一种生态陶瓷砖及其制备方法与流程

文档序号:11123125阅读:1175来源:国知局

本发明涉及了陶瓷技术领域,特别是涉及了一种生态陶瓷砖及其制备方法。



背景技术:

细菌,霉菌作为病原菌对人类和动植物有很大危害,影响人们的健康甚至危及生命,带来了重大的经济损失。因此抗菌材料及其制品的研究日益引起人们的关注,抗菌制品的需求将构成巨大的市场。

光致变色是指由于光源的不同引起的光致变色和由反射、折射及干涉等物理现象引起的颜色变化。光致变色材料分为有机光致变色材料与无机光致变色材料,其中对无机光致变色材料的研究较少,主要包括过渡金属氧化物、金属卤化物和稀土配合物三种。

对于环境保护方面,空气负离子可以消除室内异味和各种有害气体 。在室内装修过程中使用的装潢材料挥发出来的苯、甲醛、酮、氨等刺激性气体以及日常生活中剩菜剩饭酸臭味,香烟等对人体有害的异味,用富含负离子的材料,其释放的空气负离子都能有效地加以消除,达到净化空气的目的,并对金葡萄球菌、大肠杆菌、念珠菌及霉菌等有很好的抑制作用。

现有的陶瓷砖一般是单一功能的产品,如抗菌、防静电、夜光、光致变色等等,即一种产品不具备多项功能,这极大限制了其应用范围,虽然也有采用两种功能剂进行搭配,但效果仍不理想,还有待进一步提高。



技术实现要素:

为了解决上述现有技术的不足,本发明提供了一种生态陶瓷砖及其制备方法。

本发明所要解决的技术问题通过以下技术方案予以实现:

一种生态陶瓷砖及其制备方法,该制备方法包括以下步骤:

步骤A、制备釉浆:先制备无铅镉低温熔块,再经过过筛、研磨混合后,加入粘结剂和悬浮剂得混合粉料,将混合粉料加水制得釉浆;

步骤B、浸渍釉浆:将堇青石质蜂窝陶瓷浸渍釉浆→抽真空→加压循环处理,至少循环1次;然后进行500~600℃的一次烧结;

步骤C、喷涂釉浆:采用喷釉的方式,将釉浆喷涂在烧结后的蜂窝陶瓷表面,再进行700~800℃的二次烧结,制得生态陶瓷砖;其中,

所述无铅镉低温熔块通过以下方法制得:将10~18%石英、5~12%长石、15~25%硼砂、3~12%碳酸盐、20~35%硼酸、3~8%锂辉石、1~4%氟化盐、0~5%高岭土混合研磨均匀,再加入1~5%抗菌复合物、3~8%负离子复合物及1~10%光致变色复合物,研磨均匀制得混合料;混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状即可得到无铅镉低温熔块。

在本发明中,所述长石由钾长石和钠长石按重量比3~5:1~2混合而得。所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙中的至少一种组成,优选地,所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得。所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

在本发明中,所述光致变色复合物制备方法如下:氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比3:1~3混合,同时加入光致变色粉,磁力搅拌60~120min后加入苯胺,光之变色粉与苯胺质量比为1:5~10;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应12~36h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将1~10g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:1~3),调节pH值为9~10,反应温度为20~25℃,反应60~90min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀干燥,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800~1000℃热处理1~2h,去除聚苯胺,光致变色粉/多孔SiO2,即光致变色复合物。其中,所述光致变色粉为MoO3纳米粉和/或稀土氧化物,所述稀土氧化物为Nd2O3、Er2O3、Pr2O3、CeO2、Sm2O3、La2O3、Y2O3、Yb2O3、Ho2O3中至少一种。

在本发明中,所述负离子复合物制备方法如下:将5~10%珊瑚化石、10~15%电气石、20~30%蛋白石、1~5%蛇纹石、5~10%麦饭石、1~5%奇冰石、1~5%北投石、1~5%医王石、5~10%贝壳、10~15%硅藻土、1~3%三氧化二铁、2~5%三氧化二铝、3~8%氧化锆和1~5%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取5~10g负离子粉分散于100~200ml超纯水中,水浴超声1~2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,获得负离子粉/碳纳米管,即负离子复合物。

在本发明中,所述抗菌复合物可通过以下方法制得:

(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;

(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:1~3),调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

较佳地,在步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。

在本发明中,所述抗菌复合物还可以通过以下方法制得:

(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;

(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

较佳地,在步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。

本发明具有如下有益效果:本方法在碳纳米管上负载并固定抗菌剂,不仅防止其团聚,显著提高金属纳米粒子等抗菌剂的稳定性,使其能更好分散在低温熔块内,且具有更长效的抗菌活性以及银离子不会溢出氧化变色;同时复合了多种抗菌剂的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;光致变色复合物具有光致变色的效果,使产品更加丰富多彩,利用其生产的陶瓷砖是采用传统着色剂生产的陶瓷砖无法比拟的,可随着照射光线强弱的不同而变化的各种颜色,异彩纷呈,瑰丽多姿,从而使陶瓷产品显得美妙神奇、清新高雅,点缀都市夜生活,给建筑物及室内装饰增添情调及艺术效果;负离子复合物可高效不间断的释放负离子,在有光或无光条件下均能不间断释放负离子,有效净化空气,分解甲醛等有机气体,提高室内空气质量,还具有抗菌的作用,有益于人体健康。

和现有陶瓷砖相比,本发明制造的陶瓷砖配料科学,制备合理,性能稳定,而且不含有铅镉等剧毒物质,经过合理的搭配光致变色复合物、负离子复合物和抗菌复合材料,使得陶瓷砖具有优异抗菌、净化空气和光致变色特性,进一步拓宽了陶瓷的应用范围。

具体实施方式

下面通过具体的优选实施方式来进一步说明本发明的技术方案。

实施例1

一种生态陶瓷砖及其制备方法,该制备方法包括以下步骤:

步骤A,制备釉浆:将12%石英、12%长石、15%硼砂、6%碳酸盐、35%硼酸、5%锂辉石、1%氟化盐、2%高岭土混合研磨均匀,再加入1%抗菌复合物、3%负离子复合物及8%光致变色复合物,研磨均匀制得混合料;将制得的混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到无铅镉低温熔块;将低温熔块经过过筛、研磨混合后,利用PVA作为常温临时粘结剂,加入阿拉伯树胶悬浮剂,将混合粉料加入水制成具备一定悬浮性能的釉浆,控制浆料300~350目。

步骤B,浸渍釉浆:对堇青石质蜂窝陶瓷进行浸渍釉浆→抽真空→加压循环处理(具体为:浸渍在步骤A制得的釉浆中10min,取出,对浸渍后的多孔陶瓷进行抽真空→加压处理,抽真空真空度为-0.02Mpa,保压5min;加压至0.3Mpa,保压10min),循环7次;然后进行500~600℃的一次烧结;

步骤C,喷涂釉浆:采用喷釉的方式,将釉浆喷涂在烧结后的堇青石质蜂窝陶瓷表面,喷釉时堇青石质蜂窝陶瓷表面温度控制在75±2℃,施釉的重量每600mm×600mm 的砖坯喷涂160g;然后进行700~800℃的二次烧结,制得生态陶瓷砖。

其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

其中,所述光致变色复合物制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(Nd2O3、Er2O3和Pr2O3按重量比2:1:1混合),磁力搅拌90min后加入苯胺,光之变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。

所述负离子复合物制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。

所述抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.05mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.005mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应30min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声10min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例2

一种生态陶瓷砖及其制备方法,该制备方法包括以下步骤:

步骤A,制备釉浆:将15%石英、5%长石、20%硼砂、8%碳酸盐、25%硼酸、8%锂辉石、3%氟化盐、3%高岭土混合研磨均匀,再加入3%抗菌复合物、5%负离子复合物及5%光致变色复合物,研磨均匀制得混合料;将制得的混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到无铅镉低温熔块;将低温熔块经过过筛、研磨混合后,利用PVA作为常温临时粘结剂,加入阿拉伯树胶悬浮剂,将混合粉料加入水制成具备一定悬浮性能的釉浆,控制浆料300~350目。

步骤B,浸渍釉浆:对堇青石质蜂窝陶瓷进行浸渍釉浆→抽真空→加压循环处理(具体为:浸渍在步骤A制得的釉浆中10min,取出,对浸渍后的多孔陶瓷进行抽真空→加压处理,抽真空真空度为-0.02Mpa,保压5min;加压至0.3Mpa,保压10min),循环7次;然后进行500~600℃的一次烧结;

步骤C,喷涂釉浆:采用喷釉的方式,将釉浆喷涂在烧结后的堇青石质蜂窝陶瓷表面,喷釉时堇青石质蜂窝陶瓷表面温度控制在75±2℃,施釉的重量每600mm×600mm 的砖坯喷涂160g;然后进行700~800℃的二次烧结,制得生态陶瓷砖。

其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

其中,所述光致变色复合物的制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(MoO3纳米粉),磁力搅拌90min后加入苯胺,光之变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。

所述负离子复合物制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。

所述抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取2gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.03mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.03mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.3;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.3gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应45min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声12min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例3

一种生态陶瓷砖及其制备方法,该制备方法包括以下步骤:

步骤A,制备釉浆:将18%石英、5%长石、24%硼砂、8%碳酸盐、20%硼酸、6%锂辉石、1%氟化盐、4%高岭土混合研磨均匀,再加入5%抗菌复合物、8%负离子复合物及1%光致变色复合物,研磨均匀制得混合料;将制得的混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到无铅镉低温熔块;将低温熔块经过过筛、研磨混合后,利用PVA作为常温临时粘结剂,加入阿拉伯树胶悬浮剂,将混合粉料加入水制成具备一定悬浮性能的釉浆,控制浆料300~350目。

步骤B,浸渍釉浆:对堇青石质蜂窝陶瓷进行浸渍釉浆→抽真空→加压循环处理(具体为:浸渍在步骤A制得的釉浆中10min,取出,对浸渍后的多孔陶瓷进行抽真空→加压处理,抽真空真空度为-0.02Mpa,保压5min;加压至0.3Mpa,保压10min),循环7次;然后进行500~600℃的一次烧结;

步骤C,喷涂釉浆:采用喷釉的方式,将釉浆喷涂在烧结后的堇青石质蜂窝陶瓷表面,喷釉时堇青石质蜂窝陶瓷表面温度控制在75±2℃,施釉的重量每600mm×600mm 的砖坯喷涂160g;然后进行700~800℃的二次烧结,制得生态陶瓷砖。

其中,所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

其中,所述光致变色复合物的制备方法如下:氮气环境下,将浓度为0.3mol/L的质子酸溶液和浓度为0.3mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入光致变色粉(Ho2O3),磁力搅拌90min后加入苯胺,光之变色粉与苯胺质量比为1:8;持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/光致变色粉复合物;将8g纳米聚苯胺/光致变色粉复合物超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与纳米聚苯胺/光致变色粉复合物的质量比为5:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到纳米聚苯胺/光致变色粉复合物/SiO2;将纳米聚苯胺/光致变色粉复合物/SiO2置于氩气气氛下进行800℃热处理1h,去除聚苯胺,光致变色粉/多孔SiO2,即得光致变色复合物。

所述负离子复合物制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。

抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取3gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.005mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.1gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例4

基于实施例2的制备方法,不同之处在于:步骤(4)和(5)之间增加如下步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。

三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml 98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。

实施例5

基于实施例1的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例6

基于实施例2的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取2gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.2g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;80min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例7

基于实施例3的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例8

基于实施例6的制备方法,不同之处在于:步骤(3)和(4)之间增加如下一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。

三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml 98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。

对比例1

基于实施例1的制备方法,不同之处在于:所述抗菌复合物为载金属抗菌剂的二氧化钛;不添加光致变色复合物和负离子复合物。

对比例2

基于实施例5的制备方法,不同之处在于:所述抗菌复合物为氧化锌和二氧化钛的混合物;所述光致变色复合物为MoO3纳米粉;所述负离子复合物为负离子粉,将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉。

各实施例和对比例提供的低温熔块,其中不含铅、镉有毒元素,经实验证明在低于 800℃下即可熔融,可用于制备各种低温环保陶瓷的助熔材料。

对实施例1~8、对比例1~2得到的陶瓷砖进行抗菌防污性能测试以及光致变色性能测试,测试结果如下:

灭菌率:取 105个/ml 的大肠杆菌0.1ml,均匀涂布于陶瓷砖上,在室内放置2h,然后将菌液用无菌水洗脱至培养基中,37℃下培养24h,然后检测菌数,计算灭菌率。

磨损测试:选用莫氏硬度为3~4的磨料,在陶瓷砖上摩擦1000次来模仿铺贴使用2年后的效果,测试其灭菌率。

热稳定性测试:将陶瓷砖置于电炉中,自室温升到200℃,保温20min,迅速投入25℃水中,10min后取出擦干,测试其灭菌率。

防污测试:选用铬绿为污染剂。

灭菌均匀性评价:在同一陶瓷砖上选取100个区域进行灭菌测试,对测得的数据进行均匀度分析,通过均匀度=100*(1-标准偏差/平均值)。当均匀度大于97%,则标记为▲;当均匀度大于90%且小于97%,则标记为☆;当均匀度低于90%,则标记为╳。

负离子释放量:采用日本产COM-3010PRO型离子探测器测试负离子释放量,将该样品放置于1m3的测试箱(长、宽、高均为1m)中,测得空气中空气负离子浓度(初始及24h);采用汉王M1型霾表测试,测试箱内PM2.5浓度(初始及24h);在测试箱内滴加0.1mg甲醛(甲醛浓度0.1mg/m3),24h后测得甲醛浓度。

以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1