化工序:出钢1/4加入硅铁0.15㎏/吨钢预脱氧,硅锰10.0㎏/吨钢合金化,加入钛铁时氧位30ppm;出钢后快速调整其它元素含量,成分合格后钢包静置3min,吊运至连铸平台。
4)连铸工序:连铸二冷区电磁搅拌电流340a,频率6hz,二冷区重压压下量30mm;中间包过热度15℃。
5)粗轧工序:粗轧采用4道次全纵轧,粗轧开轧温度1065℃,单道次压下率25%。
6)精轧工序:精轧采用6道次,精轧二次开轧温度810℃,终轧温度750℃。
7)超快冷工序:超快冷开冷温度690℃,终冷温度450℃。
本eh40钢板经检验,抗拉强度为570mpa,屈服强度415mpa,断后伸长率35%,-40℃冲击功(纵向)值142j,131j,114j。焊接热模拟热输入值150kj/cm,热影响区-40℃冲击功值55j,70j,58j。
实施例4
本大线能量焊接高强船板eh40及其生产方法如下所述。
本高强船板eh40化学成分及质量百分含量为:c:0.10%,mn:1.80%,si:0.35%,al:0.040%,s:0.007%,p:0.010%,ti:0.018%,nb:0.035%,ni:0.15%,其余为fe和痕量杂质元素;厚度为50mm。
本大线能量焊接高强船板的生产方法包括铁水预处理、转炉冶炼、炉后脱氧合金化、连铸、粗轧、精轧、超快冷工序,具体步骤如下:
1)铁水预处理工序:铁水预处理终点硫含量:s:0.0015%,扒渣后钢水裸露面占钢包界面2/3。
2)转炉冶炼工序:转炉终点:c:0.045%、p:0.006%,终点温度1660℃。
3)炉后脱氧合金化工序:出钢1/4加入硅铁0.14㎏/吨钢预脱氧,硅锰9.8㎏/吨钢合金化,加入钛铁时氧位50ppm;出钢后快速调整其它元素含量,成分合格后钢包静置5min,吊运至连铸平台。
4)连铸工序:连铸二冷区电磁搅拌电流350a,频率5hz,二冷区重压压下量35mm;中间包过热度25℃。
5)粗轧工序:粗轧采用4道次全纵轧,粗轧开轧温度1055℃,单道次压下率23%。
6)精轧工序:精轧采用6道次,精轧二次开轧温度820℃,终轧温度820℃。
7)超快冷工序:超快冷开冷温度685℃,终冷温度650℃。
本eh40钢板经检验,抗拉强度为545mpa,屈服强度420mpa,断后伸长率31.5%,-40℃冲击功(纵向)值145j,135j,116j。焊接热模拟热输入值150kj/cm,热影响区-40℃冲击功值58j,74j,65j。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。