本发明属于稀土发光材料技术领域,具体涉及一种光致发光晶体材料硼酸镨钾及其制备方法和应用。
背景技术:
在发光材料领域,稀土元素有着不可替代的重要作用。稀土离子由于独特的电子层结构使得稀土发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。在长余辉发光材料领域,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。稀土离子具有未充满的4f电子壳层,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土原子或离子大约有三万余条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。随着稀土分离、提纯及相关技术的进步,稀土发光材料的研究和应用得到了显著的发展。稀土发光材料具有很多优异的特点,如光吸收能力强、发射波长分布区域宽和发射光谱带窄等,同时由于稀土离子电子构型为4fn5s25p6(0≤n≤14),电子受到屏蔽,所以掺入基质晶格中时4f电子受到周围环境的影响很弱。正是这些优异的特性,使稀土化合物成为探寻高新技术材料的主要研究对象,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备和更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。
稀土硼酸盐发光材料的优点很多,例如烧结温度低、合成工艺简单、原料价格低廉、性能稳定、种类繁多、紫外投射率较高以及光学损伤阙较高,而且容易被各种电磁场、紫外光、热解、电致以及X射线等诸多能量所激发,并通过硼酸根离子吸收传递给激活剂离子,提高其发光性能,是很有实用价值的发光材料。另一方面,我国拥有丰富的稀土资源,资源储量约占世界己探明储量的30%以上。但是目前我国稀土资源利用特点是,一方面出口原料和粗产品;另一方面却在进口成品和精制品。我国在稀土深加工及稀土功能材料的开发和应用领域并不站在世界前列,开展稀土精细加工和稀土功能材料的研究具有重要的意义。因此,开发新型稀土硼酸盐发光材料,不但可以为荧光粉领域提供实用新材料,更可以充分综合利用我国稀土资源库,将我国稀土资源优势转化为经济和技术优势。硼酸镨钾晶体化合物可能会成为具有优良发光性能的新材料,然而至今尚未见该种化合物的相关报道。
技术实现要素:
本发明解决的技术问题是提供了一种光致发光晶体材料硼酸镨钾及其制备方法,该晶体材料硼酸镨钾不需要复杂的制备工艺和稀土离子的掺杂,其材料本体就含有稀土离子Pr3+,并可以在激发光下发射出Pr3+离子特征发射光谱,制备的硼酸镨钾材料能够较好地应用于荧光发光材料或电子器件中。
本发明为解决上述技术问题采用如下技术方案,一种光致发光晶体材料硼酸镨钾,其特征在于:该晶体材料硼酸镨钾的化学式为K3Pr3(BO3)4,属于三斜晶系空间群P-1,单胞参数为a=9.0814Å,b=10.8052Å,c=14.0885Å,α=69.800º,β=89.922º,γ=89.892º,Z=4,V=1297.4Å3。
本发明所述的光致发光晶体材料硼酸镨钾的制备方法,其特征在于具体步骤为:采用高温溶盐法,以过量的K2O-B2O3体系为助熔剂,将原料K2CO3、Pr6O11和H3BO3混合并充分碾磨均匀,装入铂金坩埚中压实后置于马弗炉中,先将反应物于1050℃充分熔融静置50h,再急冷降温至900℃恒温50h,然后以2℃/h的降温速率降温至750℃,最后急冷降温至室温制得无色透明的长条形硼酸镨钾单晶体。
进一步优选,所述的K2CO3、Pr6O11和H3BO3的投料摩尔比为40:1:60。
本发明所述的光致发光晶体材料硼酸镨钾在荧光发光材料或电子器件中的应用。
荧光光谱测试表明,本发明制得的化合物硼酸镨钾K3Pr3(BO3)4可发射红色荧光,可用作发光材料领域,并且合成发光材料的合成方法简单,原料廉价易得,产物无毒无污染。
附图说明
图1是本发明制得的K3Pr3(BO3)4晶体材料的空间结构图;
图2是本发明制得的K3Pr3(BO3)4晶体材料的粉末衍射和单晶数据模拟的对比图;
图3是本发明制得的K3Pr3(BO3)4晶体材料的激发荧光谱图;
图4是本发明制得的K3Pr3(BO3)4晶体材料的发射荧光谱图;
图5是本发明制得的K3Pr3(BO3)4晶体材料的发光色度图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
按反应式:6K2CO3+2Pr6O11+16H3BO3→4K3Pr3(BO3)4+9H2O+6CO2采用高温熔盐反应合成化合物。
硼酸镨钾K3Pr3(BO3)4晶体材料的制备:本发明生长晶体的方法称为高温溶盐法,又称为助熔剂法,这种方法是将晶体成分在高温下溶解于低于其熔点的助熔剂中,形成均匀饱和溶液,之后通过缓慢降温或其它方法形成过饱和溶液使晶体析出。本实验采用晶体成分以外的部分K2O-B2O3体系,由于熔点较低相当于作了自助熔剂,这样原料既是目标晶体又作助熔剂,有很大的灵活性,同时避免了进入其它杂质。具体操作步骤如下:将原料K2CO3、Pr6O11和H3BO3按照摩尔比为40:1:60的比例在电子天平上准确称取,由于碳酸的熔化会释放出CO2气体,H3BO3的分解会放出水蒸气,所以先将原料放入玛瑙研钵中混合均匀,然后装入铂金坩锅中,置于1050℃的加热炉内至使其充分分解并完全熔化,待气体全部逸出后取出,缓慢摇摆将溶液冷却凝固于坩埚内壁,加盖后再置于加热炉内恒温50h,再迅速降温至900℃恒温50h,之后以2℃/h的降温速率缓慢降温至750℃,当降温完成后直接关闭电源,使温度迅速降到室温,避免其它新相生成或发生相变。待坩锅冷却至室温后,将其在水中浸泡,洗去助熔剂,烘干后即得到无色透明的晶体,其物理化学性质稳定,不潮解,不风化,不易分解。
单晶结构分析:在光学显微镜下挑选一颗透明完好的小晶体粘在玻璃丝上,于室温下在布鲁克面探测器衍射仪(钼靶λ=0.71073Å)上寻峰、指标化,以确定晶胞参数和取向矩阵。原始数据以ω扫描方式收集完成后,经过数据还原、吸收校正之后,就可以获得衍射指标、衍射强度以及背景强度等数据。在得到晶胞参数和衍射强度数据后,选择正确的空间群,用直接法得到重原子的位置,其余原子位置通过差值傅立叶合成来确定,然后对全部原子坐标及原子位移参数等进行基于F2的全矩阵最小二乘法精修至收敛。以上结构解析和精修均使用Shelx-2014程序完成。最后,通过Platon程序对其空间群进行检查并在网站上对其结构进行检查,无晶体学错误。单晶结构拟合出的粉末衍射图与试验得到的粉末衍射图进行对比(见附图2),验证结构解析的正确性。单晶结构测定的参数如下表所示:
将所得产物用FLS920荧光光谱仪进行分析,在657nm发射光监控下测试其激发荧光,观察到在445nm、474nm、487nm左右位置出现激发荧光峰(见附图3),分别对应Pr3+离子3H4→3P2、3H4→1I6、3H4→3P0电子跃迁。晶体材料K3Pr3(BO3)4的发射荧光谱如附图4所示,在445nm波长光的激发下,晶体材料发出Pr3+离子的五个特征荧光峰,分别在613nm、626nm、649nm、657nm、737nm处出现,分别归属于Pr3+离子的1D2→3H4、3P0→3H6、3P0→3F2、1D2→3H5、3P0→3F4电子跃迁,这些荧光发射峰都位于红光范围,色坐标计算并标定如图5所示。
以上显示和描述了本发明的基本原理,主要特征和优点,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围。