一种生物医用Mg-Sn-Zn-Ca镁合金及其制备方法与流程

文档序号:15205684发布日期:2018-08-21 08:30阅读:676来源:国知局

本发明属于镁合金材料技术领域,具体涉及一种生物医用

mg-sn-zn-ca镁合金及其制备方法。



背景技术:

交通事故和体育运动等引起的大量骨骼损伤,为生物植入材料带来了巨大的市场空间和前景,极大地促进了生物植入材料的发展。传统的不锈钢、钛合金等金属生物植入材料在获得广泛临床应用的同时,也暴露出一些弊端。与传统的不锈钢、钛合金等金属材料相比,镁合金作为生物植入材料,具有一系列独特的优势:(1)镁合金具有良好的生物相容性,mg是人体内仅次于ca、na和k的常量金属元素,能够激活多种酶,参与体内一系列代谢过程,体内过量的mg可通过尿液排出体外,具有良好的生物安全性基础。此外,mg还是骨生长的必需元素,能够促进ca的沉积,诱导新骨生成;(2)镁合金具有良好的力学相容性,镁合金有较高的比强度和比刚度,能够满足生物植入材料的力学性能要求,其弹性模量约为41~45gpa,远低于不锈钢、钛合金等材料,更接近于人骨的弹性模量,可有效缓解应力遮挡效应,促进骨骼的生长和愈合;(3)纯mg的标准电极电位仅为-2.37v,在腐蚀介质中极易发生腐蚀,在完成骨修复或固定功能后可在人体内发生降解,从而避免二次手术,大大减轻病人的风险和负担。国内外学者围绕生物镁合金材料开展了大量研究,但目前与临床应用之间仍存在一定的距离,主要障碍在于:(1)部分镁合金中的合金元素存在潜在毒性;(2)在体液环境中,镁合金的降解速率过快,容易发生严重的局部腐蚀。

早期的生物镁合金研究大多直接采用商用镁合金,如最常见的mg-al系合金,但al元素具有慢性神经毒性,可能引起老年痴呆,不满足生物相容性的要求。目前研究的生物镁合金,在合金元素选择上,通常选择zn、ca、mn等人体必需的元素,sr、si等人体微量元素,以及gd、y、nd、zr等无细胞毒性或细胞毒性较低的元素。为了获得更好的合金化效果,经常在一种镁合金中同时添加采用多种合金元素,以发挥元素各自的作用。近年来,镁锡(mg-sn)系合金作为一类潜在的生物镁合金材料,逐渐引起国内外学者的重视。



技术实现要素:

本发明主要提供了一种生物医用mg-sn-zn-ca镁合金及其制备方法,该合金材料无毒性、具有良好耐蚀性和高强韧性,可人体降解。其技术方案如下:

一种生物医用mg-sn-zn-ca镁合金,其包括以下重量百分比组分:sn0.5-1.5%、zn0.3-0.7%、ca0.1-0.3%,杂质元素si、fe、cu和ni的总量小于0.02%,余量为mg。

一种上述生物医用mg-sn-zn-ca镁合金的制备方法,包括以下步骤:

(1)按照配方量采用纯镁锭、纯锡锭、纯锌锭和纯钙锭在气体保护下进行熔炼,得到mg-sn-zn-ca系镁合金铸锭;

(2)对mg-sn-zn-ca系镁合金铸锭进行固溶热处理,固溶处理温度为350-450℃,时间为12-24h,固溶结束后水淬至室温;

(3)对固溶热处理后的mg-sn-zn-ca系镁合金进行塑性变形,采用搅拌摩擦加工技术,搅拌头转速为200-1800r/min,进给速度为50-150mm/min。

优选的,步骤(1)中保护气体为sf6与co2的混合气体。

优选的,步骤(1)中熔炼方法为:先将纯镁熔化,当温度升至720-740℃时加入纯锡和纯锌,待其熔化后搅拌8-12min;随后加入纯钙,继续搅拌8-12min使合金元素分布均匀,降温至710-720℃保温10min,去除表面浮渣,浇注到预热至180-220℃的金属型模具中。

镁合金中各合金元素的作用如下:

sn是人体必需的微量元素之一,毒性极小,体重70kg的成年人每天需摄入约7.0mg的sn。sn能够提高镁合金的室温塑性和强度。

zn是人体必需的微量元素之一,参与形成促卵泡激素和黄体化荷尔蒙(lh),同时参与形成dna组成元素锌指蛋白的合成,参与多种酶的形成。zn也会提升镁合金的抗拉强度和屈服强度。

ca是人体内存在最广泛的矿物元素之一,对骨的生长有重要的促进作用。ca能够促进镁合金的晶粒细化。

塑性变形能够诱发镁合金的再结晶,细化晶粒,实现细晶强化,晶粒细化对提高镁合金的耐腐蚀性能也有很大帮助。

采用上述方案,本发明具有以下优点:

(1)本发明镁合金采用无毒的成分设计,所涉及的sn、zn和ca元素都是人体必需的微量元素;

(2)本发明所述的mg-sn-zn-ca系镁合金采用多元微合金化设计,能够比较好地发挥各合金元素在合金中的作用,改善合金的耐腐蚀性能,并提高其力学性能;

(3)本发明所述的mg-sn-zn-ca系镁合金,控制合金元素总量,经铸造、固溶和塑性变形后获得单相镁合金,基本消除第二相,大幅度抑制了电偶腐蚀的发生,改善合金的耐腐蚀性能,同时确保合金的植入生物体内后能够完全降解;

(4)本发明所述的mg-sn-zn-ca系镁合金,经塑性变形后,晶粒得到细化,合金的耐腐蚀性能和力学性能均得到提高。

具体实施方式

以下实施例中的实验方法如无特殊规定,均为常规方法,所涉及的实验试剂及材料如无特殊规定均为常规生化试剂和材料。

实施例1

本实施例所述镁合金由mg、sn、zn和ca元素组成,其各组分质量百分含量为:0.5%sn、0.3%zn、0.3%ca,杂质元素si、fe、cu和ni的总量小于0.02%,余量为mg。

该合金的制备方法包括熔炼、固溶热处理和塑性变形三个工艺工序。

其中,在前的熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:将纯镁在坩埚电阻炉中熔化,当温度升至730℃时加入纯锡和纯锌,待其熔化后搅拌10min;随后加入纯钙,继续搅拌10min使合金元素分布均匀。降温至720℃保温10min,捞去表面浮渣,浇注到预热至200℃的金属型模具中。

随后的固溶热处理工艺工序为:将熔炼得到的合金铸锭在350℃保温24h,随后水淬至室温。

随后的塑性变形工艺工序为:对固溶处理后的mg-sn-zn-ca合金进行塑性变形,采用搅拌摩擦加工技术,搅拌头转速为200r/min,进给速度为150mm/min。

所得到合金的室温抗拉强度为231mpa,延伸率为19%。

实施例2

本实施例所述镁合金由mg、sn、zn和ca元素组成,其各组分质量百分含量为:1.0%sn,0.5%zn,0.2%ca,杂质元素si、fe、cu和ni的总量小于0.02%,余量为mg。

该合金的制备方法包括熔炼、固溶热处理和塑性变形三个工艺工序。

其中,在前的熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:将纯镁在坩埚电阻炉中熔化,当温度升至730℃时加入纯锡和纯锌,待其熔化后搅拌10min;随后加入纯钙,继续搅拌10min使合金元素分布均匀。降温至720℃保温10min,捞去表面浮渣,浇注到预热至200℃的金属型模具中。

随后的固溶热处理工艺工序为:将熔炼得到的合金铸锭在400℃保温16h,随后水淬至室温。

随后的塑性变形工艺工序为:对固溶处理后的mg-sn-zn-ca合金进行塑性变形,采用搅拌摩擦加工技术,搅拌头转速为1000r/min,进给速度为100mm/min。

所得到合金的室温抗拉强度为269mpa,延伸率为21%。

实施例3

本实施例所述镁合金由mg、sn、zn和ca元素组成,其各组分质量百分含量为:1.5%sn,0.7%zn,0.1%ca,杂质元素si、fe、cu和ni的总量小于0.02%,余量为mg。

该合金的制备方法包括熔炼、固溶热处理和塑性变形三个工艺工序。

其中,在前的熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:将纯镁在坩埚电阻炉中熔化,当温度升至730℃时加入纯锡和纯锌,待其熔化后搅拌10min;随后加入纯钙,继续搅拌10min使合金元素分布均匀。降温至720℃保温10min,捞去表面浮渣,浇注到预热至200℃的金属型模具中。

随后的固溶热处理工艺工序为:将熔炼得到的合金铸锭在450℃保温12h,随后水淬至室温。

随后的塑性变形工艺工序为:对固溶处理后的mg-sn-zn-ca合金进行塑性变形,采用搅拌摩擦加工技术,搅拌头转速为1800r/min,进给速度为50mm/min。

所得到合金的室温抗拉强度为273mpa,延伸率为22%。

对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1