本发明涉及生物医学工程材料领域,具体涉及一种光响应释放no抗mrsa生物被膜的金纳米笼材料及其制备方法和应用。
背景技术:
耐甲氧西林金黄色葡萄球菌(mrsa)是临床常见的毒性较强的细菌,是常见的耐药菌之一。mrsa除对甲氧西林耐药外,对氨基糖苷类、大环内酯类、四环素类、氟喹喏酮类、磺胺类、利福平甚至万古霉素均产生不同程度的耐药性。除了其本身的耐药性外,mrsa还可以通过形成的生物被膜有效地保护自己,对抗菌剂和恶劣环境具有很强的抗性。一旦mrsa在生物体内形成生物被膜,就难以使用常规的方法对其进行杀菌。因此临床上迫切需要一种安全高效的抗mrsa生物被膜的材料。
一氧化氮(nitricoxide,no)是一种内源性合成的双原子分子,存在于人体的各种组织和细胞中,广泛参与许多生理和病理过程的调控。并且适当浓度的外源no对细菌的行为也具有一定的调控作用,其作用表现为浓度依赖性。即在较低浓度时,外源no调节细菌细胞内第二信使环鸟苷二磷酸,从而诱导细菌生物被膜的消散。在高浓度下,no进一步形成高氧化性产物,从而表现出一定的杀菌作用。但是由于no杀菌效果有限,往往难以将细菌感染控制在安全范围之下,并且由于no的半衰期较短,导致其难以被直接应用。
技术实现要素:
针对上述技术现状,本发明要解决的第一个技术问题是no的半衰期较短导致其难以直接应用,采用的技术手段是提供了一种光响应释放no抗mrsa生物被膜的金纳米笼材料制备方法。
本发明为解决上述技术问题,所采用的技术方案如下:
一种光响应释放no抗mrsa生物被膜的金纳米笼材料制备方法,包括以下步骤:
(1)制备金纳米笼:向乙二醇中加入nahs溶液、盐酸溶液、聚乙烯吡咯烷酮(pvp)溶液和cf3cooag溶液,加热搅拌反应,离心后可得agncs,再向agncs缓慢滴加haucl4,反应结束后离心可得金纳米笼aunc,产物aunc需遮光密封室温保存;
(2)制备tcf:将硫代乙酸钾和4-硝基苄基溴加入无水四氢呋喃中,反应结束后得产物4-硝基苄基乙硫醇酯,再将氯化铵水溶液与4-硝基苄基乙硫醇酸酯甲醇溶液混合,混合溶液加热搅拌并加入锌粉,反应结束后产物再经亚硝酸异丁酯和过量氨气合成no供体n-亚硝基(4-巯基甲基苯基)-羟胺铵tcf,产物tcf需密封遮光保存于0~4℃的冰箱中;
(3)制备负载no供体tcf的金纳米笼材料aunc@tcf:将步骤(2)中制得的tcf与步骤(1)中制得的aunc分散在装有pbs缓冲液的玻璃样品瓶中,在冰盐浴中遮光磁力搅拌反应后,离心处理可得到aunc@tcf,将产物aunc@tcf分散在ph=7.4的pbs缓冲液中并避光密封保存于0~4℃的冰箱中。
作为优选,步骤(1)中,制得的agnc的尺寸为40~60nm,uv吸收峰在420~450nm,制得的aunc的尺寸在40~60nm,uv吸收峰在690~720nm。
作为优选,步骤(2)中,所述固体硫代乙酸钾和4-硝基苄基溴的摩尔比为1.2:1;所述4-硝基苄基乙硫醇酸酯、氯化铵、锌粉与亚硝酸异丁酯的摩尔比为1:2:2:1.5;所述氨气在加入亚硝酸异丁酯前后持续通气15-120min。
作为优选,步骤(3)中,tcf分散在dmso水溶液中,dmso水溶液中dmso与水的体积比为1:99;aunc分散在超纯水中;tcf与aunc的浓度比为1:0.1(单位mg/ml:nm);磁力搅拌时间为48~72小时,优选为72小时;反应体积为20~30ml;
作为优选,步骤(3)中,离心条件为9000rpm至10000rpm,优选为9500rpm。
作为优选,步骤(3)中,所得产物aunc@tcf在使用之前用超声分散均匀。
与现有技术相比,本发明提供的一种光响应释放no抗mrsa生物被膜的金纳米笼材料的制备方法,通过tcf上的巯基与aunc形成金硫键可实现no供体tcf的有效负载。
本发明要解决的第二个技术问题是临床上迫切需要一种安全高效的抗mrsa生物被膜的材料,采用的技术手段是提供了一种光响应释放no抗mrsa生物被膜的金纳米笼材料,通过上述方法制备得到。
所制得的aunc@tcf粒径均一,光响应敏感,no负载量大。由于金纳米笼的尺寸效应导致其在一定程度上会富集在生物被膜中,在生理温度下,aunc@tcf会缓慢释放no,从而促进mrsa从生物被膜状态变为游离细菌状态。
并且由于aunc@tcf具有较低的溶血率以及良好的生物相容性,并且在较低浓度下具有促进细胞增殖,促进伤口愈合的作用,本申请还提供了一种光响应释放no抗mrsa生物被膜的金纳米笼材料作为促进伤口愈合或消炎药物的应用。
本发明要解决的第三个技术问题是no杀菌效果有限,采用的技术手段是提供了一种光响应释放no抗mrsa生物被膜的金纳米笼材料作为抗菌药物的应用。经过近红外光辐照,aunc@tcf快速升温,进而促使tcf受热加速释放no,协同no和光热疗法抗菌。而aunc上产生的金离子、no与aunc上产生的活性氧可以生成杀菌作用更强的活性氮如onoo-,对mrsa具有极强的杀伤效果。
本发明与现有技术相比具有以下突出的优点及效果:
(1)本发明提供的一种光响应释放no抗mrsa生物被膜的金纳米笼材料的制备方法,通过tcf上的巯基与aunc形成金硫键可实现no供体tcf的有效负载。
(2)本发明制备的一种光响应释放no抗mrsa生物被膜的金纳米笼材料,粒径均一,光响应敏感,no负载量大,具有较低的溶血率以及良好的生物相容性,并且在较低浓度下具有促进细胞增殖,促进伤口愈合的作用。
(3)本发明制备的一种光响应释放no抗mrsa生物被膜的金纳米笼材料,可以有效的消散成熟的mrsa生物被膜。由于金纳米笼的尺寸效应导致其在一定程度上的会富集在生物被膜中,在生理温度下,aunc@tcf会缓慢的释放no,从而促进mrsa从生物被膜状态变为游离细菌状态。再经过近红外光辐照,aunc@tcf快速升温,进而促使tcf受热加速释放no,协同no和光热疗法抗菌。而aunc上产生的银离子、no与aunc上产生的活性氧可以生成杀菌作用更强的活性氮如onoo-,对mrsa具有极强的杀伤效果。
因此本发明提供的一种光响应释放no抗mrsa生物被膜的金纳米笼材料,抑菌、消散生物被膜效果明显,在抗生物被膜方面显示出重要的应用前景。
附图说明
图1为本发明实施例1提供的制备aunc@tcf的简明工艺流程图,及其抗生物被膜过程的简明原理图。
图2为本发明实施例1中(a)agnc的透射电子显微镜形貌图,(b)aunc的透射电子显微镜形貌图,(c)agnc,aunc与aunc@tcf的紫外可见光(uv-vis)谱图,(d)不同浓度aunc在0.5w/cm2的近红外光(nir)下的光热转换曲线图。
图3为本发明实施例1中(a)aunc@tcf在有无nir下可控释放no曲线图;(b)aunc@tcf释放no的机理示意图;(c)aunc@tcf在较长时间下有无nir下释放no测试结果柱状图。
图4为本发明实施例1中所制备的aunc与aunc@tcf的抗菌抗生物被膜效果表征对比图。(a)有无nir下,aunc与aunc@tcf处理游离mrsa的平板涂布结果形貌对比图,(b)有无nir下,aunc与aunc@tcf处理mrsa生物被膜的平板涂布结果形貌对比图,(c)有无nir下,aunc与aunc@tcf处理游离mrsa的平板计数统计结果柱状示意图,(d)有无nir下,aunc与aunc@tcf处理mrsa生物被膜的平板计数统计结果柱状示意图。
图5为本发明实施例1中所制备的aunc与aunc@tcf在有无nir下处理浮游状态mrsa的电镜形貌图。
图6为本发明实施例1中所制备的金纳米笼材料消散生物被膜效果表征图。(a)结晶紫表征不同材料处理mrsa生物被膜的对比图,(b)结晶紫表征不同浓度的aunc@tcf处理生物被膜的情况对比图,(c)mrsa生物被膜,(d)aunc@tcf处理后的生物被膜,(e)d部分的高倍数,(f)aunc@tcf+nir处理后的生物被膜形貌图。
图7为本发明实施例1中所制备的金纳米笼材料的生物安全性表征图。(a)不同浓度的aunc和aunc@tcf的溶血率,其中小图为在0.1nm浓度下离心后的实物图。(b)不同浓度下,成纤维细胞(nih3t3)的细胞活力。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例1
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料的制备方法,包括如下步骤:
(1)制备aunc:将25ml乙二醇加热至150℃;并保持150℃,280rpm,将0.3ml,3mm的nahs溶液快速注射到上述溶液中,依次间隔2分钟加入2.5ml,3mm的盐酸溶液、6.25ml,20mg/ml的pvp溶液和2ml,283mm的cf3cooag溶液,保持原有条件反应60min。然后将产物冰浴再用丙酮(第一次)、超纯水以7500rpm离心得agncs。将50ml超纯水倒入圆底烧瓶中,加热至100℃同时保持250rpm加入60μl,5nm的agncs,再向该混合溶液中用注射泵缓缓滴加haucl4,最后冰浴冷却,再用超纯水以7500rpm离心3次得aunc,并将产物遮光密封室温保存。
(2)制备tcf:将硫代乙酸钾(0.60g,5.50mmol)和4-硝基苄基溴(1.0g,4.2mmol)加入装有15ml无水四氢呋喃中。在30℃下搅拌12h生成4-硝基苄基乙硫醇酸酯。减压蒸馏纯化后溶于二氯甲烷中,并水洗三次。之后,用无水硫酸钠干燥4小时再减压蒸馏除二氯甲烷,得到4-硝基苄基乙硫醇酯。再将氯化铵(150.0mg,2.8mmol)水溶液与4-硝基苄基乙硫醇酸酯(295.0mg,1.4mmol)甲醇溶液混合至14.4ml,其中meoh:h2o比例为5:1。50℃油浴并剧烈搅拌同时添加过量锌粉(0.18g,2.8mmol),最后,在50℃下剧烈搅拌3h。反应结束后,用布氏漏斗过滤,并将固体用20ml乙醚洗涤三次。将滤液与洗涤后的乙醚合并后,用分液漏斗再洗涤三次。然后将分液出的乙醚用无水硫酸钠干燥4小时再将其冷却于冰盐浴混合物中。将剧烈的氨气鼓泡通入醚溶液15分钟,同时小批少量添加(750μl,6.0mmol)亚硝酸异丁酯,通过真空过滤收集产物,并用乙醚冲洗,并将产物密封遮光保存于4℃的冰箱中。
(3)制备aunc@tcf:将1ml的tcf(20mg/ml)的h2o/dmso混合溶液和19mlaunc(最终0.1nm)水溶液共混于20ml玻璃样品瓶中,在冰盐浴中遮光磁力搅拌72小时。之后,通过以10000rpm离心15分钟收集产物,前两次离心洗涤液为超纯水,最后一次离心洗涤液为ph=7.4的pbs缓冲液,即可得到aunc@tcf,将产物aunc@tcf遮光密封保存于4℃的冰箱中。
图2(a,b)为本发明实施例中制备的agnc和aunc的透射电子显微形貌图,agnc的尺寸为40-60nm,aunc的尺寸在40-60nm,二者均保存了尺寸大小均一的特点。
图2(c)为本发明实施例中制备的agnc,aunc和aunc@tcf的紫外可见光(uv-vis)谱图。本实验中,agnc的吸收峰在450nm左右,而aunc的吸收峰在710nm左右,而负载了no供体的金纳米笼(aunc@tcf)的吸收峰相比于aunc的吸收峰发生了红移,在740nm左右。
图2(d)为本发明实施例中制备的不同浓度aunc在0.5w/cm2功率下的808nm激光光照后的温度变化曲线,在光照5分钟后可升温10至40℃。并且温度与辐照时间和材料浓度成正相关。
图3(a,c)为本发明实施例中制备的aunc@tcf在不同条件下no的释放的情况,本发明是通过griess试剂法检测no的含量。在一段时间内,aunc@tcf具有较好的nir响应性,在2.5min1w/cm2功率下的808nm激光辐照下,aunc@tcf会快速释放no,但是一旦停止nir的辐照,aunc@tcf将不会释放no。此外,aunc@tcf在生物温度下会缓慢的释放no,而在10min1w/cm2nir刺激下,aunc@tcf会快速释放no。
图4(a,c)为本发明实施例中制备的aunc,aunc@tcf灭杀游离状态下mrsa的情况。在对抗游离状态下mrsa时,在0.1nm浓度下的aunc,aunc@tcf在没有nir辐照下依旧具有良好的杀菌率,可以实现2个数量级菌落数的降低。而在5min的0.5w/cm2功率下nir辐照后,在0.1nm浓度下的aunc@tcf可以接近5个数量级菌落数的降低,
图4(b,d)为本发明实施例中制备的aunc,aunc@tcf灭杀生物被膜状态下mrsa的情况。在对抗生物被膜状态下mrsa时,在0.1nm浓度下的aunc,aunc@tcf在没有nir辐照下表现出良好的杀菌率,aunc可以实现2个数量级菌落数的降低,aunc@tcf可以实现5个数量级菌落数的降低。而在5min的0.5w/cm2功率下nir辐照后,aunc@tcf可以实现接近6个数量级菌落数的降低。
图4(c,d)中nir(-)代表无近红外辐照,nir(+)代表有近红外辐照;ns代表组分之间无显著性差异,*代表组分之间有显著性差异,*代表p<0.5,**代表p<0.1,***代表p<0.01。
图5为经过本发明制备的aunc,aunc@tcf在0.1nm浓度下灭杀游离状态下mrsa的扫描电镜形貌图,可以看出在细菌表面附着这少量的纳米材料,并且材料处理过的mrsa表面具有大小不一的破损,图5中箭头是细菌破损,圆圈是附着在细菌表面的纳米材料。
图6为本发明制备的aunc,aunc@tcf在0.1nm浓度下消散mrsa生物被膜的情况,通过结晶紫以及扫描电镜表征aunc@tcf具有较好的消散生物被膜的效果。并且会对生物被膜的细菌造成一定的杀伤作用。
图7为本发明制备的aunc,aunc@tcf的生物安全性评估,分别选用血红细胞和成纤维细胞进行评估,在低浓度以下(0.1nm),aunc,aunc@tcf均具有较好的细胞相容性,但是随着浓度的升高出现一定的细胞毒性,但是在更低浓度下的aunc@tcf对成纤维细胞具有一定的促细胞生长和促细胞繁殖的作用。
实施例2
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料的制备方法,包括如下步骤:
(1)制备aunc:将25ml乙二醇加热至150℃;并保持150℃,280rpm,将0.3ml,3mm的nahs溶液快速注射到上述溶液中,依次间隔2分钟加入2.5ml,3mm的盐酸溶液、6.25ml,20mg/ml的pvp溶液和2ml,283mm的cf3cooag溶液,保持原有条件反应60min。然后将产物冰浴再用丙酮(第一次)、超纯水以7500rpm离心得agncs。将50ml超纯水倒入圆底烧瓶中,加热至100℃同时保持250rpm加入60μl,5nm的agncs,再向该混合溶液中用注射泵缓缓滴加haucl4,最后冰浴冷却,再用超纯水以7500rpm离心3次得aunc,并将产物遮光密封室温保存。
(2)制备tcf:将硫代乙酸钾(0.60g,5.50mmol)和4-硝基苄基溴(1.0g,4.2mmol)加入装有15ml无水四氢呋喃中。在30℃下搅拌12h生成4-硝基苄基乙硫醇酸酯。减压蒸馏纯化后溶于二氯甲烷中,并水洗三次。之后,用无水硫酸钠干燥6小时再减压蒸馏除二氯甲烷,得到4-硝基苄基乙硫醇酯。再将氯化铵(150.0mg,2.8mmol)水溶液与4-硝基苄基乙硫醇酸酯(295.0mg,1.4mmol)甲醇溶液混合至14.4ml,其中meoh:h2o比例为5:1。50℃油浴并剧烈搅拌同时添加过量锌粉(0.18g,2.8mmol),最后,在50℃下剧烈搅拌3h。反应结束后,用布氏漏斗过滤,并将固体用20ml乙醚洗涤三次。将滤液与洗涤后的乙醚合并后,用分液漏斗再洗涤三次。然后将分液出的乙醚用无水硫酸钠干燥4-6小时再将其冷却于冰盐浴混合物中。将剧烈的氨气鼓泡通入醚溶液60分钟,同时小批少量添加(750μl,6.0mmol)亚硝酸异丁酯,通过真空过滤收集产物,并用乙醚冲洗,并将产物密封遮光保存于4℃的冰箱中。
(3)制备aunc@tcf:将5ml的tcf(20mg/ml)的h2o/dmso混合溶液和25mlaunc(最终0.1nm)水溶液共混于30ml玻璃样品瓶中,在冰盐浴中遮光磁力搅拌62小时。之后,通过以95000rpm离心15分钟收集产物,前两次离心洗涤液为超纯水,最后一次离心洗涤液为ph=7.4的pbs缓冲液,即可得到aunc@tcf,将产物aunc@tcf遮光密封保存于4℃的冰箱中。
实施例3
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料的制备方法,包括如下步骤:
(1)制备aunc:将25ml乙二醇加热至150℃;并保持150℃,280rpm,将0.3ml,3mm的nahs溶液快速注射到上述溶液中,依次间隔2分钟加入2.5ml,3mm的盐酸溶液、6.25ml,20mg/ml的pvp溶液和2ml,283mm的cf3cooag溶液,保持原有条件反应60min。然后将产物冰浴再用丙酮(第一次)、超纯水以7500rpm离心得agncs。将50ml超纯水倒入圆底烧瓶中,加热至100℃同时保持250rpm加入60μl,5nm的agncs,再向该混合溶液中用注射泵缓缓滴加haucl4,最后冰浴冷却,再用超纯水以7500rpm离心3次得aunc,并将产物遮光密封室温保存。
(2)制备tcf:将硫代乙酸钾(0.60g,5.50mmol)和4-硝基苄基溴(1.0g,4.2mmol)加入装有15ml无水四氢呋喃中。在30℃下搅拌12h生成4-硝基苄基乙硫醇酸酯。减压蒸馏纯化后溶于二氯甲烷中,并水洗三次。之后,用无水硫酸钠干燥5小时再减压蒸馏除二氯甲烷,得到4-硝基苄基乙硫醇酯。再将氯化铵(150.0mg,2.8mmol)水溶液与4-硝基苄基乙硫醇酸酯(295.0mg,1.4mmol)甲醇溶液混合至14.4ml,其中meoh:h2o比例为5:1。50℃油浴并剧烈搅拌同时添加过量锌粉(0.18g,2.8mmol),最后,在50℃下剧烈搅拌3h。反应结束后,用布氏漏斗过滤,并将固体用20ml乙醚洗涤三次。将滤液与洗涤后的乙醚合并后,用分液漏斗再洗涤三次。然后将分液出的乙醚用无水硫酸钠干燥4-6小时再将其冷却于冰盐浴混合物中。将剧烈的氨气鼓泡通入醚溶液70分钟,同时小批少量添加(750μl,6.0mmol)亚硝酸异丁酯,通过真空过滤收集产物,并用乙醚冲洗,并将产物密封遮光保存于4℃的冰箱中。
(3)制备aunc@tcf:将7ml的tcf(20mg/ml)的h2o/dmso混合溶液和18mlaunc(最终0.1nm)水溶液共混于25ml玻璃样品瓶中,在冰盐浴中遮光磁力搅拌48小时。之后,通过以10000rpm离心15分钟收集产物,前两次离心洗涤液为超纯水,最后一次离心洗涤液为ph=7.4的pbs缓冲液,即可得到aunc@tcf,将产物aunc@tcf遮光密封保存于4℃的冰箱中。
实施例4
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料,该材料通过实施例1~3任一的制备方法制得。
实施例5
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料的应用,即将实施例4中的一种光响应释放no抗mrsa生物被膜的金纳米笼材料作为杀菌药物的应用。
实施例6
本实施例公开了一种光响应释放no抗mrsa生物被膜的金纳米笼材料的应用,即将实施例4中的一种光响应释放no抗mrsa生物被膜的金纳米笼材料作为促进伤口愈合或消炎药物的应用。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,做任何的修改、等同替换、改进等,均应包含在本发明的保护范围之内。