1.本发明涉及粉末冶金生产的、耐磨的、高导热的、以铜作为基体的烧结合金,特别是用于轴承和阀座环应用,其中烧结合金是铜基粉末、硬质相、固体润滑剂和压制添加剂的粉末混合物。本发明还涉及耐磨的、高导热的、以铜作为基体的烧结合金的生产和用途。
背景技术:
2.目前,各种各样的材料,即所谓的轴承金属,用于烧结合金,以生产轴承,例如滑动轴承,也用于阀座环。轴承金属应具有高强度和高抗性,并且应具有尽可能小的摩擦阻力,以便它们减少发热和磨损。合金金属及其比例应根据在各自应用中优先考虑的性能而变化。
3.在现有技术中,用于上述应用的钢粉烧结合金是已知的,其烧结孔隙用油浸渍和/或含有固体润滑剂。这些烧结合金用于生产轴承或阀座环的缺点是,可能存在的反向转子通常需要涂层。通用合金还越来越多地达到其极限,特别是由于新型内燃机的温度升高,因为这些合金的强度随温度急剧下降。
4.阀座环,即设置在气缸盖的入口和出口通道的开口处的环,不仅受到阀门的锤击作用,而且还受到热爆炸气体的影响。这意味着通常需要同时具有高导热性和高耐磨性。
5.因此,黄铜或青铜合金特别适用于阀座环,因为纯铜强度低,延展性高,不适合用作轴承金属。具有所需硬度和强度以及导热性的其他铜合金例如是铜-铍合金。然而,铍有一个缺点,那就是这种金属毒性很大,在生产过程中必须遵守很高的安全标准。
6.为了增加阀座环的导热性,已知它们作为烧结成型零件提供。因此,阀座环在烧结过程中经常被铜渗透,从而达到更高的热导率。
7.也可以使用多层烧结阀座环。为此目的,将在阀门接触区域具有耐磨材料的阀座环和在剩余区域中具有高热导率材料的阀座环结合。然而,由此导致的所需的阀门温度的降低效果不明显。在模拟中计算仅有大约3k的降低,因此与传统的阀座环相比,无法确定在发动机测试期间阀门处部件温度的降低。
8.根据ep1975260a1已知一种铜基多层烧结滑动元件,其包含0.5重量%至20重量%的锡,0.1重量%至35重量%的锰,2重量%至25重量%的固体润滑剂,其余为铜。这种类型的烧结滑动元件具有与铜基含铅烧结滑动元件相似或更高的滑动性能。
9.根据de102016109539a1已知一种粉末冶金生产的阀座环,在这种情况下,支撑层由凝固铜基体组成,其含有0.25重量%至20重量%的凝固成分,而功能层同样由凝固铜基体组成,其还含有5重量%至20重量%的硬质相。
10.上述滑动元件或阀座环的缺点分别是,第一层,即所谓支撑层的生产必须首先进行,而第二层,即功能层的生产必须随后进行,这本质上导致了额外的方法步骤。
11.最后,从us10344636b4中得知一种用于高效发动机的具有强阀门冷却功能和耐磨性的烧结式阀座环。生产中需要使用平均粒径在45μm或小于45μm、纯度为99.5%或高于99.5%的铜粉,这自然对生产成本不利。
技术实现要素:
12.本发明的目的是提供一种耐磨和高导热的烧结合金,特别是用于阀座环和轴承应用,其满足对密封性、尺寸稳定性和耐磨性的通常要求。
13.这一目的通过粉末冶金生产的、耐磨的、高导热的、以铜作为基体的烧结合金解决,其中烧结合金是铜基粉末、总份额为8重量%至40重量%的硬质相、总份额为0.4重量%至3.8重量%的固体润滑剂、总份额为0.3重量%至1.5重量%的压制添加剂和生产相关杂质的粉末混合物,其特征在于,所述粉末混合物包括至少55重量%的铜基粉末,优选至少65重量%的铜基粉末,特别优选至少70重量%的铜基粉末。
14.优选使用酰胺蜡或硬脂酸盐作为压制添加剂,其份额总重为0.3重量%至1.5重量%。
15.本发明获得的优点尤其是,根据本发明,粉末混合物结合了铜基材料在导热性能方面的特性与由粉末冶金生产的烧结合金制成的已知阀座环材料在高耐磨性方面的特性。另外,可以有利地添加增加强度、耐热性或耐磨性的粉末成分。
16.出人意料的是,通过根据本发明的烧结合金制造的阀座环表现出从阀门到气缸盖的散热的改善以及部件内的热分布的改善。为了进一步增加散热,可以另外使用充钠的中空阀和/或具有更高耐热性的材料。
17.烧结合金的生产通过将粉末混合物单轴压制成生坯来进行,随后在850℃至1050℃的温度下在氢气和氮气的混合物和/或吸热型气体的烧结气氛下烧结。吸热型气体(endogas)是一氧化碳(co,约20体积%),氢气(h2,约40体积%),二氧化碳(co2,约0.3体积%)和氮气的混合物。
18.本发明的有利实施方案如在权利要求2中所示。根据权利要求2的进一步改进使得可以提高耐磨性。为此,硬质相优选地包括一种或多于一种选自fe-mo、fe-mo-si-cr和/或fe-mo-si-cr-ni-mn的现有技术已知的合金(参见tribology letters,springer verlag 2009),和生产相关杂质。特别地,使用钼可以提高耐磨性,使用铬可以提高耐热性,使用锰可以提高抗拉强度。
19.本发明的另一个有利实施方案如在权利要求3中所述。根据权利要求3的进一步改进使得可以减少摩擦。为此,固体润滑剂包括一种或多于一种选自硫化物固体润滑剂、六方氮化硼、石墨和/或氟化钙的润滑剂。润滑剂的总份额优选是0.4重量%至3.8重量%,特别优选是1.5重量%至2.5重量%。
20.在本发明的特别优选的实施方案中,粉末混合物包括以下其它元素:占比为0.5重量%至15重量%的zn、0.5重量%至12重量%的sn、0.5重量%至5重量%的p、0重量%至15重量%的mn、0.2重量%至5重量%的si、0重量%至14重量%的al、0.1重量%至15重量%的ni、0.5重量%至8重量%的fe,和生产相关杂质。
21.zn、sn、p、mn、al、fe和ni元素增加了合金的强度。元素p和mn特别地增加了拉伸强度和硬度。元素si、ni和fe增加了合金的耐热性。元素sn、al和mn增加了耐腐蚀性和抗氧化性。
22.为了进一步提高合金的强度,合金元素mn和al可任选地以高达20重量%的份额或14重量%的份额存在。
23.在本发明的另一特别优选的实施方案中,粉末混合物包含至少55重量%、优选至
少65重量%、特别优选至少70重量%的铜粉,和下列其它元素和/或合金:占比为1重量%至20重量%的fe和/或fe合金,和/或0重量%至8重量%的co,和/或1重量%至8重量%的mo,和/或0重量%至5重量%的ni和/或ni合金。
24.因此,元素fe、co、mo和ni提高了合金的强度。此外,mo元素还提高了耐磨性。fe、co和ni元素提高了合金的耐热性。
25.合金元素co和ni可任选地分别以8重量%的份额或5重量%的份额存在,以进一步增加合金的耐热性。
26.在本发明的另一特别优选的实施方案中,粉末混合物包含至少55重量%、优选至少65重量%、特别优选至少70重量%的铜粉,和下列其它元素和/或合金:占比为1重量%至20重量%的al和/或al合金,和/或1重量%至8重量%的p和/或p合金,和/或1重量%至20重量%的si和/或si合金。
27.al和p元素提高了合金的强度,si元素提高了合金的耐热性。元素p还提高了合金的抗拉强度和硬度,元素al提高了合金的耐蚀性和抗氧化性。
28.在本发明的另一特别优选的实施方案中,粉末混合物包含至少55重量%、优选至少65重量%、特别优选至少70重量%的铜粉,并且包括以下其他组分:占比为2重量%至14重量%的氧化锌或氧化锡,和/或分别为0.2重量%至2重量%的氧化钨、氧化钼、氧化铜和氧化铋。
29.此外或作为替代,粉末混合物还可以包括份额为1重量%至14重量%的氮化硅和/或碳化硅。
30.氧化锌、氧化锡、氧化钨、氧化钼、氧化铜和氧化铋可提高耐磨性,并可作为固体润滑剂。碳化硅和氮化硅提高了耐磨性。
31.上述实施方案或其粉末混合物单独地或组合地产生根据本发明的由粉末冶金生产的、耐磨的、高导热的、以铜作为基体的烧结合金。
32.烧结后,烧结部件仍可含有孔。例如,通过将粉末混合物压实到通常85%至95%的相对密度(而不是达到100%的理论密度),会产生这种孔隙,这是由于烧结过程中压制添加剂的蒸发或不完全烧结造成的。因此,特别地,可以通过压制/压实来调整部件的剩余孔隙。如果孔隙是可连通的,则可以在剩余孔隙中浸入油,以便改善轴承例如滑动轴承或阀座环的摩擦性能,从而提高其耐磨性。
33.在本发明中,一方面,油被理解为矿物油基的脂肪族油,例如石蜡油。此外,术语油还包括合成油,例如硅油。
34.例如,可以通过结构分析和借助图像分析方法测量孔隙率来确定剩余孔隙的份额。
35.通过本发明获得的优点尤其可以通过根据本发明的烧结合金的组成增加了材料的热导率看出。因此进一步提高了上述优势。当所述烧结合金的热导率大于40w/mk时,尤其是当使用所述烧结合金作为阀座环时,可获得最佳结果。因此通过激光闪光法(lfa-激光闪光仪)测量热导率。
36.根据本发明的部件的制造,例如阀座环的制造通过以下制造步骤进行:
37.硬质相、固体润滑剂、压制添加剂和铜基粉末的粉末混合物的生产。铜基粉末以及硬质相因此优选由水雾化粉末组成。铜基粉末的体积密度优选是2.4g/ccm至3.8g/ccm。铜
基粉末的平均粒径是25μm至160μm,其中可以通过筛分分析或通过激光衍射进行测量。
38.分别压制/压实粉末混合物或生产生坯:压制优选单轴进行。压制优选进行至材料理论密度的85%至95%的相对密度。密度的测定在此是通过部件的重量和体积进行。
39.部件的烧结:部件的烧结可以在输送炉、室式炉或真空炉中进行。烧结优选在850℃至1050℃的温度范围内,在氢气和氮气混合物或吸热型气体的烧结气氛下进行。在烧结期间,优选在15分钟至45分钟的时间段达到最高温度。在烧结过程中可以进行其他铜基粉末的渗透。
40.校准/进一步压制工艺:优选在部件不能满足几何要求的情况下进行进一步的压制工艺(即,通过新的压制将部件的质量设置在公差内)。
41.热处理:如果使用沉淀硬化合金作为铜基粉末,则在此之后进行热处理。由此形成了沉淀物,提高了材料的强度和硬度。热处理优选在250℃至700℃的温度下进行,持续1小时至16小时。
42.浸油:部件优选地在热处理后用油浸渍。油浸渍优选通过浸渍过程进行,在油中停留时间为2分钟至20分钟。也可以通过负压差进行浸渍以更好地控制工艺。
43.部件加工:对部件的不符合部件几何要求的区域进行加工,一般采用磨削或车削的方式。优选地,通过滑动研磨工艺对部件进行去毛刺。
具体实施方式
44.从根据本发明的烧结材料生产烧结成型零件,特别是轴承或阀座环,例如如下进行:
45.实施例1具有高热导率的阀座环:
46.此处基于纯铜粉(纯度》99%),平均粒径为70μm至160μm,其与0.5%的压制添加剂、2%的固体润滑剂mos2和35%的fe基硬质相(t10)混合,随后被压制到93%的相对密度,在980℃的温度下在氮-氢气氛下烧结,将前表面和ad研磨至最终尺寸。
47.实施例2涡轮增压器中的轴向轴承:
48.此处基于锡含量为10%且平均粒径为60μm至150μm的青铜合金,其与0.5%的压制添加剂、2%的固体润滑剂mns和20%的fe基硬质相(t10)混合,随后被压制到93%的相对密度,在900℃的温度下在氮-氢气氛下烧结,在常压下浸油,前表面研磨到最终尺寸,并且通过新的压制/压花工艺进行表面结构化。