本发明涉及一种含贵金属离子的silicate-1分子筛及其制备方法。
背景技术:
:近几十年来,越来越多的沸石分子筛作为催化材料在石油炼制和石油化工领域中得到了广泛的应用。其中人们最感兴趣和研究最多的是具有zsm-5型结构(几何学名为mfi拓扑学结构)的各种分子筛,如硅铝zsm-5分子筛、杂原子硅铝zsm-5分子筛(引入的杂原子有:锗、硼、铬、铁、钙等)、无铝的杂原子zsm-5分子筛(如ts-1、crs-1、mns-1等)。但对zsm-5家族的无铝全硅silicalite-1分子筛尚未引起人们广泛关注,作为新型催化材料仍处于研发阶段。silicalite-1分子筛又称全硅-1、纯硅-1分子筛,于1978年由美国联合碳化物公司的e.m.flanigen等首次被成功合成出来,属于“pentasil”家族的成员之一。silicalite-1分子筛是一种具有mfi拓扑学结构的无铝的全硅分子筛,是zsm-5型结构分子筛家族中组成最简单的一种分子筛,其骨架仅含有硅原子和氧原子,基本结构单元为sio4四面体。silicalite-1分子筛拥有丰富的微孔结构和规整均匀的三维细孔道,具有确定的zsm-5型分子筛的晶体结构,较高的内比表面积,良好的热稳定性、吸附和脱附能力等性能。silicalite-1分子筛可作膜分离的材料,也可作环己酮肟气相贝克曼重排反应生产己内酰胺的催化剂。silicalite-1分子筛的合成方法一般采用传统的有机原料水热法,硅源可选用固体氧化硅、硅溶胶、白炭黑、正硅酸乙酯(简称teos)等,模板剂多采用四丙基氢氧化铵(简称tpaoh)、低碳烃类季铵盐或两者混合物、胺 类化合物等,在170℃温度下晶化三天。美国联合碳化物公司等合成的silicalite-1分子筛相对结晶度较差,含无定形氧化硅较多,晶体颗粒较大,并含有微量的al3+、na+、fe3+、ca2+、mg2+等金属离子,使分子筛具有一定的酸性功能。在美国专利usp2876072中披露的柯石英是最早由人工合成的分子筛型的晶体氧化硅,它是用蒸汽,强酸或有机鳌合试剂对分子筛型的结晶硅酸铝进行处理,再抽取出四面体骨架中的铝形成的。美国专利usp4061724中披露的silicalite-1分子筛,具有mfi的晶体结构,它的制备原料中没有铝源,只有硅源、碱源、模板剂和水,不同于抽取骨架铝而形成的silicalite-1分子筛,是直接合成的silicalite-1分子筛。这种silicalite-1分子筛所用硅源是硅溶胶、硅凝胶或白碳黑中的一种,它是由摩尔组成为150-700h2o:13-50sio2:0-6.5m2o:q2o的反应混合物在100~250℃、自生压力下水热晶化50~150小时合成的,其中,m是碱金属,q是分子式为r4x+的季阳离子,r代表氢或有2-6个碳原子的烷基,x是磷或氮。日本专利jp59164617中公开的mfi结构的silicalite-1分子筛,是以正硅酸乙酯(teos)为硅源,四丙基氢氧化铵为模板剂制备的。在catal.rev.-sci.eng.,39(4),395~424(1997)中的研究表明,以正硅酸乙酯为硅源合成的silicalite-1分子筛具有较高的bet总比表面和外表面积,可分别达到400米2/克和15-30米2/克,且环己酮肟的转化率和己内酰胺的选择性与外表面积的增加成正比。中国专利cn00123576.1公开的silicalite-1分子筛,包括了两种合成方法,方法之一是:将正硅酸乙酯与四丙基氢氧化铵在室温下混合、搅拌、水解后,升温到70-75℃,加水,将混合物水热晶化,再与有机碱混合后密闭处理,其合成过程中需要升高温度赶醇。方法之二是将正硅酸乙酯与四丙基 氢氧化铵在室温下混合、搅拌,水解后,加水、加乙醇,形成摩尔浓度为tpaoh/sio2=0.05-0.5,etoh/sio2=4-30,h2o/sio2=2-100的混合物;将混合物水热晶化;之后焙烧产物与有机碱混合均匀后密闭处理,再进行洗涤、分离和焙烧。其合成过程中补加了大量乙醇,原材料成本高,cod排放量大,合成釜的分子筛固含量低。中国专利cn102050464a公开的silicalite-1分子筛,合成过程包括下列步骤:(1)将正硅酸乙酯与四丙基氢氧化铵在室温下混合、搅拌、充分水解3-5小时,补加水,形成摩尔浓度为tpaoh/sio2=0.05-0.5,etoh/sio2=4,h2o/sio2=5-100的混合物;(2)将上述混合物在密闭反应釜中,自生压力下80-120℃晶化0.5-10天,然后洗涤、过滤、干燥,400-600℃焙烧1-10小时。但迄今为止尚未见有含极其微量或微量的贵金属离子silicalite-1分子筛合成的有关报道。技术实现要素:本发明的目的是提供一种含贵金属离子的silicate-1分子筛及其制备方法,能有效改变silicate-1分子筛的性能,取得意想不到的效果。为了实现上述目的,本发明提供一种含贵金属离子的silicate-1分子筛,该silicate-1分子筛的bet比表面积为400-500米2/克,粒径大小为0.1-0.2微米,其中,二氧化硅与贵金属离子的重量比为(1×104-2×105):1。优选地,所述贵金属离子为选自pt4+、pd4+、ru4+和rh3+中的至少一种。本发明还一种含贵金属离子的silicate-1分子筛的制备方法,该方法包括:a、将硅源、贵金属源、有机模板剂和水混合,得到胶体混合物,其中,以摩尔比计,所述胶体混合物中sio2:贵金属离子:有机模板剂:h2o=1:(2.6×10-8-1×10-6):(0.05-0.50):(5-100);b、将步骤a中得到的所述胶体混合物进行水热晶化。优选地,步骤a中的所述硅源为选自硅胶、硅溶胶和有机硅酸酯中的至少一种。优选地,步骤a中的所述硅源为正硅酸甲酯和/或正硅酸乙酯。优选地,步骤a中的所述贵金属源为含有贵金属离子的化合物。优选地,所述贵金属离子为选自pt4+、pd4+、ru4+和rh3+中的至少一种。优选地,步骤a中的所述贵金属源为选自硝酸铂、硝酸钯、硝酸钌、硝酸铑、氯铂酸、氯化钯、氯钌酸铵和氯铑酸铵中的至少一种。优选地,步骤a中的所述有机模板剂为选自脂肪胺类化合物、醇胺类化合物和季胺碱类化合物中的至少一种。优选地,步骤a中的所述有机模板剂为四乙基氢氧化铵和/或四丙基氢氧化铵。优选地,步骤a中的所述胶体混合物中还包括低碳醇,所述低碳醇与sio2的摩尔比为1:(4-15)。优选地,所述低碳醇为甲醇和/或乙醇。优选地,步骤a中所述的混合在温度为10-50℃的条件下进行,混合进行的时间为0.5-10小时。优选地,步骤b中所述水热晶化的条件为:温度为80-120℃,时间为0.5-10天。优选地,该方法还包括将步骤b得到的晶化产物进行焙烧的步骤。通过上述技术方案,在silicate-1分子筛合成过程中加入极其微量的贵金属离子能有效改变silicate-1分子筛的性能,取得意想不到的的效果。在环己酮肟气相贝克曼重排反应上,采用现有silicate-1分子筛作催化剂,其己内酰胺的选择性基本上达到极限,很难再提高。采用本发明提供的方法可以得到结晶度高、颗粒细、贵金属离子含量在5-100ppm范围的接近中性的silicate-1分子筛,将其作催化剂应用于己内酰胺的生产中,己内酰胺的选择 性能提高1.0%左右。本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。附图说明附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:图1为本发明实施例1所制备的含贵金属离子的silicate-1分子筛的x射线衍射谱图;图2为本发明实施例1所制备的含贵金属离子的silicate-1分子筛的透射电镜照片。具体实施方式以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。本发明第一方面,提供一种含贵金属离子的silicate-1分子筛,该silicate-1分子筛的bet比表面积为400-500米2/克,粒径大小为0.1-0.2微米,其中,二氧化硅与贵金属离子的重量比为(1×104-2×105):1。根据本发明的第一方面,所述贵金属离子为选自第viii族的贵金属的离子,优选为选自pt4+、pd4+、ru4+和rh3+中的至少一种。本发明第二方面,提供一种含贵金属离子的silicate-1分子筛的制备方法,该方法包括:a、将硅源、贵金属源、有机模板剂和水混合,得到胶体混合物,其中,以摩尔比计,所述胶体混合物中sio2:贵金属离子:有机模板剂:h2o=1:(2.6×10-8-1×10-6):(0.05-0.50):(5-100),优选地,sio2: 贵金属离子:有机模板剂:h2o=1:(1×10-7-1×10-6):(0.15-0.25):(10-50);b、将步骤a中得到的所述胶体混合物进行水热晶化。根据本发明的第二方面,步骤a中的所述硅源可以为本领域的常规选择,例如可以为选自硅胶、硅溶胶和有机硅酸酯中的至少一种;优选为通式是(or1)4si的有机硅酸酯,其中,r1为1-4个碳原子的烷基;进一步优选为正硅酸甲酯和/或正硅酸乙酯。根据本发明的第二方面,步骤a中的所述贵金属源为含有贵金属离子的化合物。其中,所述贵金属离子可以为选自第viii族的贵金属的离子,优选为选自pt4+、pd4+、ru4+和rh3+中的至少一种。所述贵金属源优选为选自硝酸铂、硝酸钯、硝酸钌、硝酸铑、氯铂酸、氯化钯、氯钌酸铵和氯铑酸铵中的至少一种。根据本发明的第二方面,步骤a中的所述有机模板剂可以为本领域的常规选择,例如可以为选自脂肪胺类化合物、醇胺类化合物和季胺碱类化合物中的至少一种。其中,所述脂肪胺类化合物的通式为r2(nh2)n,r2为具有1-6个碳原子的烷基,n为1-3之间的整数,所述脂肪胺类化合物优选为选自乙胺、正丁胺、正丙胺、乙二胺和己二胺中的至少一种。其中,所述醇胺类化合物的通式为(hor3)mn,r3为具有1-4个碳原子的烷基,m为1-3之间的整数,所述醇胺类化合物优选为选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种。其中,所述季胺碱类化合物优选为具有1-4个碳原子的烷基季胺碱类化合物,进一步优选为四乙基氢氧化铵和/或四丙基氢氧化铵。根据本发明的第二方面,为了使分子筛颗粒更小以利于进行催化反应,步骤a中的所述胶体混合物中还可以包括低碳醇,所述低碳醇与sio2的摩尔比可以为1:(4-15)。其中,所述低碳醇可以为甲醇和/或乙醇。根据本发明的第二方面,步骤a中所述的混合可以在温度为10-50℃的条件下进行,混合进行的时间可以为0.5-10小时。根据本发明的第二方面,步骤b中所述水热晶化的条件可以采用本领域的常规条件,例如,步骤b中所述水热晶化的条件可以为:温度为80-120℃,时间为0.5-10天。根据本发明的第二方面,该方法还可以包括本领域对分子筛的常规处理方法,例如,该方法还可以包括将步骤b得到的晶化产物进行洗涤、过滤、干燥和焙烧的步骤,其中,所述干燥的条件可以为:温度为100-120℃,时间为10-30小时,所述焙烧的条件可以为:温度为400-600℃,时间为1-10小时。本发明所合成的silicate-1分子筛与现有技术方法合成得到的silicate-1分子筛具有相同的比表面和外比表面,因此可应用于己内酰胺的生产中;本发明所合成的silicate-1分子筛含有5-100ppm的第viii族的贵金属离子,应用于环己酮肟气相贝克曼重排制备己内酰胺的反应中,可提高己内酰胺的选择性。下面通过实施例对本发明做进一步说明,但并不因此而限制本发明的内容。实施例中含微量贵金属离子的silicate-1分子筛样品的bet比表面、外比表面数据由美国micromeriticsasap-2400型自动吸附仪测得,测试条件为:n2作吸附质,吸附温度为-196.15℃(液氮温度),在1.3pa、300℃下恒温脱气6h;x射线衍射光谱数据由德国siemens公司的d5005d型衍射仪作出,测试条件为:cu靶kα辐射,ni滤光片,管电压40kv,管电流40ma;样品的晶粒表面形态由fei公司tecnaig2f20s-twin型透射电子显微镜测定,测试条件为:采用悬浮法制样,将催化剂样品用无水乙醇分散,振荡均匀,吸取水量稀墨水状混合物滴到铜网上,待乙醇挥发完全后观测样品中晶粒尺寸的大小。使用bairdps-4型icp-aes等离子体电感耦合原子发射光谱仪测定样品的贵金属离子含量,测试条件为:用hf酸或王水溶解固体分子 筛或催化剂,使样品中的氧化硅挥发性,水溶液中测定。实施例1将208克正硅酸乙酯、180克22.5重量%的四丙基氢氧化铵(简记为tpaoh)、0.0032克h2ptcl6·6h2o和220克水混合,常温下搅拌3小时,形成胶体混合物,混合物摩尔比为sio2:pt:tpaoh:h2o=1:(6.18×10-6):0.2:20,将上述混合物移入1000毫升内衬聚四氟乙烯的不锈钢反应釜中,于100℃晶化3天,洗涤、过滤,120℃干燥24小时,550℃焙烧6小时,得到本实施例制备的silicate-1分子筛。本实施例制备的silicate-1分子筛样品的铂含量为19.5ppm,bet比表面积为442米2/克,外比表面为58米2/克,样品的x射线衍射谱图如图1所示,透射电镜照片如图2所示。其x射线衍射(xrd)谱图与microporousmaterials,vol22,p637,1998上记载的mfi结构标准xrd谱图特征一致,这表明该分子筛具有mfi晶体结构;从透射电镜照片可以看出,silicate-1分子筛晶粒大小均匀,粒径大小为0.1-0.2μm。实施例2将208克正硅酸乙酯、180克22.5重量%的四丙基氢氧化铵(简记为tpaoh)、0.0060克pd(no3)2·2h2o和220克水混合,常温℃下搅拌5小时,形成胶体混合物,混合物摩尔比为sio2:pd:tpaoh:h2o=1:(2.3×10-5):0.2:20,将上述混合物移入1000毫升内衬聚四氟乙烯的不锈钢反应釜中,于100℃晶化3天,洗涤、过滤,120℃干燥24小时,550℃焙烧6小时,得到本实施例制备的silicate-1分子筛。本实施例制备的silicate-1分子筛样品的钯含量为40.5ppm,bet比表面积为461米2/克,外比表面为52米2/克,样品的x射线衍射谱图与图1类 似,透射电镜照片与图2类似。实施例3将208克正硅酸乙酯、180克22.5重量%的四丙基氢氧化铵(简记为tpaoh)、0.0128克h2ptcl6·6h2o和220克水混合,常温℃下搅拌4小时,形成胶体混合物,混合物摩尔比为sio2:pt:tpaoh:h2o=1:(2.5×10-5):0.2:20,将上述混合物移入1000毫升内衬聚四氟乙烯的不锈钢反应釜中,于120℃晶化3天,洗涤、过滤,120℃干燥24小时,550℃焙烧6小时,得到本实施例制备的silicate-1分子筛。本实施例制备的silicate-1分子筛样品的铂含量为80.5ppm,bet比表面积为446米2/克,外比表面为48米2/克,样品的x射线衍射谱图与图1类似,透射电镜照片与图2类似。实施例4将208克正硅酸乙酯、360克22.5重量%的四丙基氢氧化铵(简记为tpaoh)、184克乙醇、0.0040克pd(no3)2·2h2o和440克水混合,常温℃下搅拌5小时,形成胶体混合物,混合物摩尔比为sio2:pd:tpaoh:h2o=1:(1.5×10-5):0.4:40,乙醇/sio2=8,将上述混合物移入1000毫升内衬聚四氟乙烯的不锈钢反应釜中,于100℃晶化3天,洗涤、过滤,120℃干燥24小时,550℃焙烧6小时,得到本实施例制备的silicate-1分子筛。本实施例制备的silicate-1分子筛样品的钯含量为26ppm,bet比表面积为452米2/克,外比表面为42米2/克,样品的x射线衍射谱图与图1类似,透射电镜照片与图2类似。对比例1本对比例说明按照中国专利cn1338427a的方法二合成silicate-1分子筛的过程。在室温下将139克正硅酸乙酯倒入1000毫升烧杯中,搅拌30分钟,22.5%四丙基氢氧化铵(简记为tpaoh)水溶液120克加入正硅酸乙酯中,室温下搅拌水解5小时,加水147克,加乙醇267克,搅拌均匀为溶胶,此时混合溶胶的化学组成为h2o/sio2=20,etoh/sio2=12.7,tpaoh/sio2=0.20,在110℃晶化2天,洗涤、过滤,120℃干燥24小时,550℃焙烧5小时。制备的silicate-1分子筛样品bet比表面积为441米2/克,外比表面为51米2/克。样品的x射线衍射谱图与图1类似,透射电镜照片与图2类似。对比例2本对比例说明按照中国专利cn102050464a的方法合成silicate-1分子筛的过程。在室温下将208克正硅酸乙酯倒入1000毫升烧杯中,搅拌30分钟,用22.5%的四丙基氢氧化铵(简记为tpaoh)溶液180克加入正硅酸乙酯中,室温下搅拌水解3-5小时,加水220克,形成溶胶,搅拌均匀,摩尔浓度为tpaoh/sio2=0.2,h2o/sio2=20,将上述混合物移入1000毫升内衬聚四氟乙烯的不锈钢反应釜中,于100℃晶化3天,洗涤、过滤,120℃干燥24小时,550℃焙烧5小时。制备的silicate-1分子筛样品的bet比表面积为439米2/克、外比表面为60米2/克,样品的x射线衍射谱图与图1类似,透射电镜照片与图2类似。对比例3本对比例说明按照美国专利usp4061724实施例1的方法合成silicate-1 分子筛的过程。将naoh溶液、sio2含量为30重量%的水溶胶、四丙基溴化铵(简记为tpabr)溶液混合,得到摩尔比为4.1na2o:50sio2:691h2o:1tpabr的混合物,将上述混合物在200℃晶化3天,洗涤、过滤,110℃干燥24小时,600℃焙烧1小时。制备的silicate-1分子筛样品的bet比表面积为417米2/克、外比表面为36米2/克,样品的x射线衍射谱图与图1类似,透射电镜照片与图2类似。测试实施例本测试实施例用于说明实施例1-4和对比例1-3所合成的silicate-1分子筛在气相贝克曼重排反应中的催化反应结果。按照cn102233277a专利中的含氮化合物后处理方法对实施例1-4和对比例1-3的silicate-1分子筛进行后处理。分别将9.5克实施例1-4和对比例1-3所合成的silicate-1分子筛与95克氨水和硝酸铵组成的碱性缓冲溶液(其中,氨水与硝酸铵水溶液的重量比为3:2,ph值为11.35)加入到带压反应釜(kcf-100ml型磁力搅拌高压釜,烟台高新区科立自控设备研究所)中,在80℃、2.3kg/cm2压力下搅拌1小时,然后洗涤、过滤、干燥,得到含mfi结构分子筛的催化剂。反应装置为常压连续流动固定床,反应器内径为5毫米,催化剂的装填量0.37克,催化剂粒度20-60目。催化剂在装入反应管后,在常压、350℃的氮气气氛中预处理1小时。原料环己酮肟的浓度为35.7%,重量空速(whsv)为16h-1,溶剂为甲醇,反应温度为380℃,氮气流量为2.7升/小时,反应时间6小时。测试反应第六小时的反应指标,将反应产物通过水循环冷却后收集。采用毛细管气相色谱法测定产物组成,氢火焰检测器,测试条件为:汽化室温度250℃,检测室温度为230℃,柱温为程序升温,110℃恒温8分钟,15℃/min升到230℃再恒温14分钟。反应结果见表1。表1编号环己酮肟转化率/%己内酰胺总选择性/%实施例199.3897.07实施例299.4296.75实施例399.4096.78实施例499.3796.66对比例199.3695.91对比例299.3095.50对比例369.787.5从实施例1-4和对比例1-3的结果可以看出,采用美国专利usp4061724中的方法制备的silicate-1分子筛作催化剂时,其环己酮肟的转化率仅为69.7%,己内酰胺选择性为87.5%;而采用本发明的方法合成的silicate-1分子筛,其环己酮肟的转化率最高可达到99.42%,己内酰胺的总选择性最高可达到97.07%,与现有技术cn1338427a、cn102050464a中方法所合成的silicate-1分子筛相比,己内酰胺选择性可提高1%左右。以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。当前第1页12