使用溅射蚀刻以中止厚膜中结晶发生的PVD二氧化钛形成的制作方法

文档序号:22625918发布日期:2020-10-23 19:33阅读:191来源:国知局
使用溅射蚀刻以中止厚膜中结晶发生的PVD二氧化钛形成的制作方法

背景

本公开内容的实施方式一般地涉及形成陶瓷膜。尤其是,本公开内容的实施方式涉及形成非晶或纳米结晶的方法。

相关技术描述

诸如二氧化钛(tio2)的陶瓷膜用于形成诸如波导、彩色过滤器及二维透镜的光学装置。这些装置的功能受到形成具有非常精细细节的准确形状的能力的影响。

在沉积例如具有大于500埃的厚度的二氧化钛(tio2)的厚陶瓷膜期间,膜的结构从非晶或纳米结晶结构移动成结晶结构。大型的结晶结构不良地影响将陶瓷膜图案化以达成平滑结构的能力,因为图案化的侧壁、厚陶瓷膜具有过大的粗糙度。当前方法包括在膜生长期间使用较低的基板温度,以阻止结晶形成的开始。然而,较低的基板温度仅短暂地抑制结晶形成,且大于的陶瓷膜将展现大型的结晶形成。

因此,本领域中需要形成厚的、非晶或纳米结晶陶瓷膜的改良的方法。



技术实现要素:

在一个实施方式中,提供一种方法。方法包括使用物理气相沉积(pvd)工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断pvd工艺;溅射蚀刻陶瓷层达预定的时段;和重复使用pvd操作沉积该陶瓷层的步骤、中断pvd工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。

在另一实施方式中,提供一种方法。方法包括将基板引入物理气相沉积(pvd)腔室,且使用pvd工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断pvd工艺,且将基板从pvd腔室移除;将基板引入溅射蚀刻腔室,且溅射蚀刻陶瓷层达预定的时段;和重复使用pvd工艺沉积陶瓷层的步骤、中断pvd工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。

在又一实施方式中,提供一种方法。方法包括将基板引入物理气相沉积(pvd)腔室。pvd腔室具有由腔室主体界定的处理空间。处理空间包括靶和可操作以支撑基板的底座。靶连接至靶开关,当接合时靶开关将靶连接至dc电源,靶开关可操作以提供脉冲dc功率至靶。底座连接至底座开关,当接合时底座开关将底座连接至脉冲射频(rf)电源,底座开关可操作以提供rf功率至底座。使用pvd工艺在基板上沉积陶瓷层。pvd工艺包括提供溅射气体的第一流及反应气流至处理空间,且将靶连接至dc电源。当陶瓷层具有预定的层厚度时,中断pvd工艺。在pvd腔室中,溅射蚀刻陶瓷达预定的时段。溅射蚀刻包括提供溅射气体的第二流至处理空间,且将底座连接至rf电源。重复使用pvd工艺沉积陶瓷层的步骤、中断pvd工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。

附图说明

以上简要概述本公开内容的上述详述特征可以被详细理解的方式、以及本公开内容的更特定描述,可通过参照实施方式来获得,某些实施方式绘示在随附图式中。然而,应注意所附图式仅是对实施方式的说明,因而不应视为对本发明的范围的限制,且可允许其他等同有效的实施方式。

图1为根据实施方式的图示了用于形成非晶或纳米结晶陶瓷膜的方法的操作的流程图。

图2a-2c为根据实施方式的在形成非晶或纳米结晶陶瓷膜的方法期间基板的截面示意图。

图3a为根据实施方式的物理气相沉积(pvd)腔室的截面示意图。

图3b为根据实施方式的溅射蚀刻腔室的截面示意图。

图3c为根据实施方式的pvd腔室的截面示意图。

为了促进理解,已尽可能地使用相同的附图标号标示图式中共通的相同元件。考虑到,一个实施方式的元件及特征在没有进一步描述下可有益地并入其他实施方式中。

具体实施方式

在此所述的实施方式为形成非晶或纳米结晶陶瓷膜的方法。方法包括使用物理气相沉积(pvd)工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断pvd工艺;溅射蚀刻陶瓷层达预定的时段;和重复使用pvd工艺沉积该陶瓷层的步骤、中断pvd工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。

图1为图示了用于形成如图2a-2c中所示的非晶或纳米结晶陶瓷膜200的方法100的操作的流程图。可利用例如从位于美国加州圣克拉拉市的应用材料公司购得的endura溅射系统的自动化、多重腔室的物理气相沉积(pvd)系统,来执行方法100,用于形成非晶或纳米结晶陶瓷膜200。

在操作101之前,基板201可引入负载锁定腔室中的高真空条件,且转换至用于基板制备步骤的腔室以从基板201解吸出水。基板201可为硅晶片或包含玻璃、石英或在光学装置形成中使用的其他材料的晶片。在可与在此所述的其他实施方式结合的一个实施方式中,晶片制备步骤包括在辐射加热腔室中除气。在可与在此所述的其他实施方式结合的另一实施方式中,晶片制备步骤包括在溅射蚀刻腔室中溅射蚀刻。

于操作101处,使用pvd工艺在基板上沉积第一陶瓷层202a。在可与在此所述的其他实施方式结合的一个实施方式中,pvd工艺为溅射沉积工艺。将基板201引入pvd腔室,且利用诸如氩气(ar)的溅射气体以及诸如氧气(o2)的反应气体的等离子体沉积第一陶瓷层202a,而用氩离子轰击负偏压的靶来溅射靶材料的原子,此后用靶材料的层涂布基板。沉积的靶材料与反应气体反应以形成陶瓷层。第一陶瓷层202a可包括二氧化钛(tio2)、五氧化二钽(ta2o5)或氧化铝(iii)(al2o3)材料。在可与在此所述的其他实施方式结合的一个实施方式中,溅射气体包括ar,反应气体包括o2,且靶材料包括钛(ti),以形成tio2层。

根据可与此处所述的其他实施方式结合的一个实施方式,pvd工艺在pvd腔室300a中执行。应理解在此所述的pvd腔室300a为示例性pvd腔室,且包括来自其他制造商的pvd腔室的其他pvd腔室可使用或修改以完成本公开内容的方面。如图3a中所示,pvd腔室300a的截面示意图,pvd腔室300a包括由腔室主体301界定的处理空间302。处理空间302具有靶310及可操作以支撑基板201的底座304。底座304由连接至抬升系统(未示出)的杆306而耦接至且可移动地布置于处理空间302中,抬升系统在升高的处理位置及降低的位置之间移动底座304,降低的位置促进基板201通过腔室主体301的开口308而传送进出pvd腔室300a。

靶310连接至电源312,例如dc电源、rf电源、ac电源、脉冲dc电源、及脉冲rf电源。例如质量流控制(mfc)装置的溅射气体流控制器318布置于溅射气源314与处理空间302之间,以控制从溅射气源314至处理空间302的溅射气流。例如mfc装置的反应气体流控制器320布置于反应气体源316与处理空间302之间,以控制从反应气源316至处理空间302的反应气流。在可与在此所述的其他实施方式结合的一个实施方式中,ar的流率为约20sccm至约100sccm,且o2的流率为约20sccm至约100sccm。控制器303耦接至pvd腔室300a,且配置成在处理期间控制pvd腔室300a的数个方面。在操作101处,靶310经由提供脉冲dc功率的脉冲dc电源而负偏压。应理解尽管图1及图3a的讨论参考脉冲dc功率,考虑将由以上提及的其他电源执行操作101,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,脉冲dc功率具有约100千赫兹(khz)的频率,约50%至约90%的工作周期,例如70%,及约1千瓦(kw)至约10kw的功率级。在可与在此所述的其他实施方式结合的另一实施方式中,提供脉冲dc功率约100秒至约300秒。

根据可与在此所述的其他实施方式结合的另一实施方式,pvd工艺在物理气相沉积(pvd)腔室300c中执行。应理解在此所述的pvd腔室300c为示例性pvd腔室,且包括来自其他制造商的pvd腔室的其他pvd腔室可使用或修改以完成本公开内容的方面。如图3c中所示,pvd腔室300c的截面示意图,pvd腔室300c包括由腔室主体301界定的处理空间302、底座304、杆306、开口308、布置于溅射气源314与处理空间302之间的溅射气体流控制器318、布置于反应气源316与处理空间302之间的反应气体流控制器320。在可与在此所述的其他实施方式结合的一个实施方式中,ar的流率为约20sccm至约100sccm,且o2的流率为约20sccm至约100sccm。当靶310连接至电源312时,靶310连接至靶开关326,例如dc电源、rf电源、ac电源、脉冲dc电源、及脉冲rf电源。举例而言,在图3c中,靶310连接至脉冲dc电源。在操作101处,靶310经由提供脉冲dc功率的电源312而负偏压。应理解尽管图1及图3c的讨论参考脉冲dc功率,考虑将由以上提及的其他电源执行操作101,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,脉冲dc功率具有约100khz的频率,约50%至约90%的工作周期,例如70%,及约1kw至约10kw的功率级(powerlevel)。在可与在此所述的其他实施方式结合的另一实施方式中,提供脉冲dc功率约100秒至约300秒。

底座304连接至底座开关330,当接合时,底座开关将底座304连接至电源324,例如dc电源、rf电源、ac电源、脉冲dc电源、及脉冲rf电源。在操作103处,如在此进一步说明,底座304经由提供rf功率的电源324而负偏压。应理解尽管图1及图3c的讨论参考rf功率,考虑将由以上提及的其他电源执行操作103,而理解可发生适当的调整以适应不同的电源。pvd腔室300c可操作以独立偏压靶310及底座304,允许操作101-104在相同的pvd腔室300c中执行。控制器307耦接至pvd腔室300c,且配置成控制pvd腔室300c的数个方面,例如在处理期间连接靶开关326及连接底座开关330。

在操作102处,当第一陶瓷层202a具有预定的层厚度203时中断pvd工艺。预定的层厚度203对应至小于发生大型结晶形成的点的厚度。在可与在此所述的其他实施方式结合的一个实施方式中,第一陶瓷层202a为tio2层,且发生大型结晶形成的点为约因此,预定的层厚度203为小于例如约pvd工艺的中断使得陶瓷层停止生长。在可与在此所述的其他实施方式结合的一个实施方式中,当pvd工艺中断时,基板201从pvd腔室300a移除,且引入在此进一步详细说明的溅射蚀刻腔室300b。为了抑制大型结晶形成的开始,独立于pvd工艺而执行溅射蚀刻工艺。

在操作103处,执行溅射蚀刻工艺达预定的时段。为了抑制大型结晶形成的开始,独立于pvd工艺而执行溅射蚀刻处理。尽管可在pvd工艺期间偏压基板201以形成较平滑层,但大型结晶形成的开始不会被抑制。溅射蚀刻工艺为利用诸如ar的溅射气体的等离子体来用氩离子轰击负偏压的基板201,而破坏第一陶瓷层202a且分裂形成于第一陶瓷层202a上的大型结晶成核位点。然而,可能不存在大型结晶成核位点,因为对应于大型结晶成核位点的点的预定的层厚度203可能不存在。预定的时段相对应于必须破坏第一陶瓷层202a且分裂可能已经形成在第一陶瓷层202a上的大型结晶成核位点的时段。在可与在此所述的其他实施方式结合的一个实施方式中,溅射蚀刻工艺对tio2层执行约5秒至约25秒,且仅移除数埃的陶瓷层。

根据可与在此所述的其他实施方式结合的一个实施方式,溅射蚀刻工艺在溅射蚀刻腔室300b中执行。应理解在此所述的溅射蚀刻腔室300b为示例性溅射蚀刻腔室,且包括来自其他制造商的溅射蚀刻腔室的其他溅射蚀刻腔室可使用或修改以完成本公开内容的方面。如图3b中所示,溅射蚀刻腔室300b的截面示意图,溅射蚀刻腔室300b包括由腔室主体301界定的处理空间302、底座304、杆306及开口308。底座304连接至电源322,例如dc电源、rf电源、ac电源、脉冲dc电源、及脉冲rf电源。在可与在此所述的其他实施方式结合的一个实施方式中,电源322为rf电源,且溅射蚀刻腔室300b包括通过匹配电路332耦接至rf电源334的多个线圈336。在操作103处,底座304经由提供第一rf功率的rf电源而负偏压,且第二rf功率被提供至多个线圈336。应理解尽管图1及图3b的讨论参考rf功率,考虑将由以上提及的其他电源执行操作103,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,第一rf功率具有约13.56兆赫兹(mhz)的第一频率,及约50瓦(w)至约300w的第一功率。第二rf功率具有约400兆赫兹khz的第二频率,及约50瓦(w)至约300w的第二功率。在可与在此所述的其他实施方式结合的另一实施方式中,提供第一rf功率及第二rf功率达约100秒至约300秒。在操作103处,布置于溅射气源314之间的溅射气体流控制器318提供从溅射气源314至处理空间302的溅射气流。在可与在此所述的其他实施方式结合的一个实施方式中,ar的流率为约20sccm至约100sccm。控制器305耦接至溅射蚀刻腔室300b,且配置成在处理期间控制溅射蚀刻腔室300b的数个方面。

在操作104处,重复使用pvd工艺沉积陶瓷层、中断pvd工艺及溅射蚀刻工艺,以形成多个陶瓷层202a、202b、202c、202d、202e、……、202n,直到形成取决于装置的类型而具有预定的膜厚度204的非晶或纳米结晶陶瓷膜200。在可与在此所述的其他实施方式结合的一个实施方式中,使用pvd工艺沉积tio2层,于约的预定的层厚度中断pvd工艺,且执行溅射蚀刻工艺达约15秒的预定的时段。使用pvd工艺沉积tio2层、中断pvd工艺及溅射蚀刻处理重复5次,直到形成具有约的厚度的tio2膜。

综上所述,在此说明形成厚的、非晶或纳米结晶陶瓷膜的改良的方法。独立于pvd工艺而执行溅射蚀刻工艺的利用通过破坏陶瓷层且分裂形成于陶瓷层上的大型结晶成核位点来抑制大型结晶形成的开始。重复使用pvd工艺沉积陶瓷层、中断pvd工艺及溅射蚀刻允许形成厚的、非晶或纳米结晶陶瓷膜而不具有大型结晶形成。不具有大型结晶形成的、非晶或纳米结晶陶瓷膜可图案化,以便形成具有平滑侧壁的准确形状,并且可经定制以具有高折射率及低吸收率,而在诸如波导、彩色过滤器及二维透镜的光学装置中使用。

尽管前述指向本公开内容的实施例,但是在不背离本发明的基本范围的情况下可设计本公开内容的其他及进一步实施例,且本发明的范围由随附的权利要求书来确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1