本发明属于3d打印技术领域,具体涉及一种用于增材制造粉末流动性检测的设备。
背景技术:
3d打印技术是快速成型技术的一种,它是一种以三维模型为基础,运用金属粉末或者塑料等可粘合材料,通过逐层扫描,层层堆垛的方式来构造出立体三维零件的技术。该技术结合了cad/cam、光学、数控及材料科学等各类学科,应用领域非常广泛,在珠宝、医疗、鞋类、工业设计、建筑、航空航天、汽车、教育等都有应用前景。
目前针对金属材料3d打印工艺,slm是主流工艺,slm技术是在sls基础上发展起来的,二者的基本原理类似。slm技术需要使金属粉末完全熔化,直接成型金属件,因此需要高功率密度激光器激光束开始扫描前,水平铺粉辊先把金属粉末平铺到加工室的基板上,然后激光束将按当前层的轮廓信息选择性地熔化基板上的粉末,加工出当前层的轮廓,然后可升降系统下降一个图层厚度的距离,滚动铺粉辊再在已加工好的当前层上铺金属粉末,设备调入下一图层进行加工,如此层层加工,直到整个零件加工完毕。
目前已有的铺粉设备、铺粉装置的专利均为设备厂商申请的专利,目的是对粉末材料的铺平,为激光成型提供基础。关键技术均为应用方向,没有粉末性能测试的功能。目前,3d打印用粉末材料的各项性能均利用原有粉末材料的检测标准与检测手段,无法全面的表征目前3d打印工艺使用粉末材料的性能要求。
在slm增材制造过程中,铺粉过程是增材制造工艺的关键过程。金属粉末材料的可铺展性能对打印工艺及其重要。但目前对增材制造用金属粉末的性能检测仍然停留在传统的参数检测水平,利用传统粉末材料的检测手段进行表征,准确度不高,需要一种适合增材制造粉末材料性能检测的设备对粉末参数进行全面科学的表征。
技术实现要素:
针对现有技术的不足,本发明的目的在于利用模拟铺粉过程来检测粉末材料的性能,得出表征参数,用于为3d打印工艺提供粉末材料的相关性能参数。
本发明的技术方案为:一种用于增材制造粉末流动性检测的设备,包括密封的壳体,所述壳体内设置有用于铺设粉末的铺粉装置,还包括用于测量粉末层表面形貌的表面形貌测量装置,所述表面形貌测量装置可以表征铺粉层表面的平整度,所述表面形貌测量装置为非接触式表面形貌测量装置。
优选的,所述表面形貌测量装置设置于铺粉装置的周围。
优选的,所述表面形貌测量装置为测距装置或/和成像装置。
所述铺粉装置可采用常规3d打印设备的铺粉装置,模拟3d打印设备打印过程中的铺粉过程。
进一步地,所述表面形貌测量装置的第一种实施方式为:
通过常规的高分辨率测距装置(如激光测距装置、光纤测距装置),激光测量装置位于测量点位的正上方,测量铺粉后铺粉仓表面n个位点,测得其相对于刮刀的刀锋所过面的相对高度的绝对值,并求得其平均值。或者测得激光发射装置与刀锋刮过的面的距离m,然后测得n个位点与激光发射装置的距离h1、h2…hn,然后计算得到(m-h)的方差,所述的h为h1、h2…hn。并用该方差来表征表面的形貌。方差越小,说明表面的平整度越高。
进一步,所述表面形貌测量装置的第二种实施方式为:
所述表面形貌测量装置为光学成像装置、激光成像装置或电子成像装置及配套的处理软件,优选的,可以形成三维图像的成像装置。进一步优选的,可以获得三维图像中峰、谷的高度、面积信息的三维成像装置。
进一步地,还包括用于测量铺粉装置铺设的粉末层密度的密度测量装置。
进一步地,所述密度测量装置包括体积测量装置和重量测量装置。
通过计算铺粉装置铺粉区域上粉末的密度,来表征打印过程中粉末材料在铺粉仓中的打印密度性能,与传统松装密度和振实密度的测量结果相比,该密度更接近打印过程中的密度,对密度表征更加全面和科学。
进一步地,所述铺粉装置为刮刀铺粉装置或辊铺粉装置。
进一步地,所述铺粉装置为刮刀铺粉装置,所述刮刀铺粉装置包括供粉平台和铺粉平台,所述供粉平台和铺粉平台的下方分别设置有供粉仓和铺粉仓,所述供粉平台可沿供粉仓上升,所述铺粉平台可沿铺粉仓上升或下降;所述供粉平台上设有可将粉末刮至铺粉平台上的刮粉机构,所述刮粉机构完成一次刮刀后可上升并返回至供粉平台。
本发明的流动性检测设备综合了表面形貌表征数据和密度表征数据,综合考虑了3d打印过程中流动性的各种表现方式,更加准确的反映了粉末了流动性能,对于指导打印工艺,指导粉末的制造和表征,具有重大的实际意义。
利用增材制造技术中最常见的刮刀铺粉装置,对待检测粉末进行模拟打印工艺的铺粉过程,通过对铺粉过程中及完成后的粉末平铺状况进行参数测量和数据表征。
本发明的检测设备利用模拟打印过程中的铺粉工艺,对粉末进行性能检测,与传统粉末性能检测方式相比,提高了对增材制造工艺的契合性。所表征的参数可以直接用于调整打印参数、选择粉末材料、研制粉末材料等情况,传统方法只能上机打印后才能发现粉末材料存在问题,与现有技术相比,本发明具有节省时间、减少资源浪费、代替高价值的打印设备对粉末进行前期验证、减少高额设备损耗、表征性能参数符合增材制造过程需要等优点。
附图说明
图1是本发明第一种实施方式的用于增材制造粉末流动性检测的设备的俯视图。
图2是本发明第一种实施方式的用于增材制造粉末流动性检测的设备的剖面结构示意图。
具体实施方式
以下将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。为叙述方便,下文中如出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用。
图1和图2是本发明第一种实施方式的用于增材制造粉末流动性检测的设备的相关结构示意图,具体地,该用于流动性检测的设备包括密封的壳体1,壳体1内设有与水平面平行的工作平台2,所述壳体1内设置有用于铺设粉末的铺粉装置,还包括用于测量粉末层表面形貌的表面形貌测量装置,所述表面形貌测量装置设置于铺粉装置的周围。
其中,铺粉装置为刮刀铺粉装置,所述刮刀铺粉装置包括供粉平台301和铺粉平台303,供粉平台301和铺粉平台303均与工作平台2平行,所述供粉平台301和铺粉平台303的下方分别设置有供粉仓304和铺粉仓305,供粉仓304和铺粉仓305的顶部均开口,供粉仓304和铺粉仓305均固定在工作平台2上,供粉仓304和铺粉仓305的顶端面与工作平台2平齐,所述供粉平台301可沿供粉仓304上升,所述铺粉平台303可沿铺粉仓305上升或下降;所述供粉平台301上设有可将粉末刮至铺粉平台303上的刮粉机构302,所述刮粉机构302完成一次刮刀后可上升并返回至供粉平台301。
工作平台2处于惰性气体保护状态,惰性气体气压与打印设备气压相同。
表面形貌测量装置为三维成像装置;成像装置为激光成像装置,该激光成像装置包括激光器501和感应器502,所述激光器501设置于铺粉平台303的左侧,所述感应器502设置于铺粉平台303的右侧,且位于铺粉平台303与供粉平台301之间,所述的成像装置还包括计算机,以及相应的计算成像软件。
本实施方式的检测设备还包括用于测量铺粉装置铺设的粉末层密度的密度测量装置4,密度测量装置4包括体积测量装置和重量测量装置,密度测量装置4设置于铺粉仓305的下方。
下面以不锈钢316l球形粉末的性能检测为例,对本发明进行进一步说明:
将待检测的15-53μm不锈钢316l球形粉末放入供粉仓304中,开启设备,进行抽真空过程与惰性气体充气过程,使设备工作平台2处于稳定的惰性气体气压状态,开启铺粉过程,刮粉机构302由供粉平台301向铺粉平台303移动,将供粉平台301上方的粉末刮至铺粉平台303上,刮刀速率根据打印工艺调整。在刮粉过程中,若速率偏快则会出现粉末不均匀的现象。当刮刀铺粉完成后,对铺粉平台303上的粉末层进行扫描记录扫描结果,通过计算机处理成三维图像,利用计算机图像处理的统计分析方法,计算图像中各数据云点高度上的均方差,表征铺粉工艺的表面平整度性能。重复上述过程测量多组数据;每铺5层粉末,记录一次密度检测装置6的数据,作为粉末的打印密度。将所有粉末由供粉仓304移至铺粉仓305后,对记录数据进行统计分析,得出该批次粉末的打印密度,并通过测试过程中出现的异常情况对打印工艺进行优化,进行打印。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围。