1.本发明涉及炼钢生产工艺技术领域,尤其涉及一种低屈强比稀土钛耐候钢以及一种低屈强比稀土钛耐候钢的生产方法。
背景技术:
2.耐候钢是介于普通碳钢和不锈钢之间的耐大气腐蚀低合金钢,耐候钢通过在普通碳钢基础上添加少量铜、铬、磷、镍、钼、铌、钒、钛等耐腐蚀元素而制成,耐候钢的抗大气腐蚀性能是普通碳素钢的2~8倍。耐候钢作为一种价格较低、性能良好的钢种,可在许多恶劣的条件下服役,因而耐候钢被广泛应用于铁路货车、公路桥梁、房屋建筑等各种金属结构件中。
3.公告号为cn 202010153281.x的专利文献公开了一种钛微合金化经济型高强耐候钢及其生产方法,其成分重量百分比为:c:0.08%~0.14%;si:0.25%~0.50%;mn:0.40%~0.70%;p:≤0.012%;s:≤0.005%;cr:0.40%~0.70%;ni:0.02%~0.07%;cu:0.20%~0.40%;alt:0.020%~0.045%;ti:0.020%~0.050%;n≤0.0040%;余量为fe及不可避免的夹杂。该专利文献所公开的技术方案采用低mn和ti微合金化设计,并且其屈强比高。
4.公告号为cn 201811154116.5的专利文献公开了一种含稀土元素的免涂装耐候钢及其制备方法,其成分重量百分比为c:0.03%~0.09%,si:0.10%~0.30%,mn:1.00%~1.50%,p:0005%~0.015%,s《0.005%,cr:0.35%~0.70%,ni:0.25%~0.55%,cu:0.25%~0.55%,mo:0.03%~0.25%,re:0.05%~0.060%,nb:0.015%~0.040%,ti:0.008%~0.025%,a1:0.015%~0.040%,ca:0.003%~0.018%,o≤0.003%,n≤0.005%,b≤0.0005%,余量为fe和不可避免的杂质。该专利文献所公开的技术方案工艺流程较长,并且热机械轧制后需要回火处理,屈强比相对较高。
5.公告号为cn 201611145619.7的专利文献公开了一种抗拉强度≥600mpa的高韧性低屈强比耐火耐侯钢及其生产方法,其成分重量百分比为c:0.015%~0.065%,si:0.05%~0.15%,mn:1.00%~1.45%,p≤0.005%,s≤0.002%,mo:0.10%~0.75%,cr:0.05%~0.80%,cu:0.10%~0.70%,ni:0.15%~0.65%,nb:0.005%~0.060%,v:0.010%~0.065%,ti:0.005%~0.015%,als:0.015%~0.035%,zr:0.0005%~0.0075%,re:0.0005%~0.0060%,n:0.0015%~0.0050%,o:0.0015%~0.0045%,其余为fe及不可避免的杂质。该专利文献所公开的技术方案添加元素种类较多,不利于焊接性能,且该专利中mo元素含量较高,生产成本高。
技术实现要素:
6.本发明所要解决的技术问题是:提供一种屈强比较低且性能良好的低屈强比稀土钛耐候钢。
7.为解决上述技术问题本发明所采用的技术方案是:一种低屈强比稀土钛耐候钢,
化学成分按照重量百分比计包括c≤0.10%、si≤0.50%、mn≤1.00%、p≤0.02%、s≤0.008%、ni:0.20~0.50%、cu:0.35~0.50%、cr:0.40~0.60%、ti:0.040~0.065%、re:0.015~0.100%;其余为fe和不可避免的杂质。
8.进一步的是:所述耐候钢的re/s值≥3。
9.进一步的是:所述耐候钢的屈服强度平均值为510mpa,抗拉强度平均值为690mpa,延伸率≥30%,屈强比≤0.75;-40℃时v型缺口冲击功≥120j。
10.进一步的是:所述耐候钢的耐大气腐蚀性指数≥6.0,耐候指数为0.57~11.34,腐蚀电位随耐候指数的增大而增大。
11.本发明还公开了一种低屈强比稀土钛耐候钢的生产方法,按照上述低屈强比稀土钛耐候钢的化学成分及配比将原料冶炼成钢坯,依次经过热连轧、层流冷却、卷取的工序后得到成品。
12.进一步的是:所述热连轧工序中,钢坯的加热温度为1200~1240℃。
13.进一步的是:所述热连轧工序中,在奥氏体未再结晶区进行轧制,精轧开轧温度为950~1050℃,精轧终轧温度为840~880℃。
14.进一步的是:所述热连轧工序中,全场全数进行除磷,单道次变形量≥12%,精轧后三道次变形量≥20%。
15.进一步的是:所述层流冷却工序中,采用前段冷却,上集管开放60~70%,下集管开放70~90%。
16.进一步的是:所述卷取工序中,卷取温度为580~620℃。
17.本发明的有益效果是:本发明采用低碳中锰稀土钛复合作用的低合金耐候钢成分体系,稀土与钛复合加入钢中时,稀土会和含钛夹杂物复合,改变含钛夹杂物形态,同时减低含硫夹杂,提高钛元素有效含量,细化含钛析出物尺寸,增加含钛析出物析出量,提高钢材强韧性;稀土与钛加入钢中时,可细化焊缝组织和夹杂,改善焊接性能,提高焊接热影响区低温冲击韧性;稀土与钛的加入,会提高钢材内锈层致密度,减少铬元素消耗,提高抗晶间腐蚀能力。本发明所公开的低屈强比稀土钛耐候钢,具有力学性能稳定、综合性能良好、生产工艺简单的优点,其屈强比低≤0.75,不仅能够满足建筑行业对钢材的力学性能要求还具有良好的耐蚀耐候性,具有广阔的推广应用前景。
具体实施方式
18.为了便于理解本发明,下面结合实施例对本发明进行进一步的说明。
19.本发明所公开的一种低屈强比稀土钛耐候钢,化学成分按照重量百分比计包括c≤0.10%、si≤0.50%、mn≤1.00%、p≤0.02%、s≤0.008%、ni:0.20~0.50%、cu:0.35~0.50%、cr:0.40~0.60%、ti:0.040~0.065%、re:0.015~0.100%;其余为fe和不可避免的杂质。所述耐候钢的re/s值≥3;所述耐候钢的屈服强度平均值为510mpa,抗拉强度平均值为690mpa,延伸率≥30%,屈强比≤0.75;-40℃时v型缺口冲击功≥120j。所述耐候钢的耐大气腐蚀性指数≥6.0,耐候指数为0.57~11.34,腐蚀电位随耐候指数的增大而增大。
20.在本发明的化学成分中,c是钢中主要的合金元素,c可固溶于钢中形成固溶体组织,进行固溶强化提高钢材的强度,也可与钢中其他合金元素如ti、nb、v等形成碳化物组织进行析出强化提高钢材强度,随着碳含量的增加,钢的强度提高但塑韧性、焊接性、耐蚀性
降低。本发明为获得铁素体和珠光体的组织和产生析出强化,因此本发明中设定c≤0.10%。
21.si可提高钢材的耐腐蚀性能,si在不锈钢和耐蚀钢中,与钼、钨、铬、铝、钛、氮等配合,提高耐蚀性和抗高温氧化性能,si不形成碳化物,溶于铁素体中有很强的固溶强化作用,但含量高时,会使钢材的塑韧性、焊接性下降;因此本发明中设定si≤0.50%。
22.mn是良好的脱氧剂和脱硫剂,且具有较强的固溶强化作用,在碳钢中,mn含量不高时,可稍微提高或不降低钢的强韧性,但mn含量过多会使钢板在连铸过程中容易产生铸坯裂纹,同时减低钢的焊接性;因此本发明中设定mn≤1.00%。
23.p、s是钢中的杂质元素。p能提高钢的强度可有效提高钢的耐大气腐蚀性能,与cu共存时,能显著提高钢的耐腐蚀性,但p元素易在钢中产生局部偏析,大幅度减低钢材的塑韧性,降低低温韧性从而产生冷脆。s是钢中的有害元素,易偏析产生硫化物夹杂,恶化钢的焊接性、冲击韧性,同时腐蚀过程中易形成孔蚀,对腐蚀性能有不利影响;因此本发明中设定p≤0.02%、s≤0.008%。
24.ni可改善钢板的无涂装耐候性,同时能有效阻止cu的热脆,降低浇铸、热轧及焊接过程的热裂纹敏感性,此外ni能显著改善钢材的低温韧性,但ni价格较高,过量的ni会增大钢材氧化皮的粘附性,压入钢中会在表面形成热轧缺陷;因此本发明中设定ni 0.20~0.50%。
25.cu是一种奥氏体稳定化的元素,其以细小的析出粒子状态存在于钢中,起到析出强化的作用,其析出物可有效提高钢的高温强度和耐大气腐蚀能力。若添加量<0.25%,则耐大气腐蚀能力下降;若过量,则热轧和正火时形成细小弥散的ε-cu沉淀,损害低温韧性,可能产生铜脆,会形成裂纹,同时碳当量也增加,增加成本;因此本发明中设定cu 0.35~0.50%。
26.cr可提高强度和淬透性,提高高温性能和耐大气腐蚀性能,改善haz的再热脆化,并通过形成微细的cr的碳化物而抑制使晶界脆化的粗大碳化物的形成及c向晶界的偏析。若过量,则影响韧性并引起回火脆化,损害焊接性能;因此本发明中设定cr 0.40~0.60%。
27.ti和氮、氧、碳都有极强的亲和力,是提高钢材最经济的微合金元素,稀土与钛复合加入钢中时,稀土会和含钛夹杂物复合,改变含钛夹杂物形态,同时减低含硫夹杂,提高钛元素有效含量,细化含钛析出物尺寸,增加含钛析出物析出量,提高钢材强韧性,还可细化焊缝组织和夹杂,改善焊接性能,提高焊接热影响区低温冲击韧性;因此本发明中设定ti0.040~0.065%。
28.re与ti复合加入钢中时,可明显细化含钛析出物尺寸,增加含钛析出物析出量,提高钢材强韧性,re在钢中还可与cu元素产生交互作用,促进cu在内锈层的富集,提高钢材耐蚀性,同时稀土与钢中的硫元素结合形成稀土夹杂物,使硫化物夹杂球化,改善钢材韧性,抑制再结晶进行和提高奥氏体晶粒长大温度细化晶粒,提高钢材强韧性;因此本发明中设定re 0.015~0.10%。
29.本发明还公开了上述低屈强比稀土钛耐候钢的生产方法,具体生产方法包括按照上述低屈强比稀土钛耐候钢的化学成分及配比将原料冶炼成钢坯,依次经过热连轧、层流冷却、卷取的工序后得到成品。
30.在热连轧工序中,钢坯的加热温度为1200~1240℃;在奥氏体未再结晶区进行轧
制,精轧开轧温度为950~1050℃,精轧终轧温度为840~880℃;全场全数进行除磷,单道次变形量≥12%,精轧后三道次变形量≥20%。
31.在层流冷却工序中,采用前段冷却,上集管开放60~70%,下集管开放70~90%%,通过获得较大冷速来保证所得组织细小均匀和析出细小弥散的第二相。
32.在卷取工序中,卷取温度为580~620℃。
33.实施例1
34.低屈强比稀土钛耐候钢,其化学成分按照重量百分比计包括:c 0.077%、si 0.35%、mn0.79%、p 0.013%、s 0.003%、ni 0.24%、cu 0.43%、cr 0.44%、ti 0.059%、re 0.035%;其余为fe和不可避免的杂质。按照上述化学成分及配比将原料冶炼成钢坯;然后进行热连轧,钢坯的加热温度为1229℃,在奥氏体未再结晶区进行轧制,精轧开轧温度为1006℃,精轧终轧温度为861℃,全场全数进行除磷,单道次变形量≥12%,精轧后三道次变形量≥20%;接着采用前段冷却进行层流冷却;在603℃的温度下进行卷取得到成品。对成品耐候钢的性能指标进行检测,其屈服强度为512mpa,抗拉强度为689mpa,延伸率为32.0%,屈强比为0.74,-40℃时v型缺口冲击功为131j。
35.实施例2
36.低屈强比稀土钛耐候钢,其化学成分按照重量百分比计包括:c 0.071%、si 0.31%、mn0.86%、p 0.010%、s 0.003%、ni 0.24%、cu 0.47%、cr 0.43%、ti 0.063%、re 0.041%;其余为fe和不可避免的杂质。按照上述化学成分及配比将原料冶炼成钢坯;然后进行热连轧,钢坯的加热温度为1234℃,在奥氏体未再结晶区进行轧制,精轧开轧温度为989℃,精轧终轧温度为857℃,全场全数进行除磷,单道次变形量≥12%,精轧后三道次变形量≥20%;接着采用前段冷却进行层流冷却;在598℃的温度下进行卷取得到成品。对成品耐候钢的性能指标进行检测,其屈服强度为508mpa,抗拉强度为692mpa,延伸率为31.5%,屈强比为0.73,-40℃时v型缺口冲击功为128j。
37.对比例
38.对比例的化学成分按照重量百分比计包括:c 0.076%、si 0.38%、mn 0.83%、p 0.011%、s 0.003%、ni 0.22%、cu 0.41%、cr 0.46%、ti 0.060%;其余为fe和不可避免的杂质。按照上述化学成分及配比将原料冶炼成钢坯;然后进行热连轧,钢坯的加热温度为1218℃,在奥氏体未再结晶区进行轧制,精轧开轧温度为993℃,精轧终轧温度为852℃,全场全数进行除磷,单道次变形量≥12%,精轧后三道次变形量≥20%;接着采用前段冷却进行层流冷却;在634℃的温度下进行卷取得到成品。对成品耐候钢的性能指标进行检测,其屈服强度为456mpa,抗拉强度为569mpa,延伸率为30.0%,屈强比为0.80,-40℃时v型缺口冲击功为102j。
39.从上述实施例和对比例的对比可以看出,本发明所制得的低屈强比稀土钛耐候钢在性能上具有良好的屈服强度、抗拉强度和延伸率,且屈强比都小于0.75,-40℃时v型缺口冲击功≥120j,相较于对比例具有更好的力学性能和综合性能。