本发明属于制氢技术领域,具体涉及一种制氢转化炉。
背景技术:
制氢转化炉是制氢装置的核心设备,决定了整个制氢装置的性能,其投资占总投资的20%~25%,其能耗占装置总能耗的30%~40%。目前,制氢转化炉主要有顶烧型和侧烧型两种炉型,其中:
顶烧型制氢转化炉燃烧器在炉顶,火焰向下燃烧,转化炉管采用立管,双面辐射,原料气通过炉顶进口管系进入转化炉管被加热,并发生转化反应,形成的富氢高温转化气经过炉底出口管系进入蒸汽废锅产生蒸汽和进行其它换热、变换流程。顶烧型转化炉燃烧器火焰方向平行转化管,燃烧区温度场与转化反应所需温度场匹配度较好,操作弹性大,但该型转化炉存在以下缺点:顶部管系较为复杂,且多排燃烧器布置在炉顶,对流段只能布置在地面上,增加了占地面积;为了得到较高的转化率,一般采取提高转化气出口温度(850℃~900℃),高的出口温度的余热会产生大量的蒸汽,所产蒸汽一般超过装置所需蒸汽,外输的蒸汽品质较差,成本较高,性价比低;转化气出口温度高,增加了出口管系的设计难度和建设投资,大型化后长周期运行很难保证。
侧烧型制氢转化炉燃烧器火焰方向与炉管垂直,对流段布置在辐射的上部侧面,原料气一般也从上部进入,经转化管加热并发生转化反应。侧烧型转化炉对流段在炉顶,占地面积相对较小,炉管轴向受热均匀,热强度较高,炉管投资较小,但该型转化炉同样存在产蒸汽过多、转化气出口温度高的问题,且燃烧器数量多导致所需投资大,结构复杂,同时该型转化炉每个辐射炉膛中仅布置两只排炉管,产量和规模受到限制。
通常的制氢转化炉对流段烟气余热回收通过预热原料气、产生蒸汽和预热助燃空气来实现,这些余热回收方案存在低品质蒸汽产量大和燃料气利用效率低的问题。
另外,制氢转化炉燃料通常为量大且热值低的脱附气和补充燃料气,补充燃料气中含有含氮化合物、氨盐类物质、硫化氢、有机硫及c5以上重质烃类物质,这些物质在燃烧过程可以生成氮氧化物、硫化物及不完全燃烧的碳颗粒,造成氮氧化物、硫化物及颗粒物超标。同时,由于燃料气中这些物质的存在,还会使烟气的酸露点温度提高,在余热回收低温空气预热段发生低温露点腐蚀,造成设备堵塞,影响装置正常运行。为保证装置长周期稳定运行,目前采取提高制氢转化炉排烟温度的方式,一般排烟温度设置在150℃以上,热效率低,造成了燃料气浪费,进一步增加了运行成本。
为此,需要开发一种操作弹性大、投资小、节能、环保、能保证长周期稳定运行的制氢转化炉。
技术实现要素:
本发明的目的在于克服上述现有技术中的制氢转化炉的不足,提供一种具有高转化温度、低出口温度结构的低能耗制氢转化炉,该转化炉结构紧凑、操作弹性大且投资更小。
本发明的技术方案为:
一种制氢转化炉,包括带衬里壳体、转化炉管、余热回收系统和燃烧器,所述转化炉管立式布置于所述带衬里壳体围成的炉体内;炉体内燃烧产生的高温烟气进入所述余热回收系统进行余热回收,原料气和空气进入炉体内前均在所述余热回收系统中进行预热;所述燃烧器布置于炉底;其中,所述转化炉管为内管与外管组成的套管;所述内管与外管之间的环隙中装有转化反应所需的催化剂;转化炉管的底部开有连通环隙的进口,供原料气通入;内管开有出口,供富氢转化气排出。
优选地,所述燃烧器火焰向上,分布在转化炉管两侧。
优选地,所述内管中装有强化传热的填充物,所述填充物为具有导热性能金属或非金属。
优选地,所述余热回收系统包括原料气预热器、蒸汽过热段、蒸发段和空气预热段;作为进一步改进,所述原料气预热器由转化原料气预热段和预转化原料预热段组成;余热回收系统中的所述空气预热段通常为一段式结构,作为改进,空气预热段使用两段式结构,由低温空气预热段和高温空气预热段组成,通入的空气依次所述低温空气预热段和高温空气预热段实现分级加热;作为另一改进,所述空气预热段使用三段式结构,由空气进口预热段、低温空气预热段和高温空气预热段组成,所述空气进口预热段设置于空气进口处。
优选地,所述制氢转化炉使用脱附气和/或补充燃料气作为燃料气。
当燃料气为脱附气和/或补充燃料气时,作为余热回收系统的进一步改进,在所述余热回收系统还包括脱附气预热段和补充燃料气复合阻蚀剂系统;脱附气通入所述脱附气预热段中进行预热处理,补充燃料气通入所述补充燃料气复合阻蚀剂系统进行预热和精处理。所述补充燃料气复合阻蚀剂系统包括一套余热系统和固定床反应器系统,预热系统进行燃料气的预热,反应器系统通过多种催化剂的复合作用可以将燃料气中的含氮化合物、氨盐类物质、硫化氢、有机硫及c5以上重质烃类物质进行转化和吸收精处理。
作为前述余热回收系统结构与布局的改进,可将所述余热回收系统各组件全部或部分布置在转化炉的上部,以减少占地面积。
本发明制氢转化炉具有以下优点:
1.该转化炉通过套管式结构使转化炉管环隙内的原料气受外部烟气的高温辐射热和内管转化气的双面加热,确保高的转化温度,高转化率,同时由于转化气与原料气的换热作用又降低了出口温度,使得出口管系更安全、更可靠;
2.通过富氢转化气与原料气换热,减少辐射室热负荷10~20%,减少燃料消耗,富氢转化气出口温度降低100℃~200℃,减少蒸汽外输量;
3.利用余热回收系统对燃料气和空气双预热,可以实现低过剩空气系数下完全燃烧,减少烟气量和排烟损失,进一步提高加热炉热效率,排烟温度低至90℃以下,热效率超过95%;
4.燃料气经过复合阻蚀剂系统精处理,可以进一步降低氮氧化物20%,减少硫化物90%,减少颗粒物30%;同时,可以解决低温设备的露点腐蚀问题。
5.该转化炉可以通过调节燃烧器负荷调节转化炉热负荷,适应用氢量的变化,操作弹性大;
6.该转化炉余热回收系统组件全部或部分布置在转化炉的上部,可减少占地面积,使转化炉结构更紧凑,同时减少了工艺管线投资;
7.由于富氢转化气出口温度降低,可降低出口管系材质要求,减少建设投资,同时,由于转化炉负荷降低,烟气量减少,烟气余热减少,余热回收系统设备投资减少。
附图说明
图1为本发明实施例1制氢转化炉结构示意图;
图2为实施例1制氢转化炉的转化炉管结构示意图;
图3为本发明实施例2制氢转化炉结构示意图。
其中:
1:带衬里壳体;2:转化炉管;21:进口;22:出口;23:内管;24:外管;25:转化反应催化剂;3:余热回收系统;31:转化原料气预热段;32:预转化原料气预热段;33:蒸汽过热段;34:空气预热段;35:蒸发段;36:脱附气预热段;37:补充燃料气复合阻蚀剂系统;38:引风机;39:鼓风机;4:燃烧器。
具体实施方式
以下结合附图通过实施例对本发明做进一步说明,以便更好地理解本发明。
实施例1
以下结合附图通过实施例对本发明做进一步说明,以便更好地理解本发明。
如图1所示,本发明制氢转化炉主要包括:带衬里壳体1,转化炉管2,余热回收系统3和燃烧器4四个主要部分,其中:
转化炉管2采用立式布置,转化炉管2为套管结构,由内管23与外管24组成,内管23与外管24环隙空间装有转化反应的催化剂25,具体结构如图2。工作时,原料气以400℃~650℃的温度从转化炉底部进口21进入转化炉管2的环隙中,高温烟气通过外管24的管壁将热量传给原料气,原料气被加热并通过与催化剂25接触发生转化反应,反应后的高温富氢转化气再通过内管23从出口22排出转化炉管2;高温富氢转化气在内管23流动过程中,通过内管23的管壁与转化炉管2的环隙中发生转化反应的原料气进行热交换,原料气被加热的同时富氢转化气被冷却,富氢转化气在排出转化炉管2后温度为500℃~820℃。该转化炉管2结构设计使得进入环隙的原料气受到外部高温烟气和内部富氢转化气的双重加热作用,会迅速达到发生转化反应温度而发生转化反应,提升了转化炉管2和催化剂25的利用效率,另外该套管结构使得转化气温度更均匀,避免了常规转化管中心转化气温度较低,解决了转化反应慢的问题。富氢转化气将其一部分显热传递给原料气,可以降低烟气侧热负荷,减少燃料消耗;富氢转化气自身温度降低,显热减少,降低了后续换热设备负荷,并减少低品质蒸汽外输20%~25%,提高整个装置能量利用效率;富氢转化气在出口处的温度较低,可以降低出口管系的材料等级,减少建设投资,也降低了出口管系的设计难度。作为一种更佳的实施方式,在转化炉管2的内管23中装入强化传热的填充物,该填充物可以为具有导热性能金属或非金属,通过该填充物可强化富氢转化气与环隙中原料气的换热效果。
余热回收系统3主要由原料气预热器、蒸汽过热段33、空气预热段34、蒸发段35组成,其中,原料气预热器由转化原料气预热段31和预转化原料气预热段32组成;空气预热段34为两段式结构,分别为高温空气预热段和低温空气预热段,在烟气通路中分别设置于蒸发段35进出两端;此外,余热回收系统3还包括引风机38、鼓风机39、烟风道及烟囱等常规设备,本实施例中设置了1台引风机和1台鼓风机,根据需要也可将引风机和鼓风机各设置2台,使用2台时采用一开一备或两开不备的工作方式。从炉体内的辐射室排出的高温烟气依次经过原料气预热器31、预转化原料气预热段32、过热蒸汽预热段33、空气预热段34、高温空气预热段、蒸发段35和低温空气预热段,通过与相应冷介质换热,其温度被降至140℃以下,通过引风机38排入烟囱排出,使转化炉的热效率在92%以上;经鼓风机39输入的空气先后经过低温空气预热段和高温空气预热完成预热。为了使转化炉系统结构更加紧凑,减少占地面积,将原料气预热器31、预转化原料气预热段32、过热蒸汽预热段33布置在辐射室顶部,其余各段和烟囱、引风机38、鼓风机39布置在转化炉旁。本转化炉主要通过原料气和空气对烟气余热进行回收,减少蒸汽产量8~10%,减少燃料消耗2%~3%。
燃烧器4布置于炉体底部,分布在转化炉管2两侧,其火焰方向向上,因炉内转化反应在进口处较慢,需热量较小,在上部反应剧烈,而向上的火焰根部温度较低,上部温度较高,火焰温度分布与转化反应需热量相匹配;燃烧器4可调整负荷以匹配转化炉热负荷要求,提高了转化炉的操作弹性。
实施例2
本实施例制氢转化炉包括带衬里壳体、转化炉管2、余热回收系统3和燃烧器4四个主要部分,燃料气使用脱附气和补充燃料气。制氢转化炉具体结构如图3所示,其中:
转化炉管2结构与布置方式与实施例1中的转化炉管相同;
余热回收系统3的组件与实施例1相比增设了脱附气预热段36和补充燃料气复合阻蚀剂系统37;空气预热段34为三段式结构,分别为高温空气预热段、低温空气预热段和空气进口预热段。
如图3,从辐射室来的高温烟气依次经过转化原料气预热段31、预转化原料气预热段32、过热蒸汽预热段33和高温空气预热段和蒸发段35,再分三路分别经过脱附气预热段36、补充燃料气复合阻蚀剂系统37和低温空气预热段,之后再会合通过空气进口预热段,最后低温烟气由烟囱排出。初始的来自辐射室的高温烟气通过与相应冷介质换热,其温度被降至100℃以下,转化炉的热效率达到95%以上;通入的补充燃料气通过补充燃料气复合阻蚀剂系统37进行预热和精处理,使其含氮化合物和氨盐类物质之和降至20ppm以下,总硫含量在10ppm以下,c5重质烃类含量降至10ppm以下,确保余热回收系统低温设备不会发生露点腐蚀,同时可以实现二氧化硫的近零排放,氮氧化物和颗粒物的超低排放;另外,将引风机38布置在空气预热段34最末端的空气进口预热段之前,避免含冷凝水的低温烟气与引风机38接触,确保引风机38长周期稳定运行。为了使转化炉系统结构更加紧凑,减少占地面积,将原料气预热器31、预转化原料气预热段32和过热蒸汽预热段33布置在辐射室顶部,其余各段、烟囱、引风机38和鼓风机39布置在转化炉旁。本转化炉主要是通过原料气、空气和燃料气对烟气余热进行回收,减少蒸汽产量10~15%,减少燃料消耗3%~5%。
本实施例的燃烧器4与实施例1中结构基本相同,但通入燃烧器4的空气和燃料气均经过预热,提高了燃料燃烧的活化能,可以在过剩空气系数为1.05~1.1(常规的燃烧器设计过剩空气系数为1.15)下完全燃烧,可以减少5%~10%的排烟损失,进一步提高加热炉热效率。
应理解,上述实施例只为说明本发明的技术构思及特点,其目的在于供本领域技术人员了解本发明的内容并据以实施,并非具体实施方式的穷举,并不能以此限制本发明的保护范围。凡根据本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。