一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法与流程

文档序号:11580178阅读:618来源:国知局

本发明涉及一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法。



背景技术:

炭/炭复合材料具有低密度、高比强、高比模以及优良的高温力学性能,是航空/航天飞行器重要的高温结构件用材。但传统的c/c复合材料存在易氧化问题,无法服役在氧化性高温环境中。zr、ta、hf等过渡族金属碳化物和硼化物超高温陶瓷具有高熔点和良好的抗氧化、耐烧蚀性能,但其抗热冲击性能差。因而,各国材料工作者近年来一直致力于将超高温陶瓷引入到炭/炭复合材料中,制备一种陶瓷改性炭/炭复合材料,使该材料兼具陶瓷材料良好的抗氧化特性和炭/炭复合材料极佳的耐热冲击性能,是未来高超声速飞行器关键耐热结构部件的热防护候选用材。

常见的超高温陶瓷有zr、ta、hf等过渡族金属碳化物和硼化物等二元系陶瓷。这些二元系碳化物的熔点比相应的硼化物熔点通常要高200-800℃。例如,hfc和zrc熔点分别高达3890℃和3540℃,但hfb2和zrb2熔点分别仅为3100℃和3000℃。因而,相对硼化物,碳化物具有更好的高温适应性;然而,硼化物因含硼元素却具有更好的抗氧化性能,但是高含量的硼元素又反而会导致低熔点的氧化物大量挥发,不利于烧蚀性能的提高。可见,当前二元系碳化物和硼化物超高温陶瓷具有明显的优势和不足。因而,许多学者通过多相混合来改善二元系超高温陶瓷的抗烧蚀性能。文献“a.paul,d.d.jayaseelan,s.venugopal,e.zapata-solvas,j.binner,b.vaidhyanathan,a.heaton,p.brownandw.e.lee.uhtccompositesforhypersonicapplications.am.ceram.soc.bull.91,22-28(2012)”报道了把hfb2/zrb2和sic复合相陶瓷共同引入c/c复合材料中,来提高超高温陶瓷基复合材料的抗烧蚀和抗氧化性能;文献“sciti,d.,brach,m.&bellosi,a.oxidationbehaviorofapressurelesssinteredzrb2–mosi2ceramiccomposite.j.mater.res.20,922-930(2005)”报道了将mosi2引入zrb2中来减少b元素的挥发,从而提高zrb2的抗氧化性能。文献“liuhl,zhanggj,liujx,etal.synergeticrolesofzrcandsicinternaryzrb2–sic–zrcceramics.journaloftheeuropeanceramicsociety,2015,35(16):4389-4397.”以及文献“wuh,xiec,zhangw,etal.fabricationandpropertiesof2dc/c–zrb2–zrc–siccompositesbyhybridprecursorinfiltrationandpyrolysis.advancesinappliedceramics,2013,112(6):366-373.”报道了将zrc-sic一起引入到zrb2制备出的三相复合陶瓷具有较好的抗烧蚀性能。可见,多相混合是提高当前二元系超高温陶瓷抗烧蚀性能常见的手段。此外,针对反应熔渗法改性炭/炭复合材料的报道亦有许多。例如,文献“zoul,walin,yangjm,etal.microstructuraldevelopmentofacf/zrccompositemanufacturedbyreactivemeltinfiltration.journaloftheeuropeanceramicsociety,2010,30(6):1527-1535.”和文献“tongy,bais,chenk.c/c–zrccompositepreparedbychemicalvaporinfiltrationcombinedwithalloyedreactivemeltinfiltration.ceramicsinternational,2012,38(7):5723-5730.”报道了采用反应熔渗法对炭/炭复合材料进行基体改性。

目前,对炭/炭复合材料基体改性的方法有前驱体热解法、化学气相渗透法、颗粒掺杂和反应熔渗法等。涂层改性则有化学气相沉积,物理气相沉积,包埋法等。每种方法都有各自的优缺点。其中,熔渗反应法具有快速制备、成分易调、近净成形和低成本等诸多优点;包埋法具有低成本、快速和易于制备大尺寸件涂层的优点;而鲜有报道采用反应熔渗法和包埋法相结合对炭/炭复合材料进行一体化改性。上述两种方法被本发明采用对炭/炭复合材料进行基体和涂层一体化改性,使之具备一体化的材料组织结构。此外,zr0.8ti0.2c0.74b0.26陶瓷具有碳化物晶体结构及高熔点物理性能;将zr0.8ti0.2c0.74b0.26陶瓷与具有良好抗氧化性能的sic陶瓷复合在改性炭/炭复合材料表面,表现出良好的抗烧蚀和抗氧化性能。将此陶瓷体系引入炭基体表层和内部,可以整体提高整个改性复合材料的抗热冲击性能。

事实上,本发明制备的多元含硼碳化物(zr0.8ti0.2c0.74b0.26)是一种新型超高温陶瓷。有别于其他多相混合超高温陶瓷,该陶瓷物相具有稳定的碳化物(fcc)晶体结构,ti原子以置换方式占据部分zr原子位置,b原子则填充了非化学计量比碳化物中的c原子空位。上述结构使抗之兼具碳化物高熔点以及硼化物的氧化特性,而且相对zrb2(66at.%),其硼元素含量一定程度降低(13at.%)。该结构陶瓷很好地解决了碳化物耐高温和硼化物抗氧化这两种优势不可兼得的问题,也解决了硼化物高含硼量带来大量材料挥发的问题。重要的是,将上述新型超高温陶瓷与具有良好抗氧化性能的sic陶瓷复合梯度引入炭/炭复合材料中,制备出的基体和涂层一体化改性结构的炭/炭复合材料。经一体化改性过的炭/炭复合材料具有相对致密的抗烧蚀陶瓷外层,而陶瓷外层与改性材料基体内部的陶瓷呈梯度、连续分布,无明显的涂层和基体相分隔的物理界面,涂层和材料基体之间的热匹配性提高,使复合材料整体的抗热冲击性能和抗烧蚀性能得到很好改善,可以为炭基体提供较好的保护。



技术实现要素:

本发明的目的是提供一种新型超高温陶瓷一体化改性炭/炭复合材料及其制备方法。本发明针对当前二元系超高温陶瓷不足,设计并制备了一种新型含硼碳化物超高温陶瓷,并将该陶瓷对炭/炭复合材料进行基体和涂层一体化改性,进一步提高炭/炭复合材料在2000℃-3000℃温度段的抗烧蚀性能和耐热冲击性能。

本发明的目的是通过下述方式实现的:

一种新型超高温陶瓷一体化改性炭/炭复合材料的制备方法,其特征在于:所述的复合材料各组分按体积百分数计含量如下:炭基体材料20%-80%,zr0.8ti0.2c0.74b0.26陶瓷材料15%-78%,sic陶瓷材料2%-5%,所述的炭基体材料为沉积有热解碳的炭/炭复合材料;具体包括如下步骤:(1)将碳纤维预制体进行高温热处理后,置于化学气相渗透炉内沉积热解碳,制备出多孔的炭/炭复合材料;(2)将沉积有热解碳的炭/炭复合材料置于锆钛混合粉上,通过高温熔渗反应法制备出非化学计量比锆钛碳化物改性炭/炭复合材料;(3)将非化学计量比锆钛碳化物改性炭/炭复合材料置于c,b4c,sic,si以及促渗剂的混合粉末中,采用包埋法使之形成具有一体化结构的超高温陶瓷改性炭/炭复合材料。

本发明制备的材料是具有一定梯度分布的一体化结构的zr0.8ti0.2c0.74b0.26超高温陶瓷改性炭/炭复合材料。一体化结构体现为,最外层为抗烧蚀的zr0.8ti0.2c0.74b0.26陶瓷层,炭基体很少,越是往内部,炭基体含量越高。外层以下的浅表层处为zr0.8ti0.2c0.74b0.26陶瓷和sic陶瓷复合层。通过包埋法将引入b元素入非化学计量比的锆钛碳化物以及将sic陶瓷引入浅表层处形成zr0.8ti0.2c0.74b0.26/sic复合陶瓷层。

所述的碳纤维预制体包括针刺整体毡或三维编制体,高温热处理是将密度为0.1-0.9g.cm-3的碳纤维预制体置于高温石墨炉中于2000-2300℃保温1-3h。升温速率为5-10℃/min,降温速率为5-8℃/min,当温度降至1200℃时,随炉冷却。

所述的化学气相渗透法制备多孔炭/炭复合材料的具体步骤如下:以氮气为稀释气体、氢气为载气、丙烯或者甲烷为碳源气体在1000-1300℃下在沉积炉内将热解碳反应沉积在碳纤维上;炉压为0.3-1.3kpa,反应时间为10-60h;所制得的多孔炭/炭复合材料开孔率为20%-40%。

所述的锆钛混合粉通过纯度≥99.9%,过325目筛的锆粉和纯度≥99.9%,过325目筛的钛粉以分子比为0.8:0.2的比例在高能行星式球磨机上球磨制得;球磨转速为200-300r/min,球磨时间为10h-25h,球料比为4-10,球磨介质为酒精保护湿磨,球磨后的混合粉经80-90℃真空干燥3-8h。

所述的高温熔渗反应法制备非化学计量比锆钛碳化物改性炭/炭复合材料,是首先称取锆钛混合粉,称量用量以多孔炭/炭复合材料重量为基准的3-5倍;将混合粉置于石墨罐中压实,并将化学气相渗透法制备的多孔炭/炭复合材料置于混合粉之上后,将石墨罐放置在高温炉中进行热处理;处理温度为1900-2300℃,保温时间为0.5-2h,全程氩气保护。升温速率为10-20℃/min。

所述的包埋法是引入b元素和sic分别进入非化学计量比锆钛碳化物和炭/炭复合材料浅表层处,所述促渗剂选自al2o3、b2o3、sio2中的至少一种;处理温度为1600-1800℃,保温时间为0.5-2h,氩气保护。

具体包埋的步骤如下:首先以si粉、sic粉、c粉、al2o3粉为原料制备包埋用的第一种混合粉料a粉;粉料质量配比为:30%-70%si,5%-10%al2o3,10-20%c,10%-40%sic;称取上述比例的sic粉、al2o3粉、c粉,sic粉以乙醇为分散剂,将其置于行星式球磨机中充分混匀后取出干燥后待用;其次,将30%-80%b4c和20%-70%b2o3粉置于球磨机中充分混匀后取出干燥待用,从而制备出第二种混合粉料b粉;然后,称量20%-50%a粉和50%-80%b粉混合作为包埋锆钛碳化物改性过的炭/炭复合材料的第一层粉末,称量50%-80%a粉和20%-50%b粉混合作为包埋锆钛碳化物改性过的炭/炭复合材料的第二层粉末;第一层粉末与第二层粉末的比例为:0.2-1;改性炭/炭复合材料与包埋所用粉料质量比为0.05-0.2;最后,将坩埚放入高温炉中,处理温度为1600-1800℃,保温时间为0.5-2h,氩气保护。

一种新型超高温陶瓷一体化改性炭/炭复合材料,是由上述的方法制备而成的。

本发明的方法可应用于对化学气相渗透和/或液相浸渍工艺制备的多孔炭/炭复合材料的基体和涂层改性,提高复合材料的抗烧蚀性能。

本发明所描述的基体和涂层一体化改性,具体是指在最终制备得到的材料最外层形成了抗烧蚀的zr0.8ti0.2c0.74b0.26陶瓷涂层,该涂层中炭基体很少,越是往内部,炭基体含量越高。陶瓷涂层与改性材料基体内部的陶瓷呈梯度、连续分布,无明显的涂层和基体相分隔的物理界面,涂层和材料基体之间的热匹配性提高,使复合材料整体的抗热冲击性能和抗烧蚀性能得到很好改善,可以为炭基体提供较好的保护。

与现有技术相比,本发明的优点和积极效果体现在:

(1)成功构建了zr0.8ti0.2c0.74b0.26多元单相含硼碳化物超高温陶瓷。该陶瓷具有碳化物面心立方晶体结构,表现出碳化物高熔点特性;而且该碳化物含硼元素,相对单一二元系碳化物,具备更好的抗氧化特性,从而解决了碳化物和硼化物两者优点难以兼得的问题;

(2)将新型zr0.8ti0.2c0.74b0.26陶瓷呈梯度式引入多孔炭/炭复合材料,实现基体与涂层一体化改性,使涂层与基体之间具有一体化结构。一方面在炭/炭复合材料基体中的热解炭层可以较好的缓解碳纤维与陶瓷相的热应力,也能较好的阻止液态锆钛合金对碳纤维的侵蚀,还能为锆钛合金相提供碳源进而形成锆钛碳化物;另一方面,陶瓷相与炭材料呈梯度分布,解决了陶瓷外层与基体材料之间的热匹配性问题,提高了材料的抗热震性能。

(3)改性材料陶瓷外层具有高熔点,其氧化物在烧蚀过程中(2000℃-3000℃)形成黏度适中的氧化膜可以为炭基体提供较好的保护;sic和b元素的引入有利于进一步降低氧化层的氧扩散系数,相对致密的陶瓷外层的形成可进一步抵抗高温高速气流的冲刷,同时跟基体之间有着良好的热匹配,大大地提高了耐热冲击的能力;

(4)利用了以上方法的主要优点制备出了基体和涂层呈现一体化的结构特征,具有优越的抗烧蚀性能的改性炭/炭复合材料,可满足耐烧蚀结构部件在氧化环境下较长时间的使用。

附图说明

图1为本发明制备的新型超高温陶瓷一体化改性炭/炭复合材料三维xrd断层扫描形貌图;

图2为本发明制备的新型超高温陶瓷一体化改性炭/炭复合材料表面和截面xrd扫描图谱;

图3为本发明制备的新型超高温陶瓷一体化改性炭/炭复合材料截面图及其电子探针元素扫描图谱;

图4为zr0.8ti0.2c0.74b0.26陶瓷tem高分辨照片和衍射斑点;

图5为本发明制备的新型超高温陶瓷一体化改性炭/炭复合材料宏观烧蚀形貌照片;

图6为本发明制备的新型超高温陶瓷一体化改性炭/炭复合材料的线烧蚀速率和质量

速率对比图。

从图1中可见zr0.8ti0.2c0.74b0.26陶瓷外层较为致密,孔隙和炭材料分布较少,随着进入改性复合材料内部,炭基体材料逐渐增多,陶瓷材料逐渐减少,呈现出陶瓷与炭基体材料梯度分布的形貌,有利于减少陶瓷外层与炭基体材料之间的应力,从而提高材料的抗热冲击性能。

从图2中可见,复合材料截面和陶瓷表面的扫描结果显示zr0.8ti0.2c0.74b0.26陶瓷呈现出典型的zrcxrd衍射峰。

从图3中可见zr0.8ti0.2c0.74b0.26陶瓷呈梯度分布在炭基体中,浅表层处有sic陶瓷存在;元素面扫描结果显示:zr和ti原子比为0.8:0.2,b元素的占比为13%,其与和c原子比为0.26:0.74。

从图4中可见zr0.8ti0.2c0.74b0.26陶瓷的高分辩照片和衍射斑点表明该陶瓷材料具有fcc碳化物的晶体结构。因而,从上图xrd衍射峰以及本图的衍射斑点都可判断该材料具有碳化物的稳定的fcc单相结构。

从图5中可见烧蚀后的复合材料表面完整,无明显的烧蚀凹坑,表现出较为优异的抗烧蚀性能。

从图6中可见zr0.8ti0.2c0.74b0.26陶瓷一体化改性炭/炭复合材料在2000-3000℃的线烧蚀速率一直为负值(见图中箭头所指新型改性复合材料烧蚀速率图),意味着因烧蚀氧化生成的氧化物发生了膨胀,而且由于其较强的附着力,使其膨胀速率超过了其被高温气流冲刷和蒸发的速率;相对于其他常见的超高温陶瓷及其复合材料较高的材料烧蚀损失率

(见图中箭头所指其余复合材料烧蚀速率图),新型陶瓷一体化改性复合材料有更为优良的抗烧蚀性能。

具体实施方式

以下结合实施例旨在进一步说明本发明,而非限制本发明。

实施例1

将通过纯度均大于99.9%的锆粉和钛粉以原子比为80:20的比例进行混合,然后在高能行星式球磨机上球磨制得。球磨转速为400r/min,球磨时间为10h,球料比为5,球磨介质为无水乙醇。球磨粉末在真空干燥箱80℃干燥8小时后,备后续步骤使用。

将密度为0.42g.cm-3碳纤维针刺整体毡进行高温热处理以去除纤维表面的有机胶和释放应力。处理温度为2200℃,保温时间是1h。

将热处理后的毡体置于化学气相沉积炉内沉积热解碳,进行碳纤维毡体增密,制备出多孔炭/炭复合材料。增密后的多孔炭/炭复合材料密度为1.2g/cm3,开孔率为31.2%。

将上述混合粉末放置在石墨罐中并压实,然后将切割、清洗并烘干的炭/炭复合材料放置在压实的混合粉上。接着将石墨罐置于高温炉中于1900℃进行热处理。保温时间为1h,全程氩气保护。

接着是制备a粉。粉料质量配比为:70%si-10%al2o3-10%c-10%sic。称取上述比例的si粉、al2o3粉、c粉,sic粉以乙醇为分散剂,将其置于行星式球磨机中充分混匀后取出干燥后待用。然后是制备b粉,将60%b4c和40%b2o3粉置于球磨机中充分混匀后取出干燥待用。称量20%a粉和80%b粉均匀混合作为包埋改性过的炭/炭复合材料的第一层粉末;称取80%a粉和20%b粉均匀混合作为包埋改性过的炭/炭复合材料的第二层粉末。第一层粉末占总包埋粉末的30%,第二层则为70%。最后,将坩埚放入高温炉中,处理温度为1600-1800℃,保温时间为2h,氩气保护。

通过以上工艺过程可得zr0.8ti0.2c0.74b0.26陶瓷一体化改性抗烧蚀炭/炭复合材料。该复合材料在2000℃的氧乙炔焰测试中,其线烧蚀速率仅为-1.8μm.s-1;2500℃的线烧蚀率仅为-3.5μm.s-1;3000℃的线烧蚀率为-0.33μm.s-1,表现出优异的抗烧蚀性能。

对比例2

将密度为0.42g.cm-3碳纤维针刺整体毡进行高温热处理以去除纤维表面的有机胶和释放应力。处理温度为2200℃,保温时间是1h。

将热处理后的毡体置于化学气相沉积炉内沉积热解碳,制备出多孔炭/炭复合材料,其密度为1.45g/cm3,开孔率为18%。

称量纯度均大于99.9%的锆粉,放置在石墨罐中并压实,然后将切割、清洗并烘干的炭/炭复合材料放置在压实的锆粉上。接着将石墨罐置于高温炉中于1900℃进行热处理。保温时间为3h,全程氩气保护。

包埋工艺同上所述。

通过以上工艺过程可得zrc超高温陶瓷与sic陶瓷改性抗烧蚀炭/炭复合材料。2500℃的氧乙炔线烧蚀速率为3μm·s-1

对比例3

将密度为0.42g.cm-3碳纤维针刺整体毡进行高温热处理以去除纤维表面的有机胶和释放应力。处理温度为2200℃,保温时间是1h。

将热处理后的毡体置于化学气相沉积炉内沉积热解碳,进行碳纤维毡体增密,制备出多孔炭/炭复合材料。增密后的多孔炭/炭复合材料密度为1.2g/cm3,开孔率为31.2%。

将通过纯度均大于99.9%的锆粉和钛粉以原子比为80:20的比例进行混合,然后在高能行星式球磨机上球磨制得。球磨转速为400r/min,球磨时间为10h,球料比为5,球磨介质为无水乙醇。球磨粉末在真空干燥箱80℃干燥8小时后,备后续步骤使用。

将上述混合粉末放置在石墨罐中并压实,然后将切割、清洗并烘干的炭/炭复合材料放置在压实的混合粉上。接着将石墨罐置于高温炉中于1900℃进行热处理。保温时间为1h,全程氩气保护。

通过以上工艺过程可得zr-ti-c陶瓷改性炭/炭复合材料。该复合材料在2000℃的氧乙炔焰的线烧蚀率3μm.s-1

对比例2,碳纤维毡体结构和初始密度、毡体热处理、包埋工艺完全一致。不同之处则是,对比例2中的多孔炭/炭材料密度增加以及开孔率下降,合金元素改为纯锆,且熔渗保温时间有所延长。对比例2中制得的材料为zrc超高温陶瓷与sic陶瓷改性抗烧蚀炭/炭复合材料。由于多孔炭/炭材料密度增加意味着热解炭体积增加,加上保温时间延长,使渗入的锆熔体与热解炭充分反应生成化学计量比的碳化锆,不利于后续保埋工艺的硼元素渗入,同时由于只采用了纯锆元素,所制得的改性复合材料的抗烧蚀性能没有实施例1中的新型超高温陶瓷一体化改性炭/炭复合材料优异。

对比例3,碳纤维毡体结构和初始密度、毡体热处理、合金元素、熔渗工艺以及多孔炭/炭材料结构和密度完全一致。不同之处则是,对比例3中没有进行包埋工艺,所制得的陶瓷一方面缺少硼元素,另一方面制得的改性复合材料缺少一体化结构,导致其抗烧蚀性能没有实施例1中的新型超高温陶瓷一体化改性炭/炭复合材料优异。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1