本发明涉及材料化学领域,具体公开了一种多级孔分子筛及其碱处理固相合成方法。
背景技术:
分子筛材料是一种结晶的多微孔硅酸盐。由于其复杂的孔道结构和化学性质,使其在催化、吸附、分离和离子交换领域有着广泛的应用。
其中ZSM-5分子筛孔径尺寸在0.55nm左右,在催化反应中,特别是在甲醇转化反应中有着广泛的应用,尤其是甲醇制芳烃(MTA),甲醇制汽油(MTG)等技术。但由于ZSM-5分子筛孔道狭窄,故反应物和产物在孔道中的扩散受到限制,使常规ZSM-5分子筛易积碳失活,导致催化剂寿命缩短。具有介孔-微孔复合多级孔的分子筛可有效改善分子筛的扩散性质,进而提高催化剂的寿命。多级孔ZSM-5分子筛的制备,将大幅改善其在甲醇转化过程中的性能。
多级孔分子筛的制备方法包括直接合成法和后处理法,直接合成法是在合成过程中加入不同的模板剂,直接合成多级孔分子筛,但目前该技术尚不完善;后处理方法是工业上应用最为广泛的方法,一般是先合成分子筛,再对分子筛进行水蒸汽处理、酸处理、碱处理等后处理。通过后处理方法,可以调节分子筛酸性、增加活性位点、产生介孔孔道,从而改善催化性能。但是,目前采用这些方法所处理的分子筛均是通过水热或者溶剂热方法合成的,而水热和溶剂热合成过程中需要用到大量的水或溶剂,水或溶剂的使用一方面使分子筛产能大大下降,另一方面会排放大量废水和需处理的溶剂,导致环境污染。
近年来,肖丰收课题组发展了一种绿色、简洁的分子筛合成路线,即固相合成法。固相合成法通过原始固态物料的混合及碾磨,再经过晶化后就可得到分子筛,大大简化了工艺流程,并且避免了溶剂的使用。不过他们的合成目标是得到单一孔径的分子筛,而不是多级孔分子筛。
技术实现要素:
本发明的目的在于克服现有技术的缺陷,提供一种多级孔分子筛的碱处理固相合成方 法,该方法结合了固相合成和碱处理的优势,大大简化了多级孔分子筛的制备流程,成本低、污染小,具有良好的经济价值和社会价值。
为了实现上述目的及其他相关目标,本发明提供一种多级孔分子筛的碱处理固相合成方法,所述合成方法包括以下步骤:
1)将固相硅源、铝源、模板剂、碱源及晶种粉碎混合后进行晶化反应,将晶化反应的产物进行过滤、洗涤及烘焙后得到固相合成分子筛;
2)使用碱溶液在水热条件下对所述固相合成分子筛进行处理,即得到多级孔分子筛。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述硅源、铝源、模板剂、碱源和晶种之间的摩尔比为1:0.014~0.1:0.25~0.57:0.4~1:0.006~0.2。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述硅源包括九水硅酸钠、固体硅胶、气相二氧化硅中的一种或几种。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述铝源包括拟薄水铝石、偏铝酸钠或者硝酸铝中的一种或几种。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述模板剂包括四丙基溴化铵、四丁基溴化铵或四乙基氢氧化铵中的一种或几种。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述碱源包括氯化铵、氢氧化钠或者九水硅酸钠的一种或几种。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,在步骤1)中,晶化反应的温度为120℃~220℃,晶化反应的时间为3h~144h。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,在步骤2)中,使用的所述碱溶液为氨水溶液或氢氧化钠溶液。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,所述氨水溶液中,氨水与水的质量比为1:4。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,在步骤2)中,使用碱溶液在水热条件下对所述固相合成分子筛进行处理的温度为50℃~120℃,使用碱溶液在水热条件下对所述固相合成分子筛进行处理的时间为0.5h~2h。
作为本发明的多级孔分子筛的碱处理固相合成方法的一种优选方案,在步骤2)中,得到的所述多级孔分子筛中Si和Al的摩尔比为5~150。
本发明还公开一种多级孔分子筛,所述多级孔分子筛采用上述方案中任一种所述的多级孔分子筛的碱处理固相合成方法合成。
作为本发明的多级孔分子筛的一种优选方案,所述多级孔分子筛具有ZSM-5的MFI的晶型结构,且具有介孔-微孔的复合孔道。
作为本发明的多级孔分子筛的一种优选方案,所述多级孔分子筛的粒径为0.8μm~4μm;所述多级孔分子筛中介孔孔径为2nm~4nm。
本发明的多级孔分子筛及其碱处理固相合成方法,与现有技术相比,本发明的多级孔分子筛及其碱处理固相合成方法,简化了工艺流程,提高了分子筛收率,在固相合成的过程中不需要使用水及其他溶剂,减少了废液的排放,节约了成本,降低了污染,具有潜在的经济价值和社会价值;所获得的多级孔分子筛不仅多级孔道复合,并且结晶度良好,粒径较小。
附图说明
图1显示为本发明实施例1中制备的多级孔分子筛的XRD谱图。
图2显示为本发明实施例1中制备的多级孔分子筛的扫描电镜照片。
图3显示为本发明实施例1中制备的多级孔分子筛的透射电镜照片。
图4显示为本发明实施例2中制备的多级孔分子筛的XRD谱图。
图5显示为本发明实施例2中制备的多级孔分子筛的扫描电镜照片。
图6显示为本发明实施例2中制备的多级孔分子筛的氮气吸附脱附等温线。
图7显示为本发明实施例2中制备的多级孔分子筛的孔径分布图。
图8显示为本发明实施例3中制备的多级孔分子筛的XRD谱图。
图9显示为本发明实施例3中制备的多级孔分子筛的扫描电镜照片。
图10显示为本发明实施例4中制备的多级孔分子筛的XRD谱图。
图11显示为本发明实施例4中制备的多级孔分子筛的扫描电镜照片。
图12显示为本发明实施例23中制备的多级孔分子筛的XRD谱图。
图13显示为本发明实施例23中制备的多级孔分子筛的扫描电镜照片。
具体实施方式
下面结合实施例进一步阐述本发明。应理解,实施例仅用于说明本发明,而非限制本发明的范围。
实施例1
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛(晶种,seed)和3.47g气相二氧化硅,加入粉碎机中粉碎,使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中,并放入烘箱中,在180℃下晶化48h。晶化结束后,将产品洗涤、过滤、干燥后,在550℃下焙烧6h,得到固相合成分子筛。将10g固相合成分子筛放入高压釜中,加入20ml氨水和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1小时。产品经洗涤、过滤、干燥并在550℃焙烧6h后得到多级孔分子筛。
附图1为产品的XRD的表征结果,可以看出产品为典型的MFI结构,具有较好的相对结晶度。
附图2为产品的SEM扫描电镜照片,可以看出产品的颗粒为0.8~4μm的六方晶体,晶体表面有明显的介孔孔道。
附图3为多级孔分子筛的TEM电镜照片,可以看出分子筛表面有介孔分布,孔径在2~4nm左右。
实施例2
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛晶种,3.47g气相二氧化硅,加入粉碎机中粉碎,使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入33ml氨水,和67ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
附图4为产品的XRD的表征结果,可以看出产品为典型的MFI结构,具有较好的结晶度。
附图5为产品的SEM扫描电镜照片,可以看出产品的颗粒为0.8~2μm左右的六方晶体,晶体表面有孔道分布。
附图6为产品的氮气吸附脱附等温线,附图7为产品的孔径分布图,可以看出产品具有2~4nm的介孔孔道。
实施例3
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5 分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h,制得固相合成分子筛。将10g样品,放入高压釜中,再加入50ml氨水,和50ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
附图8为产品的XRD的表征结果,可以看出产品为典型的MFI结构,具有较好的结晶度。
附图9为产品的SEM扫描电镜照片,可以看出产品的颗粒为0.8~4μm左右的六方晶体,晶体表面有孔道分布。
实施例4
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入67ml氨水,和33ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
附图10为产品的XRD的表征结果,可以看出产品为典型的MFI结构,具有较好的结晶度。
附图11为产品的SEM扫描电镜照片,可以看出产品的颗粒为0.8~4μm左右的六方晶体,晶体表面有孔道分布。
实施例5
称取10.5g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,2.7g气相二氧化硅,加入粉碎机中粉碎两次。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h,固相合成分子筛产品。将10g此产品放入高压釜中,再加入11ml氨水,和89ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在120℃下处理2h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例6
称取10.5g硅酸钠,2.4g TPABr,4.2g氯化铵,0.85g偏铝酸钠,0.25g ZSM-5分子筛,2.7g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h,制得固相合成分子筛。将10g此样品,放入高压釜中,再加入80ml氨水,和20ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在50℃下处理0.5h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例7
称取15.8g硅酸钠,0.19g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,4.2g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在120℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g此产品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例8
称取10.5g硅酸钠,2.8g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,2.7g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在220℃下,晶化3h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品放入高压釜中,再加入20ml 0.5M(摩尔)NaOH溶液和80ml水,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例9
称取15.8g硅酸钠,2.4g TPABr,4.2g氯化铵,0.17g偏铝酸钠,0.25g ZSM-5分子筛,4.2g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥制得固相合成分子筛。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml 1M(摩尔)NaOH溶液和80ml水,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例10
称取13.15g硅酸钠,1.9g四丙基氢氧化铵,4.2g氯化铵,0.25g偏铝酸钠,0.25gZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml 2M(摩尔)NaOH溶液和80ml水,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例11
称取13.15g硅酸钠,2.8g四丙基氢氧化铵,4.2g氯化铵,0.17g偏铝酸钠,0.25gZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例12
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.85g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例13
称取15.8g硅酸钠,2.4g四丙基氢氧化铵,3.0g氯化铵,0.25g偏铝酸钠,0.25gZSM-5分子筛,4.2g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g此产品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨 水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例14
称取10.5g硅酸钠,2.4g TPABr,5.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,2.7g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在120℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例15
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在120℃下,晶化6d。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例16
称取15.8g硅酸钠,2.4g TPABr,5.2g氯化铵,0.25g偏铝酸钠,0.05g ZSM-5分子筛,4.2g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在120℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h制得固相合成分子筛。将10g此产品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例17
称取10.5g硅酸钠,2.4g TPABr,5.2g氯化铵,0.25g偏铝酸钠,1.0g ZSM-5分子筛,2.7g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移 至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h,制得固相合成分子筛。将10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理1h。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例18
称取13.15g硅酸钠,2.4g四丙基氢氧化铵,4.2g氯化铵,0.25偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h,制得固相合成分子筛。将10g此样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例19
称取13.15g硅酸钠,2.4g四丁基溴化铵,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例20
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.3g拟薄铝石,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。接着称量10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例21
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.2g偏铝酸钠,0.2g硫酸铝,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。接着称量10g样品,放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例22
称取13.15g硅酸钠,2.4g TPABr,2.2g氢氧化钠,0.25g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。然后在550℃下焙烧6h。将10g样品放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
实施例23
称取13.15g硅酸钠,2.4g TPABr,4.2g氯化铵,0.25g偏铝酸钠,0.25g ZSM-5分子筛,3.47g气相二氧化硅,加入粉碎机中粉碎。使固态反应物均匀混合。然后将原料转移至100ml聚四氟乙烯内衬的不锈钢高压釜中。接着将高压釜放入烘箱中,在180℃下,晶化48h。晶化结束后,将产品洗涤,过滤,干燥。最后在550℃焙烧6h得到最终产品。将10g样品放入高压釜中,再加入20ml氨水,和80ml水,所述氨水为市售质量浓度为28%的氨水溶液,将高压釜在80℃下处理一个小时。然后产品洗涤、过滤、干燥。最后在550℃焙烧6h得到最终产品。
附图12为产品的XRD的表征结果,可以看出产品为典型的MFI结构,具有较好的结晶度。
附图13为产品的SEM扫描电镜照片,可以看出产品的颗粒为0.8-4μm左右的六方晶体。
综上所述,本发明提供一种多级孔分子筛及其碱处理固相合成方法,所述合成方法包括以下步骤:1)将固相硅源、铝源、模板剂、碱源及晶种粉碎混合后进行晶化反应,将晶化反应的产物进行过滤、洗涤及烘焙后得到固相合成分子筛;2)使用碱溶液在水热条件下对所述 固相合成分子筛进行处理,即得到多级孔分子筛。本发明的多级孔分子筛及其碱处理固相合成方法,简化了工艺流程,提高了分子筛收率,在固相合成的过程中不需要使用水及其他溶剂,减少了废液的排放,节约了成本,降低了污染,具有潜在的经济价值和社会价值;所获得的多级孔分子筛不仅多级孔道复合,并且结晶度良好,粒径较小。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。